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7.2 Planar curves in Möbius geometry . . . . . . . . . . . . . . . . . . . . . . . 49

8 Roulettes and cycloidal pendulum 51
8.1 Interlude: complex numbers and geometry . . . . . . . . . . . . . . . . . . 51
8.2 Euclidean motions and instant center of rotation . . . . . . . . . . . . . . . 53
8.3 Roulettes of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.4 Cycloidal pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Billiards and caustics 58
9.1 Optical properties of conics . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2 Elliptic billiards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.3 Caustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10 Families of circles: envelopes and orthogonal trajectories 63
10.1 Envelopes of one-parameter families of circles . . . . . . . . . . . . . . . . 63
10.2 Orthogonal trajectories of one-parameter families of circles . . . . . . . . . 67
10.3 Tractrix and Darboux transform . . . . . . . . . . . . . . . . . . . . . . . . 68
10.4 Midcircles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.5 Discrete envelopes and orthogonal trajectories from midcircles . . . . . . . 72
10.6 Discrete tractrix and Darboux transform . . . . . . . . . . . . . . . . . . . 74

11 Surfaces and curvature line parametrizations 76
11.1 Parametrized surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11.2 Surfaces in projective geometry . . . . . . . . . . . . . . . . . . . . . . . . 77
11.3 Dual representation of surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 78
11.4 Ruled surfaces and developable surfaces . . . . . . . . . . . . . . . . . . . . 79
11.5 Conjugate line parametrizations . . . . . . . . . . . . . . . . . . . . . . . . 81
11.6 Curvature line parametrizations . . . . . . . . . . . . . . . . . . . . . . . . 83
11.7 Focal surfaces and principal curvature spheres . . . . . . . . . . . . . . . . 84
11.8 Channel surfaces and Dupin cyclides . . . . . . . . . . . . . . . . . . . . . 86
11.9 Q-nets, circular nets, and discrete channel surfaces . . . . . . . . . . . . . . 88

2



1 Projective spaces

1.1 Some motivation: Incidences between points and lines
The elementary figures of projective geometry are points, straight lines, and
planes. The elementary results of projective geometry deal with the simplest
possible relations between these entities, namely their incidence. The word
incidence covers all the following relations: A point lying on a straight line,
a point lying in a plane, a straight line lying in a plane. Clearly, the three
statements that a straight line passes through a point, that a plane passes
through a point, that a plane passes through a straight line, are respectively
equivalent to the first three. The term incidence was introduced to give these
three pairs of statements symmetrical form: a straight line is incident with a
point, a plane is incident with a point, a plane is incident with a straight line.
(Geometry and the Imagination – Hilbert, Cohn-Vossen)

In projective geometry, we are interested in statements and configurations that are
invariant under projective transformations. E.g., the incidence of a point lying on a line
is invariant under projection from one plane to another (from some point). Let us take a
closer look at this incidence in the plane.

A point in the Euclidean plane R2 can be described by two Cartesian coordinates

p “ pp1, p2q P R2,

and a line by
ℓ “

␣

p “ pp1, p2q P R2 ˇ

ˇ xn, py ` h “ 0
(

with some n “ pn1, n2q P S1zt0u and h P R, where n can be interpreted as the unit normal
vector of ℓ and h as the oriented distance of the origin to ℓ.

Note that the equation for ℓ can be multiplied by any scalar λ P R, λ ‰ 0 without
changing the line. Thus, we can replace pn1, n2, hq by

¨

˝

a1
a2
a3

˛

‚“ λ

¨

˝

n1
n2
h

˛

‚, with some λ P R, λ ‰ 0,

and write the equation for the line as

a1p1 ` a2p2 ` a3 “
`

a1 a2 a3
˘

¨

˝

p1
p2
1

˛

‚“ 0

Similarly, we can replace pp1, p2, 1q by any non-zero scalar multiple
¨

˝

x1
x2
x3

˛

‚“ µ

¨

˝

p1
p2
1

˛

‚, with some µ P R, µ ‰ 0,

from which the Cartesian coordinates of p can be recovered by

p1 “
x1

x3
, p2 “

x2

x3
.
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The triple px1, x2, x3q, and in particular pp1, p2, 1q, are called homogeneous coordinates
of p.

Now the equation of the incidence of the point p lying on the line ℓ (p P ℓ), or
equivalently, the line ℓ passing through the point p (ℓ Q p) has the symmetric form

a1x1 ` a2x2 ` a3x3 “
`

a1 a2 a3
˘

¨

˝

x1
x2
x3

˛

‚“
`

x1 x2 x3
˘

¨

˝

a1
a2
a3

˛

‚“ 0 (1)

Example 1.1. How to determine if three points p, q, r P R2 lie on a line?
Equation (1) is a linear homogeneous equation in pa1, a2, a3q. Thus, there exists a line

passing through these three points if and only if the linear homogeneous system
¨

˝

p1 p2 1
q1 q2 1
r1 r2 1

˛

‚

¨

˝

a1
a2
a3

˛

‚“ 0

has a non-trivial solution, which is equivalent to

det

¨

˝

p1 p2 1
q1 q2 1
r1 r2 1

˛

‚“ 0.

Example 1.2. How to compute the intersection point of two lines?

ℓ “
␣

p P R2 ˇ

ˇ a1p1 ` a2p2 ` a3 “ 0
(

ℓ̃ “
␣

p P R2 ˇ

ˇ ã1p1 ` ã2p2 ` ã3 “ 0
(

Its homogeneous coordinates are given by a solution of the linear homogeneous system

ˆ

a1 a2 a3
ã1 ã2 ã3

˙

¨

˝

x1
x2
x3

˛

‚“ 0. (2)

If we assume that the two lines are distinct, i.e., the two rows are independent, then the
solution space is one-dimensional

spantxu “ tλx | λ P Ru with some x P R3, x ‰ 0,

and we obtain the intersection point p P R2 with

p1 “
x1

x3
, p2 “

x2

x3
.

What if x3 “ 0? Then
det

ˆ

a1 a2
ã1 ã2

˙

“ 0

and thus ℓ and ℓ̃ are parallel.
The linear homogeneous system (2) always has a solution. Thus, in homogeneous

coordinates of the plane two lines always intersect. In particular, for two parallel lines, the
point of intersection has homogeneous coordinates of the form px1, x2, 0q which represents
a point not in R2, but “at infinity”.
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1.2 Definition of projective spaces
Let V be a vector space of dimension n ` 1 over a field F. Then the projective space of V
is the set

PpV q :“ t1-dimensional subspaces of V u

Its dimension is given by
dim PpV q :“ dim V ´ 1 “ n.

For x P V zt0u we write rxs :“ spantxu. Then rxs is a point in PpV q, and x is called a
representative vector for this point.

If λ P Fzt0u then rλxs “ rxs, and λx is another representative vector for the same
point. This defines an equivalence relation on V zt0u

x „ y ô x “ λy, for some λ P Fzt0u,

and we can identify
PpV q – pV zt0uqä„.

For now we will only consider the real projective space

RPn :“ PpRn`1
q.

1.3 Homogeneous coordinates on RPn

For a point rx1, . . . , xn`1s P RPn the coordinates of a representative vector
px1, . . . , xn`1q P Rn`1 are called homogeneous coordinates. They are unique up to a
common scalar multiple

rx1, . . . , xn`1s “ rλx1, . . . , λxn`1s

for λ P Rzt0u.
If xn`1 ‰ 0 then

rx1, . . . , xn`1s “

„

x1

xn`1
, . . . ,

xn

xn`1
, 1
ȷ

“ ry1, . . . , yn, 1s,

and py1, . . . , ynq are called affine coordinates of the point rxs. This yields a decomposition
of RPn into an affine part and a hyperplane at infinity

RPn
“ trx1, . . . , xn`1s | xn`1 ‰ 0u
loooooooooooooooomoooooooooooooooon

»Rn

Y trx1, . . . , xn`1s | xn`1 “ 0u
loooooooooooooooomoooooooooooooooon

»RPn´1

.

x2 “ 1

x2 “ 0

x3 “ 1

x3 “ 0

Figure 1. Affine coordinates for RP1 and RP2.
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Example 1.3 (The real projective line RP1). For the real projective line this decompo-
sition is given by

RP1
– R Y RP0

“ R Y t8u,

where RP0 consists of only one point r1, 0s, which is usually denoted by 8, and allowed
as an “admissible” affine coordinate.

Example 1.4 (The real projective plane RP2). For the real projective plane this decom-
position is given by

RP2
– R2

Y RP1.

Thus, we obtain the Euclidean plane compactified by a (projective) line at infinity.

Example 1.5 (The real projective 3-space RP3). For the real projective plane this de-
composition is given by

RP3
– R3

Y RP2.

Thus, we obtain the Euclidean 3-space compactified by a (projective) plane at infinity.

More generally, let b1, . . . , bn`1 be a basis of Rn`1. For x P Rn`1 let x1, . . . , xn`1 P R
such that

x “

n`1
ÿ

i“1
xibi.

Then px1, . . . , xn`1q are called homogeneous coordinates of the point rxs P RPn (with
respect to b1, . . . , bn`1). They depend on the chosen basis and are unique up to a common
scalar multiple. We then identify

rxs – rx1, . . . , xn`1s.

A change of basis acts on the homogeneous coordinates as a general linear transformation
»

—

–

x1
...

xn`1

fi

ffi

fl

ÞÑ

»

—

–

A

¨

˚

˝

x1
...

xn`1

˛

‹

‚

fi

ffi

fl

with A P GLpRn`1q.

1.4 Projective subspaces
For a pk ` 1q-dimensional linear subspace U Ă Rn`1 its projective space

PpUq Ă RPn

is called a k-dimensional projective subspace of RPn.

dim PpUq name
0 point
1 line
2 plane
k k-plane

n ´ 1 hyperplane

Table 1. Naming conventions for projective (sub)spaces.
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1.5 Meet and join
Let PpU1q, PpU2q Ă RPn be two projective subspaces. Then their intersection, or meet, is
given by

PpU1q X PpU2q “ PpU1 X U2q,

and their span, or join, is given by

PpU1q _ PpU2q “ PpU1 ` U2q.

The dimension formula for linear subspaces carries over to projective subspaces:

dim pPpU1q _ PpU2qq ` dim pPpU1q X PpU2qq “ dim PpU1q ` dim PpU2q.

In particular, a k1-plane and a k2-plane in an n-dimensional projective space with k1 ` k2 ě n
always intersect in an at least pk1 `k2 ´nq-dimensional projective subspace. Thus, certain
incidences are always guaranteed in a projective space.
Example 1.6 (RP2). In RP2 two (distinct) lines always intersect in a point. In affine
coordinates, the two lines are parallel if and only if the intersection point lies on the line
at infinity.
Example 1.7 (RP3). In RP3 two (distinct) planes always intersect in a line. In affine
coordinates, the two planes are parallel if and only if the intersection line lies in the plane
at infinity.

However, in RP3, two lines do not always intersect. They intersect if and only if they
lie in a plane. In affine coordinates, two lines are parallel if and only if the intersection
point lies in the plane at infinity.

1.6 Desargues’ theorem
An incidence theorem is a statement about a projective configuration (of e.g. projective
subspaces) where a certain set of incidences implies another set of incidences. As an
example we state the theorem of Desargues. First in RP3 where it is very easy to verify,
and then in RP2.

Figure 2. Three triangles in perspective and their shadow.
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Theorem 1.1 (Desargues). Let A, A1, B, B1, C, C 1 be six points in RP3, such that
A, B, C span a plane, and A1, B1, C 1 span another plane.

If the three lines AA1, BB1, and CC 1 pass through a common point, then the three
points A2 “ BC X B1C 1, B2 “ CA X C 1A1, and C2 “ AB X A1B1 lie on a common line.

Proof. First, the statement contains the implicit claim, that, e.g., the lines BC and B1C 1

intersect in a point. Indeed, the four points B, C, B1, C 1 lie in a plane since BB1 and CC 1

are concurrent. Thus, the point A2 “ BC X B1C 1 exists.
The two planes

E “ A _ B _ C, E 1
“ A1

_ B1
_ C 1

intersect in a line ℓ “ E X E 1. Since BC P E and B1C 1 P E 1, their intersection point A2

lies in ℓ. Similarly, B2, C2 P ℓ.

Consider what happens if we project such a configuration in RP3 from a point into a
plane, and denote the image points by Ã, B̃, C̃, .... Then we obtain again six points Ã,
Ã1, B̃, B̃1, C̃, C̃ 1 that satisfy that the lines ÃÃ1, B̃B̃1, and C̃C̃ 1 are concurrent and that
the points Ã2 “ B̃C̃ X B̃1C̃ 1, B̃2 “ C̃Ã X C̃ 1Ã1, and C̃2 “ ÃB̃ X Ã1B̃1 are collinear.

Indeed, Desargues theorem also holds in RP2 which can be shown by lifting it to RP3.

Theorem 1.2. Let A, A1, B, B1, C, C 1 be six points in RP2, such that no three lie on a
line.

If the three lines AA1, BB1, and CC 1 pass through a common point, then the three
points A2 “ BC X B1C 1, B2 “ CA X C 1A1, and C2 “ AB X A1B1 lie on a common line.

Proof. We embed RP2 into RP3 as the plane RP2 – E Ă RP3. Thus, E is the plane
which contains the two triangles ABC, A1B1C 1, and the point P which is incident with
the three lines AA1, BB1, and CC 1.

Choose a line through P which is not in E and two points X and Y on it.
The lines XA and Y A1 lie in a plane, so they intersect in a point Ã. Thus,

Ã “ XA X Y A1,

and similarly
B̃ “ XB X Y B1,

C̃ “ XC X Y C 1.

Now A, B, C span E and Ã, B̃, C̃ span another plane Ẽ. The three lines AÃ, BB̃, and
CC̃ pass through a common point (namely X). Thus, we can apply Theorem 1.1 to the
six points A, Ã, B, B̃, C, C̃, and find that the line of intersection E X Ẽ contains

A2
“ BC X B̃C̃ “ BC X B1C 1,

and similarly B2 and C2.
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Figure 3. Desargues’ theorem in RP2 from Desargues’ theorem in RP3.

2 Duality
As we have seen in Section 1.1, in homogeneous coordinates x1, x2, x3, the equation for a
line in a projective plane is

a1x1 ` a2x2 ` a3x3 “ 0,

where not all coefficients ai are zero. The coefficients a1, a2, a3 can be seen as homogeneous
coordinates for the line, because if we replace in the equation ai by λai for some λ ‰ 0 we
get an equivalent equation for the same line. Thus, the set of lines in a projective plane
is itself a projective plane, the dual plane. Points in the dual plane correspond to lines
in the original plane. Moreover, if we consider in the above equation the xi as fixed and
the ai as variables, we get an equation for a line in the dual plane. Points on this line
correspond to lines in the original plane that contain rxs. Thus, a the points on a line in
the dual plane correspond to lines in the original plane through a point.

It makes sense to look at this phenomenon in a basis independent way and for arbitrary
dimension. It boils down to the duality of vector spaces.

2.1 Dual space
The dual vector space of Rn`1 is the space of linear functionals Rn`1 Ñ R

pRn`1
q

˚ :“
␣

a
ˇ

ˇ a : Rn`1
Ñ R linear

(

.

The dual projective space of RPn is correspondingly defined by
pRPn

q
˚ :“ PppRn`1

q
˚
q.

The natural identification pRn`1q˚˚ “ Rn`1 carries over to the projective setting pRPnq˚˚ “

RPn.
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2.2 Dual subspaces
For a projective subspace PpUq Ă RPn its dual projective subspace PpUq‹ Ă pRPnq˚ is
defined by

PpUq
‹ :“ tras P pRPn

q
˚

| apxq “ 0 for all x P Uu .

The dimensions of a projective subspace and its dual projective subspace are related by

dim PpUq ` dim PpUq
‹

“ n ´ 1.

Incidences are reversed by duality

PpU1q Ă PpU2q ô PpU2q
‹

Ă PpU1q
‹.

and meet and join are interchanged

pPpU1q _ PpU2qq
‹

“ PpU1q
‹

X PpU2q
‹,

pPpU1q X PpU2qq
‹

“ PpU1q
‹

_ PpU2q
‹.

Figure 4. Duality in RP2 and RP3.

2.3 Duality in coordinates
Let b1, . . . , bn`1 be a basis of Rn`1 and b˚

1 , . . . , b˚
n`1 the corresponding dual basis of pRn`1q˚,

i.e.,

b˚
i pbjq “ δij “

#

1, i “ j

0, i ‰ j.

In homogeneous coordinates with respect to those bases the duality of two points

rx1, . . . , xn`1s – rxs P RPn, ra1, . . . , an`1s – ras P pRPn
q

˚

is expressed by

apxq “ pa1 . . . an`1q

¨

˚

˝

x1
...

xn`1

˛

‹

‚

“

¨

˚

˝

a1
...

an`1

˛

‹

‚

⊺¨

˚

˝

x1
...

xn`1

˛

‹

‚

“ 0.

Thus, duality in linear algebra as well as in projective geometry expresses in a formal way
that a subspace can either be expressed as the span of points or the solutions to a set of
linear equations.
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If a change of basis acts on the homogeneous coordinates of RPn as
»

—

–

x1
...

xn`1

fi

ffi

fl

ÞÑ

»

—

–

A

¨

˚

˝

x1
...

xn`1

˛

‹

‚

fi

ffi

fl

with A P GLpRn`1q, it acts on the homogeneous coordinates of the dual space pRPnq˚ as
»

—

–

a1
...

an`1

fi

ffi

fl

ÞÑ

»

—

–

A´⊺

¨

˚

˝

a1
...

an`1

˛

‹

‚

fi

ffi

fl

.

2.4 The dual of Desargues’ theorem
The interchangeability of points and lines is called the principle of duality
in the projective plane. According to this principle, there belongs to every
theorem a second theorem that corresponds to it dually, and to every figure a
second figure that corresponds to it dually. (Geometry and the Imagination –
Hilbert, Cohn-Vossen)

As an example consider the theorem of Desargues in in RP2 (Theorem 1.2). Then its
dual turns out to be the converse statement, which therefore also holds.

3 Projective transformations
Let F P GLpRn`1q an invertible linear transformation. Then the map

rF s : RPn
Ñ RPn, rvs ÞÑ rF pvqs

is called a projective transformation.

Proposition 3.1.

(i) Projective transformations are well-defined maps (do not depend on the representa-
tive vectors of points).

(ii) For F, G P GLpRn`1q

rF s “ rGs ô G “ λF with some λ P R, λ ‰ 0.

(iii) Projective transformations map projective subspaces to projective subspaces, while
preserving their dimension and incidences.

(iv) Vice versa, any bijective map on RPn, n ě 2, that maps lines to lines is a projective
transformation.

(v) Let A1, . . . , An`2 P RPn be n ` 2 points in general position, and let B1, . . . , Bn`2 P

RPn be n ` 2 points in general position. Then there exists a unique projective
transformation

f : RPn
Ñ RPn with fpAiq “ Bi for i “ 1, . . . , n ` 2.

(vi) Projective transformations preserve the cross-ratio of four points on a line.
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3.1 Projective transformations in homogeneous coordinates
In homogeneous coordinates a projective transformation rF s : RPn Ñ RPn is represented
by a non-singular matrix F P Rpn`1qˆpn`1q (up to non-zero scalar multiples).

For representative vectors x “ pu1, . . . , un, 1q and with

F “

ˆ

A b
c⊺ d

˙

where A P Rnˆn, b, c P Rn, d P R

we obtain
F pxq “

ˆ

A b
c⊺ d

˙ˆ

u
1

˙

“

ˆ

Au ` b
c⊺u ` d

˙

„

ˆ

Au`b
c⊺u`d

1

˙

if c⊺u ` d ‰ 0. Thus, in affine coordinates, projective transformations are fractional linear
transformations:

Rn
Ñ Rn u ÞÑ Au`b

c⊺u`d

3.2 Affine transformations
If we choose a representative matrix of the form

F “

ˆ

A b
0 1

˙

where A P GLpRn
q, b P Rn,

we obtain
ˆ

A b
0 1

˙ˆ

u
1

˙

“

ˆ

Au ` b
1

˙

In affine coordinates, this in an affine transformation

Rn
Ñ Rn u ÞÑ Au ` b

Thus, affine transformations are projective transformations.
Note that affine transformations map the hyperplane at infinity trxs P RPn | xn`1 “ 0u

to itself:
ˆ

A b
0 1

˙ˆ

u
0

˙

“

ˆ

Au ` b
0

˙

In fact, affine transformations are characterized by this property among the projective
transformations.

Proposition 3.2. A projective transformation f : RPn Ñ RPn is an affine transforma-
tion if and only if f maps the hyperplane at infinity trxs P RPn | xn`1 “ 0u to itself.

3.3 Euclidean transformations
Euclidean transformations are affine transformations, and thus, projective transforma-
tions. Indeed, if we choose a representative matrix of the form

F “

ˆ

A b
0 1

˙

where A P Opnq, b P Rn,

in affine coordinates, this is a Euclidean transformation.

12



Example 3.1 (reflection in a line). Consider a line with unit normal n “ pn1, n2q P S1

through the point q P R2

ℓ “
␣

u “ pu1, u2q P R2 ˇ

ˇ xn, u ´ qy “ 0
(

Then the (Euclidean) reflection σ̂ : R2 Ñ R2 is given by

σ̂puq “ u ´ 2 xu ´ q, ny n

With h :“ ´ xq, ny the equation for the line becomes

xn, uy ` h “ 0

and the reflection can be rewritten as

σ̂puq “ u ´ 2 xu, ny n ´ 2hn “ pI ´ 2nn⊺qu ´ 2hn

Thus, in homogeneous coordinates we can write
ˆ

σ̂puq

1

˙

“

ˆ

I ´ 2nn⊺ ´2hn
0 1

˙

looooooooooooomooooooooooooon

“:F

ˆ

u
1

˙

,

where, indeed, I ´ 2nn⊺ P Op2q. As an extension of σ̂, we can now define a projective
transformation σ : RP2 Ñ RP2 by σprxsq “ rFxs. Note that F 2 “ I and thus σ is an
involution: σ ˝ σ “ id.

Let us also derive the matrix F for the reflection in the case that the line is given in
homogeneous coordinates

ℓ “
␣

rxs P RP2 ˇ

ˇ a⊺x “ a1x1 ` a2x2 ` a3x3 “ 0
(

“ ras
‹ with some a P R3

zt0u

With â :“ pa1, a2q and |â| ‰ 0 it relates to the Euclidean equation by

n “
â

|â|
, h “

a3

|â|
.

Thus,

F “

˜

I ´ 2 ââ⊺

|â|
2 ´2a3â

|â|
2

0 1

¸

„

ˆ

|â|
2 I ´ 2ââ⊺ ´2a3â

0 |â|
2

˙

Note that this formula easily generalizes to the (Euclidean) reflection in a hyperplane in
Rn Ă RPn given by

L “ trxs P RPn
| a⊺x “ 0u “ ras

‹,

which yields

F “

ˆ

|â|
2 I ´ 2ââ⊺ ´2an`1â

0 |â|
2

˙

,

where â “ pa1, . . . , anq.
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3.4 Central projections
Another important class of projective transformations are projections.

Example 3.2 (orthogonal projection to a line). Consider a line

ℓ “
␣

u “ pu1, u2q P R2 ˇ

ˇ xn, u ´ qy “ xn, uy ` h “ 0
(

,

with some n P S1, q P R2, and h “ ´ xn, qy. Then the orthogonal projection π̂ : R2 Ñ ℓ is
given by

π̂puq “ u ´ xu ´ q, ny n “ u ´ xu, ny n ´ hn “ pI ´ nn⊺qu ´ hn

Thus, in homogeneous coordinates we can write
ˆ

σ̂puq

1

˙

“

ˆ

I ´ nn⊺ ´hn
0 1

˙

looooooooooomooooooooooon

“:F

ˆ

u
1

˙

.

Note that here F is not invertible, since in particular F p n
0 q “ 0. Thus, we can be extend

π̂ to a map
π : RP2

ztr n
0 su Ñ ℓ

by πprxsq “ rFxs. Since π is not invertible, it does not constitute a projective transfor-
mation. But the restriction of π to any line (that does not contain r n

0 s is.
Similar, to Example 3.1, this can easily be generalized to the orthogonal projection

onto a hyperplane in Rn Ă RPn given by

L “ trxs P RPn
| a⊺x “ 0u “ ras

‹,

which yields

F “

ˆ

|â|
2 I ´ ââ⊺ ´an`1â

0 |â|
2

˙

, (3)

where â “ pa1, . . . , anq.

More generally, let L Ă RPn be a hyperplane and P P RPn a point P R L. Then the
central projection to L with center P is given by

π : RPn
ztP u Ñ L, X ÞÑ pP _ Xq X L

P and X span a line, since X ‰ P . This line intersects L in exactly one point, since
P R L. Thus, this map is well-defined.

Let us show that π is indeed a given by a linear map on the representative vectors.
Let the hyperplane L be given by

L “ trxs P RPn
| apxq “ 0u “ ras

‹ with some a P pRn`1
q

˚
zt0u.

The image of a point X “ rxs ‰ P “ rps lies on the line

X _ P “ Pp
␣

λx ` µp
ˇ

ˇ λ, µ P R2(
q.

Thus, the intersection pX _ P q X L is determined by the condition

apλx ` µpq “ λapxq ` µappq “ 0

14



With λ “ appq and µ “ ´apxq, we obtain
πprxsq “ rappqx ´ apxqps,

which is indeed linear in x.
Again, this linear map is not invertible, since p is in its kernel. Furthermore, dimRPn “

n ą dim L “ n ´ 1. Yet the map becomes a projective transformation once we restrict it
to another hyperplane K with P R K:

π : K Ñ L X “ rxs ÞÑ pP _ Xq X L “ rappqx ´ apxqps

To see that now it is invertible, note that dim K “ dim L. Further appqx ´ apxqp “ 0
implies x “ 0, otherwise we would have rxs “ rps, which contradicts P R K.

In homogeneous coordinates, we can write the representative matrix for the central
projection as

F “ a⊺pI ´ pa⊺.

Example 3.3 (orthogonal projection as central projection). Let us recover the orthogonal
projection from Example 3.2 as central projection with center at infinity.

Consider the hyperplane
L “ trxs P RPn

| a⊺x “ 0u “ ras
‹ with some a P pRn`1

q
˚
zt0u.

and P “ rps “ râ, 0s “ ra1, . . . , an, 0s. Then
F “ a⊺pI ´ pa⊺

“
`

â⊺ an`1
˘

ˆ

â
0

˙

I ´

ˆ

â
0

˙

`

â⊺ an`1
˘

“ |â|
2 I ´

ˆ

ââ⊺ an`1â
0 0

˙

,

which indeed coincides with (3).
The definition for central projections can be generalized further by decreasing the

dimension of the image space which at the same time increasing the dimension of the
center.

Let L, C Ă RPn be projective subspaces with
C X L “ ∅, C _ L “ RPn

Then the map
π : RPn

zC Ñ L, X ÞÑ pC _ Xq X L

is called (generalized) central projection onto L with center C. Indeed, this map is well-
defined, since dimpC _ Xq “ dim C ` 1 and dim L ` dim C “ n ´ 1 and therefore, C _ X
and L intersect in exactly one point.

Again, the map π becomes invertible and in particular a projective transpormation,
π : K Ñ L, X ÞÑ pC _ Xq X L

once restricted to any subspace K Ă RPn with
dim K “ dim L, C X K “ ∅

Example 3.4 (central projection). If L is a hyperplanes, i.e. dim L “ n ´ 1, the center C
is a point, and the generalized central projection becomes the standard central projection.
Example 3.5 (three skew lines). If n “ 3 and K, L are two non-intersecting lines, then
the center C is another line, and we obtain three skew lines.
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4 Conics and quadrics
While projective subspaces are described by linear homogeneous equations, we now add
the objects that are described by quadratic homogeneous equations.

Conics or conic sections are planar sections of a cone of revolution (or a cylinder)

hyperbola

ellipse

parabola

Figure 5. Ellipse, hyperbola, and parabola as a planar section of a cone.

It can be shown that conic sections correspond exactly to the sets of solutions of
quadratic equations

␣

px, yq P R2 ˇ

ˇ q11x
2

` 2q12xy ` q22y
2

` 2q13x ` 2q23y ` q33 “ 0.
(

Introducing homogeneous coordinates x “ x1
x3

, y “ x2
x3

, the (non-homogeneous) quadratic
equation in 2 variables can be written as a homogeneous quadratic equation in 3 variables

q11x
2
1 ` 2q12x1x2 ` q22x

2
2 ` 2q13x1x3 ` 2q23x2x3 ` q33x

2
3 “ 0,

or equivalently,

bpx, xq :“
`

x1 x2 x3
˘

¨

˝

q11 q12 q13
q12 q22 q23
q13 q23 q33

˛

‚

loooooooooomoooooooooon

“:Q

¨

˝

x1
x2
x3

˛

‚“ 0

where Q is a symmetrice matrix, i.e. Q⊺ “ Q, and b is a symmetric bilinear form on R3

b : R3
ˆ R3

Ñ R.

Example 4.1. An ellipse is a conic section. In normal form in R2 (up to a Euclidean
transformation) it is given by

"

px, yq P R2
ˇ

ˇ

ˇ

ˇ

´x

a

¯2
`

´y

b

¯2
“ 1

*

.

Introducing homogeneous coordinates x “ x1
x3

, y “ x2
x3

, we can write its equation as a
homogeneous quadratic equation

x2
1

a2 `
x2

2
b2 ´ x2

3 “
`

x1 x2 x3
˘

¨

˝

1
a2

1
b2

´1

˛

‚

¨

˝

x1
x2
x3

˛

‚“ 0.
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4.1 Bilinear forms
Let V be a vector space over R of dimension n ` 1.

A bilinear form on V is a map

b : V ˆ V Ñ R

which is linear in both arguments.
Let e1, . . . , en`1 be a basis of V . Then the matrix Q “ pqijq P Rpn`1qˆpn`1q

qij :“ bpei, ejq for i, j “ 1, . . . , n ` 1

is called the representative matrix, or Gram matrix, of the bilinear form b.
For two coordinate vectors x “

ř

i xiei, y “
ř

i yiei P V we have

bpx, yq “ x⊺Qy.

A change of coordinates x̃ “ Ax with A P GLpn ` 1q acts on the representative matrix
as

Q̃ “ A´⊺QA´1.

Symmetric bilinear forms and quadratic forms

A bilinear form is called symmetric if

bpx, yq “ bpy, xq for x, y P V,

or equivalenty, if its representative matrix is symmetric

Q⊺ “ Q.

The space of symmetric bilinear forms SympV q is a linear subspace of dimension

dim SympV q “
pn ` 1qpn ` 2q

2 .

A symmetric bilinear form bp¨, ¨q defines a corresponding quadratic form bp¨q

bpxq :“ bpx, xq for x P V.

Vice versa, a quadratic form uniquely determines its bilinear form (polarization identity)

2bpx, yq “ bpx ` yq ´ bpxq ´ bpyq,

and thus, the vector spaces of symmetric bilinear forms on V and quadratic forms on V
are isomorphic.

4.2 Quadrics
The zero set of a non-zero quadratic form defines a quadric in PpV q

Qb :“ trxs P PpV q | bpxq “ 0u .

17



Example 4.2. The quadratic form

bpxq “ x2
1 ` x2

2 ´ x2
3

defines a quadric (conic) in RP2

␣

rxs P RP2 ˇ

ˇ bpxq “ x2
1 ` x2

2 ´ x2
3 “ 0

(

In affine coordinates x3 “ 1 this is a circle

x2
1 ` x2

2 “ 1.

A non-zero scalar multiple of b defines the same quadric:

Qb “ Qλb for λ ‰ 0.

Remark 4.1. For some very degenerate images, e.g. if Qb is empty, the reverse statement is
not true over R. However, if we either exclude these cases, or consider the complexification
of real quadrics, it holds that

QC
b “ QC

b̃ ô b “ λb̃ for some λ ‰ 0.

Example 4.3. The quadratic forms

bpxq “ x2
1 ` x2

2 ` x2
3, b̃pxq “ x2

1 ` 4x2
2 ` x2

3,

both define empty conics in RP2

Qb “ Qb̃ “ H

even though b ‰ λb̃ for all λ ‰ 0. However, the point r1, i, 0s is contained in QC
b , but not

in QC
b̃
. Thus,

QC
b ‰ QC

b̃ .

Thus, we can identify the space of quadrics with the projective space P SympV q. Its
dimension is given by

dim P SympV q “ dim SympV q ´ 1 “
pn ` 1qpn ` 2q

2 ´ 1 “
npn ` 3q

2 .

and the coefficients
qij “ bpei, ejq, for j ď i

can be taken as homogeneous coordinates on the space of quadrics.

4.3 Projective classification of quadrics in RPn

Two quadrics Q, Q̃ Ă RPn are called projectively equivalent if there exists a projective
transformation f : RPn Ñ RPn such that

fpQq “ Q̃

or equivalently, if there exists F P GLpn ` 1q and λ P R, λ ‰ 0, such that

Q̃ “ λF ⊺QF,

18



where Q and Q̃ are representative matrices for Q and Q̃, respectively. Note, that f “

rF ´1s.
By Sylvester’s law of inertia, there exists an F P Opn ` 1q such that

Q̃ “ F ⊺QF “ diagpλ1, . . . , λr, µ1, . . . , µs, 0, . . . , 0
loomoon

t

q

where,
λi ą 0, µi ă 0, r ` s ` t “ n.

Thus, after applying this transformation the equation for the quadric is of the form

λ1x
2
1 ` . . . ` λrx

2
r ` µ1x

2
r`1 ` . . . µsx

2
r`s “ 0

By applying a second transformation

F “ diagp 1?
λ1

, . . . , 1?
λr

, 1?
´µ1

, . . . , 1?
´µs

, 1, . . . , 1
loomoon

t

q

we obtain
Q̃ “ diagp1, . . . , 1

loomoon

r

, ´1, . . . , ´1
looooomooooon

s

, 0, . . . , 0
loomoon

t

q,

or as an equation for the quadric

x2
1 ` . . . ` x2

r ´ x2
r`1 ` . . . ´ x2

r`s “ 0.

The tuple pr, s, tq, also written as

p` ¨ ¨ ¨ `
loomoon

r

´ ¨ ¨ ¨ ´
loomoon

s

0 ¨ ¨ ¨ 0
loomoon

t

q,

is called the signature of the quadric. We define the signature up to the following equiv-
alence

pr, s, tq „ ps, r, tq,

and obtain the following classification result.

Theorem 4.1. Two quadrics in RPn are projectively equivalent if and only if they have
the same signature.

Quadrics in RP1

§ p``q empty quadric. By complexification these are two complex conjugate points.

§ p`´q two points.

§ p`0q one (double) point.
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Quadrics in RP2 (conics)

§ p` ` `q empty conic. By complexification this is an imaginary conic.

§ p` ` ´q oval conic. Its normal form is given by

x2
1 ` x2

2 ´ x2
3 “ 0

In affine coordinates this conic is an ellipse, a hyperbola, or a parabola. Indeed, if we
choose x3 “ 1, the equation becomes the equation for a circle

x2
1 ` x2

2 “ 1.

If we choose coordinates y1 “ x1, y2 “ x3, y3 “ x2 and y3 “ 1, the equation becomes
the equation for a hyperbola

y2
1 ´ y2

2 “ 1

If we choose coordinates y1 “ x1, y2 “ x2 ` x3, y3 “ x3 ´ x2 and y3 “ 1, the equation
becomes the equation for a parabola

y2
1 “ y2.

hyperbola

parabola

projective

transf. ellipse

projective

transf.

projective

transf.

line mapped
to infinity

Figure 6. Projective transformations mapping a circle onto an ellipse, a parabola, or a
hyperbola.

§ p` ` 0 q point. By complexification these are two imaginary lines that intersect in a
real point.

§ p` ´ 0 q pair of lines.

§ p` 0 0 q one (double) line.
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Quadrics in RP3

non-degenerate quadrics:

affine type
affine signature

affine normal form picture
signature

projective normal form

ellipsoid p` ` `´q´

x2 ` y2 ` z2 “ 1 p` ` `´q

x2
1 ` x2

2 ` x2
3 ´ x2

4 “ 0

2-sheeted
hyperboloid

p` ` `´q`

x2 ` y2 ´ z2 “ ´1

elliptic
paraboloid

p` ` `´qp
z “ x2 ` y2

1-sheeted
hyperboloid

p` ` ´´q´

x2 ` y2 ´ z2 “ 1 p` ` ´´q

x2
1 ` x2

2 ´ x2
3 ´ x2

4 “ 0

hyperbolic
paraboloid

p` ` ´´qp
z “ x2 ´ y2

empty
(imaginary)

p` ` ``q`

x2 ` y2 ` z2 “ ´1
p` ` ``q

x2
1 ` x2

2 ` x2
3 ` x2

4 “ 0

Table 2. Affine types of non-degenerate quadrics in R3 and the corresponding projective
types in RP3.
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degenerate quadrics:

affine type
affine signature

affine normal form picture
signature

projective normal form

cone p` ` ´0q0
x2 ` y2 ´ z2 “ 0

p` ` ´0q

x2
1 ` x2

2 ´ x2
3 “ 0

elliptic
cylinder

p` ` ´0q´

x2 ` y2 “ 1

hyperbolic
cylinder

p` ` ´0q`

x2 ´ y2 “ 1

parabolic
cylinder

p` ` ´0qp
z “ x2

one point
(imaginary cone)

p` ` `0q0
x2 ` y2 ` z2 “ 0 p` ` `0q

x2
1 ` x2

2 ` x2
3 “ 0

empty
(imaginary cylinder)

p` ` `0q`

x2 ` y2 “ ´1

two intersecting
planes

p` ´ 00q0
x2 ´ z2 “ 0 p` ´ 00q

x2
1 ´ x2

2 “ 0

two parallel
planes

p` ´ 00q´

x2 “ 1

one plane
(and one at infinity)

p` ´ 00qp
x “ 0

one line
(two intersecting imaginary planes)

p` ` 00q0
x2 ` z2 “ 0 p` ` 00q

x2
1 ` x2

2 “ 0

empty
(two parallel imaginary planes)

p` ` 00q`

x2 “ ´1

one “double” plane p`000q0
x2 “ 0 p`000q

x2
1 “ 0

empty
(one “double” plane at infinity)

p`000q`

1 “ 0

Table 3. Affine types of degenerate quadrics in R3 and the corresponding projective types
in RP3.
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4.4 Affine classification of quadrics in Rn Ă RPn

Two quadrics Q, Q̃ Ă RPn are called affine equivalent if there exists an affine transfor-
mation f : RPn Ñ RPn such that

fpQq “ Q̃

or equivalently, if there exists F P GLpn ` 1q with

F “

ˆ

A b
0 1

˙

, A P GLpnq, b P Rn,

and a λ P R, λ ‰ 0, such that
Q̃ “ λF ⊺QF.

With
Q “

ˆ

S q
q⊺ σ

˙

, S P Sympnq, q P Rn, σ P R.

we obtain
F ⊺QF “

ˆ

A⊺SA A⊺pSb ` qq

pb⊺S ` q⊺qA b⊺Sb ` 2q⊺b ` σ

˙

,

Thus, in a first step, we can use A to bring S to the form

S “ diagp1, . . . , 1, ´1, . . . , ´1
looooooooooomooooooooooon

k

, 0, . . . , 0q.

Case 1: There exists b P Rn such that Sb ` q “ 0. Then Q can be brought to the form

Q “

ˆ

S 0
0 σ

˙

, S “ diagp1, . . . , 1, ´1, . . . , ´1, 0, . . . , 0q, σ “ 0, 1, ´1.

Here σ “ 0, 1, ´1 can be achieved by rescaling Q and then using A to rescale S. If pr, s, tq
is the projective signature of Q, we write the affine signature in this case as

pr, s, tqσ

with
pr, s, tqσ „ ps, r, tq´σ

Case 2: There exists no b P Rn such that Sb ` q “ 0. Then S must be singular, i.e.,
k ă n. Now we apply the following steps:

§ We choose b P Rn such that the first k components of Sb ` q vanish.

§ We choose A such that A⊺pSb ` qq “ en without changing S.

§ We choose b “ ´σ
2 en to eliminate σ.

Thus, Q can be brought to the form

Q “

¨

˝

Ŝ 0

0 0 1
1 0

˛

‚, Ŝ “ diagp1, . . . , 1, ´1, . . . , ´1, 0, . . . , 0q
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If pr, s, tq is the projective signature of Q, we write the affine signature in this case as

pr, s, tqp

with
pr, s, tqp „ ps, r, tqp.

Note that the block p 0 1
1 0 q corresponds to a projective signature of p`´q. Thus, an affine

signature pr, s, tqp is only possible with r ą 0 and s ą 0.
Theorem 4.2. Two quadrics in RPn are affine equivalent if and only if they have the
same affine signature.

4.5 Signature of subspaces
Let Q Ă RPn be a quadric, and K “ PpUq Ă RPn a projective subspace. Then the
signature of K (with respect to Q) is the signature of Q restricted to K:

trxs P K | bpxq “ 0u

Thus, it is determined by the restriction of the symmetrice bilinear form b to U .

Signature of a point A quadric Q Ă RPn separates RPn into two connected compo-
nents. For point rxs P RPn the signature can take 3 possible values:
§ (+) if bpxq ą 0. The point lies on one side of Q.

§ (-) if bpxq ă 0. The point lies on the other side of Q.

§ (0) if bpxq “ 0. The point lies on Q.

Signature of a line A line ℓ Ă RPn can have the following possible signatures:
§ (++) The line does not intersect Q.

§ (+-) The line intersects Q in two points.

§ (+0) The line intersects Q in one point.

§ (00) The line is contained in Q.
If the line is given as the span of two points ℓ “ rxs _ rys, the representative matrix

for b on the corresponding subspace is given by

Q “

ˆ

bpx, xq bpx, yq

bpx, yq bpy, yq

˙

.

Note that its determinant

det Q “ bpx, xqbpy, yq ´ bpx, yq
2

is the product of its eigenvalues. Thus, if we exclude the case p00q, which corresponds to
Q “ 0, the other three cases can be distinguished by the sign of the determinant. The
line ℓ has signature

(+-) ô det Q ă 0,

(++) ô det Q ą 0,

(+0) ô det Q “ 0.
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4.6 Tangent lines and tangent cones
Let Q Ă RPn be a quadric.

A tangent line of Q is a line that intersects Q in exactly one point. We have established
that these are the lines of signature (+0), and can be characterized in the following way.

Lemma 4.3. A line rxs _ rys not contained in Q is a tangent line of Q, if and only if

bpx, xqbpy, yq ´ bpx, yq
2

“ 0.

Let X “ rxs Ă RPnzQ a point not on Q. Then the tangent cone to Q from P is
defined as the union of all tangent lines to Q that contain the point P :

CX “
ď

ℓQX,
ℓ tangent of Q

ℓ “
␣

rys P RPn
ˇ

ˇ cpyq :“ bpx, xqbpy, yq ´ bpx, yq
2

“ 0
(

.

Note that c defines a quadratic form, and thus CX is a quadric itself.
By definition, every tangent line has a point on Q, which we call the point of tangency.

Thus, to obtain the tangent cone it is sufficient to join X with all points of tangency. By
Lemma 4.3, for a point rys P Q on Q, the line rxs _ rys is a tangent line if and only if

bpx, yq “ 0.

Thus, the points of tangency of all tangent lines through X lie in a hyperplane,

XK
“ trys P RPn

| bpx, yq “ 0u

called the polar hyperplane of X (with respect to Q). Thus, we can write the tangent
cone in the following way

CX “
ď

Y PQXXK

X _ Y.

Example 4.4 (Shadow of an ellipsoid).

What form does the shadow of an ellipsoid have?

Consider an ellipsoid E Ă R3 Ă RP3 (an affine image of a sphere). Let X be a point
outside E , and K a plane. The shadow of the ellipsoid cast onto K by a light source in X
is bounded by the intersection with (one half of) the tangent cone CX . Thus it is a conic
section.

Which type of conic section can we obtain? Can it be a hyperbola?

The type of conic section (ellipse, parabola, hyperbola) depends on how many points
of intersection (0, 1, 2) it has with the line at infinity on K, or equivalently, how many
generators of CX intersect K in the line at infinity.

Generally, a line intersects the plane K in the line at infinity, if it is parallel to K.
Thus, consider the plane KX through X parallel to K. Then the number of generators of
CX in KK is the number of intersection points of CX X K with infinity.

Consider the two planes K1, K2 parallel to K touching E in one point. This separates
RPn into two regions, one containing E , and one not containing E .

§ If X is in the region not containing E , then CX X K is an ellipse.
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§ If X is in the region containing E , then CX X K is a hyperbola.

§ If X lies in K1 or K2, then CX X K is a parabola.

Figure 7. Shadow of an ellipsoid.

4.7 Polarity and tangent planes
Let Q Ă RPn be a quadric of signature pr, s, tq.

For a point X “ rxs, its polar hyperplane (with respect to Q) is given by

XK
“ trys P RPn

| bpx, yq “ 0u .

If the point X has signature

§ (+), then XK has signature pr ´ 1, s, tq.

§ (-), then XK has signature pr, s ´ 1, tq.

§ (0), then XK has signature pr ´ 1, s ´ 1, t ` 1q.

For the cases (+) and (-), we have established, that the intersection of XK with Q
consists of all points common with the cone of contact CX .

In the case (0), every point Y P XK that does not lie on the quadric is a tangent line
of Q. Thus for a point X P Q on the quadric, the polar hyperplane is the plane containing
(and spanned by) all tangent lines though X, which we call the tangent plane of Q in the
point X.

Example 4.5 (Tangent planes of a hyperboloid). Consider a one-sheeted hyperboloid
H Ă RP3, i.e. a quadric of signature (++--). Then a tangent plane XK in any point
X P H has signature (+-0). Thus, the restriction of H to XK consists of two lines.

In particular this means, that a one-sheeted hyperboloid, contains two lines through
every point. In fact, it is a doubly ruled surface, and contains two families of lines, called
its generators.
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Example 4.6 (Projection of a generator).

What is the shadow of a generator of a hyperboloid?

Consider a one-sheeted hyperboloid H Ă RP3, a generator ℓ Ă H, and a center of
projection X not on H. We consider the projection to XK.

The projection of H to XK is given by a conic section

D :“ CX X XK
“ H X XK

of signature (++-). Its affine type can be determined in a similar way to Example 4.4.
Denote the central projection of ℓ to XK by ℓ̃. The line ℓ intersects XK in some point

A P D, which is fixed under the projection to XK. Thus, A P ℓ̃.
Assume there exists another point B P ℓ such that its projection B̃ lies on D. Then

the line X _ B̃ is a tangent line of H. On the other hand, this line intersects H in the two
distinct points B and B̃, which is a contradiction. Thus, the projection ℓ only intersects
D in A, and therefore is a tangent line of D.

Note that projection to any other plane preserves this property.

Figure 8. Shadow of the generators of a hyperboloid.

Differential geometric tangent plane Let us compare the notion of tangent plane
that we have introduced for quadrics to the corresponding notion from Differential Ge-
ometry. In affine coordinates, we can view a quadric as a submanifold of Rn given as a
level set of the function

0 “ x⊺Qx “
`

u⊺ 1
˘

ˆ

S q
q⊺ σ

˙ˆ

u
1

˙

“ u⊺Su ` 2q⊺u ` σ “: fpuq

Then the normal vector of the tangent plane at some point u0 P Rn with fpu0q “ 0 is
given by the gradient

∇ufpu0q “ 2Su0 ` 2q.

Thus, the tangent plane at u0 P R is given by

tu P Rn
| xSu0 ` q, u ´ u0y “ 0u
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With

xSu0 ` q, u ´ u0y “ u0
⊺Su ` q⊺u ´ u0

⊺Su0 ´ q⊺u0 “ u0
⊺Su ` q⊺u ` q⊺u0 ` σ

this coincides with the polar plane at u0 in affine coordinates.

5 Plane curves and envelopes of lines

5.1 Plane curves
Definition 5.1.

(i) A (plane) curve is a smooth map

γ : I Ñ R2

with some interval I Ă R.

(ii) Let γ be a curve.

§ The vectors
9γptq

are called the velocity or tangent vectors of γ.
§ The function

vptq :“ } 9γptq}

is called the speed of γ.
§ The function

sptq :“
ż t

t1

vptqdt

is called the arc-length of γ, here I “ rt1, t2s.
§ If vptq “ 1 for all t P I, then γ is called arc-length parametrized.

(iii) A curve γ is called regular if

9γptq ‰ 0 for all t P I.

(iv) Let γ be a regular curve and t P I.

§ Any non-zero scalar multiple of 9γptq is called a tangent vector at t P I.
§ The line

T ptq :“ tγptq ` α 9γptq | α P Ru

is called the tangent line at t P I.
§ Any vector nptq orthogonal to 9γptq, i.e.,

xnptq, 9γptqy “ 0,

is called a normal vector at t P I. In particular one can choose.

nptq “
1

vptq
J 9γptq, J “ p 0 ´1

1 0 q,

which is called the unit normal vector at t P I.
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§ The line
Nptq :“

␣

x P R2 ˇ

ˇ x 9γptq, x ´ γptqy “ 0
(

“ tγptq ` αnptq | α P Ru .

is called the normal line at t P I.

Note that the derivative of the arc-length is the speed

9sptq “ vptq.

For a regular curve γ the arc-length sp¨q is monotonically increasing, and thus invertible.
We call its inverse function tp¨q “ s´1p¨q and thus write

γpsq “ pγ ˝ tqpsq.

For the derivative w.r.t. arc-length we write

γ1
“

d
ds

γ “
dt

ds

d
dt

γ “
1
v

9γ.

In particular, the parametrization of γ w.r.t. arc-length has unit speed

}γ1
} “ 1,

which implies
0 “

d
ds

}γ1
}

2
“

d
ds

xγ1, γ1
y “ 2 xγ2, γ1

y .

Thus γ2 always points in normal direction.

Definition 5.2. Let γ be a regular curve, and let n be the unit normal vector field of γ.
Then

κpsq “ xγ2
psq, npsqy

is called the (signed) curvature of γ at s, i.e.

γ2
psq “ κpsqnpsq.

In terms of an arbitrary parametrization, and with unit tangent vector

τptq :“ 9γptq

vptq

the curvature can be written as

κptq “
1

vptq
x 9τptq, nptqy “

1
vptq2 x:γptq, nptqy

“
1

vptq3 x:γptq, J 9γptqy “
1

vptq3 detp 9γptq, :γptqq.

Example 5.1. Consider a parametrized circle of radius r ą 0

γptq “ r

ˆ

cosptq
sinptq

˙

, t P r0, 2πs.
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Then

9γptq “ r

ˆ

´ sinptq
cosptq

˙

, vptq “ } 9γptq} “ r, τptq “
9γptq

vptq
“

ˆ

´ sinptq
cosptq

˙

,

nptq “ Jτptq “

ˆ

´ cosptq
´ sinptq

˙

, 9τptq “

ˆ

´ cosptq
´ sinptq

˙

.

Thus, the curvature of γ is

κptq “
1

vptq
x 9τptq, nptqy “

1
r

.

Definition 5.3. Let γ : I Ñ R2 be a regular curve, and n its unit normal vector field. If
κptq ‰ 0, then the osculating circle at t P I is the circle with center

cptq “ γptq `
1

κptq
nptq

and radius
rptq “

1
|κptq|

.

If κptq “ 0, then we consider the tangent line at t P I to be the osculating circle.

The osculating circle touches its curve the corresponding point. Furthermore, if
parametrized in the same direction as the curve, it has the same (signed) curvature.

It can also be shown that it is the best approximating circle in the following sense.
Consider the circle through three points of the curve γptq, γpt ´ ϵq, and γpt ` ϵq. Then in
the limit ϵ Ñ 0, this circle converges to the osculating circle.

5.2 Discrete plane curves
Definition 5.4.

(i) A discrete (plane) curve is a map

γ : I Ñ R2

with some interval I Ă Z. We denote its vertices by

γk “ γpkq for k P I.

(ii) Let γ be a discrete curve.

§ The vectors
∆γk :“ γk`1 ´ γk

are called discrete velocity vectors, vertex difference vectors, or edge tangent vec-
tors. They are naturally defined on edges pk, k ` 1q.

§ We define the turning angle at a vertex k P I by

φk – ?p∆γk, ∆γk´1q P r´π, πs.
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Δγk-1

Δγk

φk

Figure 9. Turning angle at a vertex of a discrete curve.

§ If
}∆γk} “ }γk`1 ´ γk} “ 1

then γ is called discrete arc-length parametrized curve.

(iii) A discrete curve γ is called regular if any three successive points γk´1, γk, γk`1 are
distinct, or equivalently, if any two successive edge tangent vectors are not anti-
parallel.

(iv) Let γ be a discrete curve, k P I.

§ The line
Tk :“ γk _ γk`1

is called the edge tangent line at the edge pk, k ` 1q.
§ The perpendicular bisector Nk of γk and γk`1 is called the edge normal line at

the edge pk, k ` 1q.

We now introduce two types of discrete osculating circles.

Definition 5.5. Let γ : I Ñ R2 be a regular discrete curve. Then the circle Ck through
three successive points γk´1, γk, γk`1 is called the vertex osculating circle at k P I.

γk

γk`1

γk´1

Figure 10. Vertex osculating circle.

§ Note that the two involved edge normals Nk´1 and Nk both contain the center of Ck.

§ The discrete curvature at vertex k can now be defined by the radius of the vertex
osculating circle. The radius is given by }γk`1 ´ γk´1} “ 2Rk sin φk which leads to the
curvature

κk “
2 sin φk

}γk`1 ´ γk´1}
.

§ The vertex osculating circle inherits an orientation from the order of the three points
on it. This can be used to also associate a sign to the discrete curvature, which
corresponds to the sign in the formula above.
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§ The vertex osculating circle can also be used to define vertex tangent lines as the line
tangent to Ck in the point γk.

Definition 5.6. Let γ : I Ñ R2 be a regular discrete curve. Then the circle Ck that
touches three consecutive edge tangent lines Tk´1, Tk, Tk`1 is called the edge osculating
circle at pk, k ` 1q P I.

R

γk ||∆γ||

γk`1

ϕk

2 ϕk`1
2

Figure 11. Edge osculating circle.

§ For three (non-concurrent) lines in R3 there are four circles touching them. By en-
dowing the tangent lines with the orientation coming from the order of the points of
the curve on them, this choice can be made unique.

⇝

Figure 12. Edge osculating circle from oriented tangent lines.

§ Note that the (correctly chosen) angle bisectors of successive edge tangent lines contain
the center of the edge osculating circle. Thus, the edge osculating circle can be used
to define edge normal lines.

§ The (oriented) edge osculating circle can be used to define a (signed) discrete curvature
at the edge pk, k ` 1q. The radius is given by }∆γk} “ Rkptan φk

2 ` tan φk`1
2 q. This

leads to the curvature
κk “

tan φk

2 ` tan φk`1
2

}∆γk}
.

Computing angle bisectors Consider two oriented lines

ℓ “
␣

x P R2 ˇ

ˇ xn, xy ` h “ 0
(

, ℓ̃ “
␣

x P R2 ˇ

ˇ xñ, xy ` h̃ “ 0
(

with n, ñ P S1, h, h̃ P R, and orientation coming from the normal vectors n, ñ.
Then the two angle bisectors of ℓ and ℓ̃ are given by

m` “
@

x P R2, xn ` ñ, xy ` h ` h̃ “ 0
D

,

m´ “
@

x P R2, xn ´ ñ, xy ` h ´ h̃ “ 0
D

.
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Reflection in m´ maps ℓ to ℓ̃, but with opposite orientation, while reflection in m` maps
ℓ to ℓ̃ with the same orientation.

Thus, for two adjacent edge tangent lines Tk, Tk`1 the orientation reversing angle
bisector m´ is the desired vertex normal line.

5.3 Envelopes
Consider a one-parameter family of curves C (implicitly) given by

Cptq “
␣

x P R2 ˇ

ˇ F pt, xq “ 0
(

, t P I

with some smooth map F : I ˆ R2 Ñ R.

Definition 5.7. A curve γ : I Ñ R2 is called envelope of the one-parameter family C if
γ is tangent to Cptq in the point γptq, i.e.

F pt, γptqq “ 0 (γptq lies on Cptq) (4)
x∇xF pt, γptqq, 9γptqy “ 0 (γ in tangent direction of Cptq at γptq) (5)

This is a differential equation for γ. But we can reformulate this in the following way.
Equation (4) implies

0 “
d
dt

F pt, γptqq “ DF pt, γptqq

ˆ

1
9γptq

˙

“
`

BtF Bx1F Bx2F
˘

ˆ

1
9γptq

˙

“ BtF pt, γptqq ` x∇xF pt, γptqq, 9γptqy .

Thus, equations (4) and (5) are equivalent to

F pt, γptqq “ 0
BtF pt, γptqq “ 0,

which is not a differential equation in γ anymore.
In particular, if C is a family of lines, then the equations for the envelope are two

linear equations in γ.

Example 5.2. For a regular curve γ : I Ñ R2 the envelope of its tangent lines is the
curve γ itself,

Example 5.3. Consider
F pt, xq “ x1 ´ 2tx2 ` t2.

Then
BtF pt, xq “ ´2x2 ` 2t.

implies x2 “ t. Substituting this into F pt, xq “ 0 we obtain x1 “ t2. Thus the envelope is
given by

γptq “

ˆ

t2

t

˙

which is a parabola.
Note, that, in homogeneous coordinates, the equation for the lines is given by

x1 ´ 2tx2 ` t2x3 “
`

1 ´2t t2˘

¨

˝

x1
x2
x3

˛

‚“ 0

33



which describes a curve t ÞÑ r1, ´2t, t2s in pRP2q˚. This curve is implicitly given by

x2
2 ´ 4x1x3 “ 0,

which is a conic in pRP2q˚. This is an example of the general fact, that (the envelope) of
the dual of a conic is a conic.

Discrete envelope of a family of lines Let C : Z Ą I Ñ LinespR2q be a discrete
one-parameter family of lines, such that no adjacent lines are equal or parallel.

Then we can define the discrete envelope as the discrete curve given by intersections
of adjacent lines

γk :“ Ck X Ck`1.

In this way the edge tangent lines of γk coincide with the lines of C,

Tk “ Ck`1.

5.4 Evolute
Definition 5.8. The evolute of a regular curve γ is the envelope of its normal lines N .

The envelope of the family of normal lines is described by the equations

F pt, xq :“ x 9γptq, x ´ γptqy “ 0
BtF pt, xq “ x:γ, x ´ γptqy ´ } 9γptq}

2
“ 0

With unit normal field n of γ, the first equation is equivalent to

x “ eptq “ γptq ` αptqnptq

with some function α. Then, αptq can be determined by the second equation

x:γ, eptq ´ γptqy ´ } 9γptq}
2

“ αptq x:γptq, nptqy ´ } 9γptq}
2

“ 0

to be
αptq “

} 9γ}
2

x:γptq, nptqy
“

1
κptq

,

which is well-defined as long as x:γptq, nptqy ‰ 0, i.e., κptq ‰ 0. Thus, the evolute of γ is
given by

eptq “ γptq `
1

κptq
nptq,

and we find

Proposition 5.1. The evolute of a regular curve consists of the centers of its osculating
circles.

Proposition 5.2. Let γ : I Ñ R2 be a regular curve. Then its evolute e is non-regular in
t P I if and only if the curvature κ of γ has a local extremum in t P I, i.e.,

9eptq “ 0 ô 9κptq “ 0
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Proof. Let γ be arc-length parametrized. Then

e1
psq “ γ1

psq `

ˆ

1
κpsq

˙1

npsq `
1

κpsq
n1

psq.

For the normal vector we have 0 “ d
ds

xnpsq, npsqy “ 2 xn1psq, npsqy, thus n1psq “ αpsqγ1psq

where
αpsq “ xn1

psq, γ1
psqy “ ´ xnpsq, γ2

psqy “ ´κpsq.

So,
n1

psq “ ´κpsqγ1
psq

Thus,

e1
psq “

ˆ

1
κpsq

˙1

npsq “ ´
κ1psq

κpsq2 npsq

Definition 5.9. A parallel curve of γ is a curve of the form

γrptq :“ γptq ` rnptq, r P R.

where n is the unit normal vector field of γ

Proposition 5.3. Parallel curves have the same evolutes.

Proof. We show that parallel curves have the same normal lines.

x 9γrptq, nptqy “ x 9γptq ` r 9nptq, nptqy “ 0.

Example 5.4. Consider a parabola

γptq :“
ˆ

t
t2

˙

Then
9γptq “

ˆ

1
2t

˙

, :γptq “

ˆ

0
2

˙

, nptq “ J 9γptq

ˆ

´2t
1

˙

and
x:γptq, nptqy “ 2, } 9γptq}

2
“ 1 ` 4t2.

Therefore, the evolute is given by

eptq “ γptq `
} 9γ}

2

x:γptq, nptqy
nptq “

ˆ

´4t3

1
2 ` 3t2

˙

,

which is a semicubic parabola.
Note that it has a cusp at the point where the parabola has maximal curvature.
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Discrete evolutes Let γ : Z Ą I Ñ R2 be a regular discrete curve.

§ We can define its vertex evolute as the discrete envelope of adjacent edge normal lines.
The vertex evolute consists of the centers of the vertex osculating circles.

§ Alternatively, we can define its edge evolute as the discrete envelope of adjacent vertex
normal lines. The edge evolute consists of the centers of the edge osculating circles.

Figure 13. Top: Smooth and discrete curve and its tangent lines. Bottom: Smooth and
discrete curve and its evolute.

5.5 Involute
Definition 5.10. An involute of a regular curve γ is a curve orthogonal to the tangent
lines.

Thus, an involute Γ : I Ñ R2 must satisfy

Γptq “ γptq ` αptqτptq, τptq “
9γptq

} 9γptq}

with some α : I Ñ R and

0 “

A

9Γptq, 9γptq
E

“ x 9γptq, 9γptq ` 9αptqτptq ` αptq 9τptqy “ } 9γptq}
2

` 9αptq } 9γ} .

Thus,
9αptq “ ´ } 9γptq}

We obtain

Γaptq “ γptq ´
9γptq

} 9γptq}

ż t

a

} 9γptq} dt “ γptq ´
9γptq

} 9γptq}
psptq ´ spaqq,
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where s is the arc-length of γ.
Thus, in terms of arc-length parametrization the involute is given by

Γapsq “ γpsq ´ γ1
psqps ´ aq.

The distance of the involute to the corresponding curve (along the tangent line) satisfies

}Γapsq ´ γpsq} “ |s ´ a| .

§ Thus, the involute is the locus of a point on a piece of taut string as the string is either
unwrapped from or wrapped around the curve starting at the point γpaq.

§ Equivalently, it is the locus of the point on a straight line as it rolls without slipping
along the curve.

Proposition 5.4. Let γ be a regular curve.

(i) The involute is regular at points where κptq ‰ 0 and t ‰ a.

(ii) The normal lines of the involute are the tangents of γ.

(iii) The evolute of the involute is γ.

(iv) The involutes are parallel curves.

Proof.

(i) Γ1
apsq “ γ1psq ´ γ2psqps ´ aq ´ γ1psq “ ´ps ´ aqκpsqnpsq.

(ii) By definition of the involute xΓ1
apsq, γ1psqy “ 0.

(iii) Follows from (ii).

(iv) Γapsq “ Γ0psq ` aγ1psq, where γ1psq is the unit normal at Γ0psq.

Remark 5.1. The one-parameter family of tangent lines of a curve together with its one-
parameter family of involutes form an orthogonal coordinate system.

Example 5.5 (Involutes of a circle). Consider a parametrized circle of radius r ą 0

γptq “ r

ˆ

cosptq
sinptq

˙

, t P r0, 2πs.

Then
9γptq “ r

ˆ

´ sinptq
cosptq

˙

, vptq “ } 9γptq} “ r, sptq ´ spaq “ rpt ´ aq.

Thus, the involutes of γ are given by

Γaptq “ r

ˆ

cosptq ´ pt ´ aq sinptq
sinptq ` pt ´ aq cosptq

˙

This is a common shape for the teeth of gears, the so called “involute gears”.
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Example 5.6 (Involute of a semi-cubic). Consider the semicubic parabola, we obtained
as the evolute of a parabola. We reconstruct the parabola as one involute of semicubic
parabola.

γptq “

ˆ

´4t3

1
2 ` 3t2

˙

, t ą 0.

Then

9γptq “

ˆ

´12t2

6t

˙

, } 9γptq} “ 6t
?

1 ` 4t2,

ż t

0
} 9γptq} dt “

1
2p1 ` 4t2

q
3
2 ´

1
2 .

For simplicity, we add a constant of integration 1
2 and obtain

Γ0ptq “

ˆ

´4t3

1
2 ` 3t2

˙

`
1

6t
?

1 ` 4t2

ˆ

´12t2

6t

˙

1
2p1 ` 4t2

q
3
2 “

ˆ

t
t2

˙

,

which is a parabola.
Note that the other involutes of the semicubic parabola are not parabolas.

Discrete involutes We can derive constructions for discrete involutes from the property
that evolute of the involute should be the original curve, i.e., the tangent lines of the
original curve should be the normal lines of the evolute.

Let γ : Z Ă I Ñ be a regular discrete curve.

§ Choose some starting point Γ0 P R2

§ Obtain Γk`1 from Γk by reflection in tangent line Tk of γ.

Then Tk is the edge normal line of Γ at the edge pk, k ` 1q.
Alternatively:

§ Choose some starting edge tangent line T̃0 “ Γ0 _ Γ1.

§ Obtain T̃k`1 from T̃k by reflection in tangent line Tk of γ, and thus, Γk`1 “ T̃k X Tk`1.

Then Tk is the vertex normal line of Γ at the vertex k ` 1.
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Figure 14. Top: Smooth and discrete curve and its normal lines. Bottom: Smooth and
discrete curve and one of its involutes.

6 Möbius geometry

6.1 The elementary model of Möbius geometry
Consider the n-dimensional Euclidean space Rn. The inversion in a hypersphere with
center c P Rn and radius r ą 0 can be described in the following way: The point x and its
image x1 lie on the same ray emanating from c and the distances to c satisfy the relation

} x ´ c } ¨ } x1
´ c } “ r2.

This gives rise to an involution on Rn, except that the center c has no image and no
preimage. To fix this, we add one extra point to Rn, called 8, and obtain the extended
Euclidean space

xRn :“ Rn
Y t8u.

Definition 6.1. The (sphere) inversion in the hypersphere with center c P Rn and radius
r ą 0 is the map defined by

xRn Ñ xRn, x ÞÝÑ x1
“ c `

r2

}x ´ c}2 px ´ cq for x ‰ c,

c ÞÝÑ 8

8 ÞÝÑ c

Sphere inversions preserve angles and map hyperspheres and hyperplanes to hyper-
spheres and hyperplanes. This statement becomes simpler and more specific at the same
time if we consider hyperplanes as special cases of hyperspheres through the point 8.
More precisly, let us adopt the following convention:
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Definition 6.2. A sphere in xRn is either a sphere in Rn or the union of a plane in Rn

with t8u.

Then we can simply say:

Theorem 6.1. Sphere inversions preserve angles and map hyperspheres in xRn to hyper-
spheres in xRn.

Since circles and, more generally, k-dimensional spheres for 1 ď k ă n are intersections
of n ´ k hyperspheres, sphere inversions preserve spheres of any dimension:

Corollary 6.2. Sphere inversions map k-spheres in xRn to k-spheres in xRn.

Just as hyperplanes are limiting cases of hyperspheres, reflections in hyperplanes
are limiting cases of sphere inversions. The reflection in the hyperplane with equation
xx ´ a, vy “ 0 is the map

x ÞÝÑ x1
“ x ´ 2xx ´ a, vy

xv, vy
v,

which we extend from Rn to xRn by declaring that reflections in hyperplanes map 8 to 8.

0
a

v

x

x1

Figure 15. Reflection in a hyperplane

Definition 6.3. A Möbius transformation of Rn Y t8u is a composition of sphere inver-
sions and reflections in hyperplanes. The Möbius transformations form a group called the
Möbius group and denoted by Möbpnq.

Remark 6.1. A Möbius transformation is orientation reversing or preserving depending
on whether it is the composition of an odd or even number of reflections. The subgroup
of orientation preserving Möbius transformations is called the special Möbius group and
denoted by SMöbpnq.

Because reflections preserve angles and map spheres to spheres, Theorem 6.1 extends
to Möbius transformations:

Theorem 6.3. Möbius transformations preserve angles and map spheres in xRn to spheres
in xRn.

Similarity transformations on Rn are the transformations of the form x ÞÑ λAx ` b
with λ ą 0, A P Opnq, and b P Rn. Reflections in hyperplanes are a special case, and
like reflections in hyperplanes we extend all similarity transformations from Rn to xRn by
declaring that 8 maps to 8.

Proposition 6.4. The Möbius group contains all similarity transformations.
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Proof. The group of similarity transformations is generated by translations, orthogonal
transformations, and scalings.
§ A translation x ÞÑ x ` v is the composition of two reflections in parallel hyperplanes.

§ An orthogonal transformation x ÞÑ Ax with A P Opnq is the composition of at most n
reflections in hyperplanes through the origin.

§ A scaling transformation x ÞÑ λx with λ ą 0 is the composition of a reflection in the
unit sphere followed by a reflection in a sphere with center 0 and radius

?
λ.

Conversely, one only needs to add one sphere inversion to the group of similarity
transformations to generate the Möbius group:
Proposition 6.5. Every Möbius transformation is a composition of similarity transfor-
mations and inversions in the unit sphere.

By Theorem 6.3, Möbius transformations map hyperspheres to hypersphers. This
property already characterizes all Möbius transformations.
Theorem 6.6 (Fundamental theorem of Möbius geometry). Any bijective map f : xRn Ñ

xRn which maps hyperspheres in xRn to hyperspheres in xRn is a Möbius transformation.

6.2 The projective model of Möbius geometry
The idea is to transfer Möbius geometry from xRn to the n-dimensional sphere Sn via
stereographic projection

σ : Sn
Ñ xRn.

Via the standard embedding

Rn`1 ãÝÑ RPn`1, u ÞÝÑ

„

u
1

ȷ

“ rxs

we identify the unit sphere Sn Ă Rn`1 with a quadric in RPn`1,

Sn
“

␣

rxs P RPn`1 ˇ
ˇ xx, xyn`1,1 “ 0

(

, (6)

where
xx, x̃yn`1,1 “ x1x̃1 ` . . . ` xn`1x̃n`1 ´ xn`2x̃n`2

is the Lorentz product. Thus, indeed, in affine coordinates xn`2 “ 1, the quadric Sn is
the unit sphere

x2
1 ` . . . ` x2

n`1 “ 1.

Upon identifying the affine part of xRn with the affine part of the hyperplane

E “
␣

rxs P RPn`1 ˇ

ˇ xn`1 “ 0
(

.

the stereographic projection coincides with the central projection of Sn to the hyperplane
E from the “north pole” ren`1 ` en`2s. A point rxs P Snzren`1 ` en`2s on the quadric is
mapped to

prxs _ ren`1 ` en`2sq X E “

»

—

—

—

—

—

–

x1
...

xn

0
xn`2 ´ xn`1

fi

ffi

ffi

ffi

ffi

ffi

fl

.
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Inversely, a point ru, 0, 1s P E, u P Rn, is mapped to
¨

˝

»

–

u
0
1

fi

fl _ ren`1 ` en`2s

˛

‚X Sn
“

»

–

2u

}u}
2

´ 1
}u}

2
` 1

fi

fl .

Thus, we obtain the following equations for stereographic projection and its inverse:

σ : Sn
ÝÑ xRn

»

—

—

—

—

—

–

x1
...

xn

xn`1
xn`2

fi

ffi

ffi

ffi

ffi

ffi

fl

ÞÝÑ
1

xn`2 ´ xn`1

¨

˚

˝

x1
...

xn

˛

‹

‚

if xn`1 “ xn`2

rxs ÞÝÑ 8 if xn`1 “ xn`2

σ´1 : xRn ÝÑ Sn

u ÞÝÑ

»

–

2u
}u}2 ´ 1
}u}2 ` 1

fi

fl if u P Rn

8 ÞÝÑ ren`1 ` en`2s

The stereographic projection σ is the restriction to Sn Ă Rn`1 of the inversion in the
hypersphere with center en`1 (the north pole of Sn) and radius

?
2 (so that it contains the

equatorial sphere tx P Sn | xn`1u “ 0). Thus, Theorem 6.1 implies, that the stereographic
projection preserves angles and maps spheres to spheres.

It is convenient to additionally employ another basis for the projective model, one that
contains the center of projection. We change the basis for our homogeneous coordinates
from the standard basis pe1, . . . , en`2q of Rn`2 to the new basis

B “ pe1, . . . , en, e8, e0q

with
e8 “ 1

2 pen`1 ` en`2q, e0 “ 1
2 p´en`1 ` en`2q.

The points re0s and re8s are the “south pole” and the “north pole” of Sn. We choose the
subscripts 0 and 8 for the new basis vectors because

σ´1
p0q “ re0s and σ´1

p8q “ re8s.

Note that B is not an orthonormal basis of Rn`1,1. Rather, we have

xe0, e0yn`1,1 “ xe8, e8yn`1,1 “ 0, xe0, e8y “ ´
1
2 .

Now the change-of-basis-transformations between coordinate vectors with respect to
the standard basis and the new basis B are

x “

¨

˚

˚

˚

˚

˚

˝

x1
...

xn

xn`1
xn`2

˛

‹

‹

‹

‹

‹

‚

“

n
ÿ

k“1
xkek ` x8e8 ` x0e0 “

¨

˚

˚

˚

˚

˚

˝

x1
...

xn
1
2px8 ´ x0q
1
2px8 ` x0q

˛

‹

‹

‹

‹

‹

‚

,
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and inversely
¨

˚

˚

˚

˚

˚

˝

x1
...

xn

x8

x0

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

x1
...

xn

xn`1 ` xn`2
´xn`1 ` xn`2

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

In 0

0 1 1
´1 1

˛

‹

‹

‹

‹

‚

loooooooooooomoooooooooooon

F

¨

˚

˚

˚

˚

˚

˝

x1
...

xn

xn`1
xn`2

˛

‹

‹

‹

‹

‹

‚

We may interpret rxs “ rx1, . . . , xn, xn`1, xn`2s and rx1, . . . , xn, x8, x0s as representing the
same point in RPn`1 with respect to different bases, or we may interpret rx1, . . . , xn, x8, x0s

as the image of rxs under the projective transformation f : RPn`1 Ñ RPn`1, rxs ÞÑ rFxs.
In coordinates of the basis B, the Lorentz scalar product is

xx, x̃yn`1,1 “ x1 x̃1 ` . . . ` xn x̃n ´
1
2 x8 x̃0 ´

1
2 x0 x̃8 .

In affine coordinates x0 “ 1, the “north pole” re8s lies at infinity and the quadric Sn

becomes a paraboloid
x8 “ x2

1 ` . . . ` x2
n.

Figure 16. Stereographic projection becomes vertical projection in the paraboloid model

Correspondingly the stereographic projection (and its inverse) becomes vertical or-
thogonal projection from (and onto) this paraboloid (see Fig. 16).

σ´1
puq “

»

–

2u
}u}2 ´ 1
}u}2 ` 1

fi

fl “ ru ` }u}
2 e8 ` e0s.

Thus, the projective model in homogeneous coordinates with respect to B is sometimes
called the paraboloid model of Möbius geometry.

6.3 Spheres in the projective model
Hyperspheres in Sn are intersections of Sn with hyperplanes in Rn`1, or, since we view
Sn as a quadric in RPn`1 (see equation (6)) intersections with hyperplanes in RPn`1.
The pole-polar relationship provides a bijection between hyperplanes that intersect Sn

and points outside Sn.
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On the other hand, hyperspheres in Sn correspond to hyperspheres in xRn via stereo-
graphic projection. Thus, we have the following bijections:

hyperspheres in xRn stereogr.
ÐÝÝÝÝÑ
projection

hyperspheres in Sn polarity
ÐÝÝÝÑ points outside Sn.

The following proposition provides explicit formulas.

Proposition 6.7. Let rys P RPn`1 be a point outside Sn, i.e.,

xy, yyn`1,1 ą 0.

Then the polar plane

rys
K

“
␣

rxs P RPn`1 ˇ
ˇ xy, xyn`1,1 “ 0

(

intersects Sn in a hypersphere
Srys “ Sn

X rys
K

whose image σpSrysq Ă xRn under stereographic projection is a hypersphere in xRn:

§ If yn`1 ‰ yn`2, or equivalently, y0 ‰ 0, then σpSrysq is the sphere in Rn with center c
and radius r, where

c “
1
y0

¨

˚

˝

y1
...

yn

˛

‹

‚

“
1

yn`2 ´ yn`1

¨

˚

˝

y1
...

yn

˛

‹

‚

, r “

a

xy, yyn`1,1

|y0|
“

a

xy, yyn`1,1

|yn`2 ´ yn`1|
.

§ If yn`1 “ yn`2, or equivalently, y0 “ 0, then σpSrysq is the union of t8u and the
hyperplane tu P Rn

ˇ

ˇ xv, uy “ d u,

v “

¨

˚

˝

y1
...

yn

˛

‹

‚

, d “
y8

2 “ yn`1 “ yn`2.

Conversely, the inverse projection σ´1 maps

§ the sphere in Rn with center c and radius r to the hypersphere Srys Ă Sn with

rys “
“

c ` p}c}
2

´ r2
qe8 ` e0

‰

“

»

–

2c
}c}2 ´ r2 ´ 1
}c}2 ´ r2 ` 1

fi

fl .

§ the union of t8u and the hyperplane tu P Rn
ˇ

ˇ xv, uy “ du in Rn to the hyper-
sphere Srys Ă Sn with

rys “ rv ` 2de8s “

»

–

v
d
d

fi

fl .

Remark 6.2. Note that the center of the sphere is obtained by the central projection of
the point rys that represents the sphere.
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Proof. As an exemplary case, we show that a point rxs “ ru`}u}
2 e8 `e0s P Snztre8su in

the polar hyperplane of rys “
“

c ` p}c}
2

´ r2qe8 ` e0
‰

is projected to a point u “ σprxsq ‰

8 that lies on the sphere in Rn with center c and radius r.

0 “ xy, xyn`1,1 “
@

c ` p}c}
2

´ r2
qe8 ` e0, u ` }u}

2 e8 ` e0
D

n`1,1

“ }c ´ u}
2

´ r2.

Proposition 6.8. The hyperspheres in Sn corresponding to two points ry1s and ry2s out-
side the sphere Sn intersect if and only if

xy1, y2y
2
n`1,1 ď xy1, y1yn`1,1xy2, y2yn`1,1

In this case the intersection angle θ is determined up to θ ÞÑ π ´ θ by the equation

cos2 θ “
xy1, y2y2

n`1,1

xy1, y1yn`1,1 xy2, y2yn`1,1.

Corollary 6.9. The hyperspheres corresponding to two points ry1s and ry2s outside Sn

intersect orthogonally if and only if

xy1, y2yn`1,1 “ 0.

6.4 Pencils of spheres
Definition 6.4. In Möbius geometry, a pencil of spheres is the family of hyperspheres
corresponding to the points of a line in the projective model of Möbius geometry.

There are three different types of sphere pencils, depending on the signature of the
corresponding line ℓ Ă RPn`1:

(++) The line ℓ does not intersect Sn. Then the sphere pencil consists of all hyperspheres
that contain a common fixed pn ´ 2q-sphere. Indeed, the polar pn ´ 1q-plane ℓK has
signature (n-1,1) and intersects Sn in a pn ´ 2q-sphere. The polar planes Y K of
points Y P ℓ are precisely the hyperplanes containing ℓK. Hence, the pencil of ℓ
consists precisely of all spheres containing ℓK X Sn.
For n “ 2, these are all circles through two fixed points. For n “ 3, these are all
spheres through a fixed circle.

(+-) The line ℓ intersects Sn in two points. Then the polar pn´1q-plane ℓK has signature
(n,0) and does not intersect Sn. By Corollary 6.9, the pencil of ℓ consists precisely
of all hyperspheres that intersect all hyperspheres corresponding to points in ℓK

orthogonally.
For n “ 2, these are all circles orthogonal two circles that intersect in two points,
and thus all circles from a pencil of type (++). For n “ 3, these are all spheres
orthogonal two three spheres that span a plane of signature (+++).

(+0) The line ℓ is a tangent to Sn. Then the polar pn ´ 1q-plane ℓK has signature
(n-1,0,1) and is also tangent to Sn in the same point P . Furthermore, ℓK is the
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common tangent plane for all spheres in ℓ. Thus, the pencil ℓ consists of hyper-
spheres that are tangent to each other in a fixed point.
For n “ 2, these are all circles tangent in a common point, while ℓK corresponds to
the orthogonal pencil of the same type. For n “ 2, these are all spheres tangent in
a common point.

Figure 17. Pencil of circles of type (++) (yellow) and its orthogonal pencil of circles of
type (+-) (blue).

Proposition 6.10. Möbius transformations map sphere pencils to sphere pencils and
preserve their type.

Proof. This follows directly from Theorem 6.3. In the case (+-) consider spheres orthog-
onal to the pencil.

6.5 Möbius transformations in the projective model
In the elementary model, Möbius geometry is the geometry of the Möbius group Möbpnq

generated by sphere inversions acting on the extended n-dimensional space xRn. The
Möbius group Möbpnq is geometrically characterized as the group of all transformations
that map spheres in xRn to spheres in xRn. What is the corresponding group of transfor-
mations in the projective model of Möbius geometry?

First, let us consider the subgroup of projective transformations of RPn`1 that map
Sn to Sn. This is the projective orthogonal group

POpn ` 1, 1q Ă PGLpn ` 2,Rq.

Since spheres in Sn are intersections of Sn with planes in RPn`1 and projective transfor-
mations map planes to planes, a projective orthogonal transformation g P POpn ` 1, 1q

maps spheres in Sn to spheres in Sn. By the Fundamental Theorem of Möbius geometry
(Theorem 6.6), the map

σ ˝ g ˝ σ´1 : xRn ÝÑ xRn
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is a Möbius transformation. Thus we have a group homomorphism

POpn ` 1, 1q ÝÑ Möbpnq,

g ÞÝÑ σ ˝ g ˝ σ´1.
(7)

It is injective because the identity on RPn`1 is the only projective transformation that
fixes the sphere Sn pointwise. However, it is also surjective, and thus:

Theorem 6.11. The map (7) is a group isomorphism.

With this, we complete the projective model of Möbius geometry, which is the space
Sn Ă RPn`1 with the action of POpn ` 1, 1q. Stereographic projection translates between
the elementary model and the projective model according to the following dictionary:

elementary model projective model

xRn ÐÑ Sn

sphere in xRn ÐÑ sphere in Sn

Möbpnq ÐÑ POpn ` 1, 1q

The Möbius group Möbpnq is generated by inversions in spheres and reflections in
planes. In the projective model these transformations are given by projective inversions
that preserve the quadric.

Proposition 6.12. Let rys P RPn`1 be a point outside Sn, i.e., xy, yyn`1,1 ą 0. Then the
map

g : RPn`1
Ñ RPn`1, rxs ÞÑ

«

x ´ 2
xx, yyn`1,1

xy, yyn`1,1
y

ff

(8)

is a projective orthogonal transformation, such that σ ˝ g ˝ σ´1 is the inversion in the
hypersphere (or reflection in the hyperplane) corresponding to the point rys.

Proof. The map G : x ´ 2 xx,yyn`1,1
xy,yyn`1,1

y

§ is linear,

§ invertible since Gpxq “ 0 implies x “ 0,

§ orthogonal since xGpxq, Gpxqyn`1,1 “ xx, xyn`1,1.

Furthermore, g “ rGs fixes all points on rysK and preserves all hyperplanes through
rys.

Remark 6.3. The map (8) for a point rys P RPn`1 inside the quadric corresponds to a fixed
point free involution, which is still a Möbius transformation, but not a sphere inversion.
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7 Curves in projective and Möbius geometry

7.1 Curves in RPn

We can lift a curve γ : I Ñ Rn to RPn by

rγ̂s : I Ñ RPn, γ̂ptq :“
ˆ

γptq
1

˙

Then
9̂γptq “

ˆ

9γptq
0

˙

describes a point at infinity on the lift of the tangent line

T ptq “

!

rα1γ̂ptq ` α2 9̂γptqs

ˇ

ˇ

ˇ
α1, α2 P R

)

“ rγ̂ptqs _ r 9̂γptqs

What happens if we take different representative vectors for the lift of the
curve?

More generally, consider two smooth maps

γ̂ : I Ñ Rn`1, λ : I Ñ Rzt0u.

Then γ̂ and γ̃ :“ λγ̂ define the same curve in RPn

rγ̂s “ rγ̃s.

But, the derivative changes in the following way

9̃γ “ 9λγ̂ ` λ 9̂γ.

Thus, in general, r 9̃γs ‰ r 9̂γs, but

rγ̃ptqs _ r 9̃γptqs “ rγ̂ptqs _ r 9̂γptqs.

Therefore, the tangent line stays invariant under the change of the lift (change of repre-
sentative vectors) for the curve.

Similarly, for higher derivatives, in general, r:̃γs ‰ r:̂γs, but

rγ̃ptqs _ r 9̃γptqs _ r:̃γptqs “ rγ̂ptqs _ r 9̂γptqs _ r:̂γptqs.

Definition 7.1.

(i) A (projective) curve is a map
rγ̂s : I Ñ RPn

with some interval I Ă R and a smooth map γ̂ : I Ñ Rn`1

(ii) The curve rγ̂s is called regular if

rγ̂ptqs ‰ r 9̂γptqs for all t P I,

or equivalently, if γ̂ptq and 9̂γptq are linearly independent.
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(iii) Let rγ̂s be a regular curve.

§ The line
T ptq “ rγ̂ptqs _ r 9̂γptqs

is called the tangent line of rγs at t P I.
§ If additionally r:̂γptqs R T ptq, then the plane

rγ̂ptqs _ r 9̂γptqs _ r:̂γptqs

is called the osculating plane of rγ̂s at t P I.

Note that same as the definition of the tangent line and the osculating plane, the
condition for the regularity of rγ̂s does not depend on the lift. In affine coordinates, it is
equivalent to the regularity that we have introduced for curves in Rn. Furthermore, all
these definitions are invariant under projective transformations and under reparametriza-
tion of the curve.

7.2 Planar curves in Möbius geometry
Let

γ : I Ñ R2

be a regular planar curve. By inverse stereographic projection, we can map it to the
sphere (Möbius lift)

rγ̂s : I Ñ S2
Ă RP3, γ̂ptq :“ γptq ` }γptq}

2 e8 ` e0.

Recall that the osculating circle of γ at t P I is the circle with center and radius

cptq :“ γptq `
1

κptq
nptq, rptq :“ 1

κptq
,

where n is the unit normal vector field of γ and

κptq “
x:γptq, nptqy

} 9γptq}
2

is the curvature of γ. Its inverse stereographic projection (Möbius lift) to the sphere is
given by

rĉptqs
K

X S2, ĉptq :“ cptq ` p}cptq}
2

´ rptq2
qe8 ` e0

Proposition 7.1. Let γ be a regular plane curve. Then the Möbius lift of the osculating
circle of γ lies in the osculating plane of the Möbius lift of γ:

rĉs
K

“ rγ̂ptqs _ r 9̂γptqs _ r:̂γptqs

Proof. With
ĉ “ γ ` 1

κ
n ` e0 `

`

}γ}
2

` 2
κ

xγ, ny
˘

e8

we obtain
xγ̂, ĉy3,1 “

@

γ, γ ` 1
κ
n
D

´ 1
2 }γ}

2
´ 1

κ
xγ, ny ´ 1

2 }γ}
2

“ 0.
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Now with
9̂γ “ 9γ ` 2 xγ, 9γy e8

we obtain
A

9̂γ, ĉ
E

3,1
“
@

9γ, γ ` 1
κ
n
D

´ xγ, 9γy “ 0.

Finally, with
:̂γ “ :γ ` 2

`

} 9γ}
2

` x 9γ, :γy
˘

e8

we obtain
A

:̂γ, ĉ
E

3,1
“
@

:γ, γ ` 1
κ
n
D

´ } 9γ}
2

´ xγ, :γy “ 0.

Figure 18. Osculating circles of a cardoid and the lift to Möbius geometry.

Corollary 7.2. The osculating circle of a planar curve is Möbius invariant.

Proof. In the Möbius lift osculating circles are given by osculating planes. On the other
hand, Möbius transformations are given by projective transformations that preserve the
quadric S2. But projective transformations map osculating planes to osculating planes.

Remark 7.1. Note that the discrete vertex osculating circles we defined are also Möbius
invariant.

Example 7.1. Recall that the evolute of a plane curve consists of the centers of the
osculating circles. As an exercise, let we use the Möbius lift to determine the evolute of
a parabola

γptq :“
ˆ

t
t2

˙

Its Möbius lift is given by

γ̂ptq “

ˆ

t
t2

˙

` pt2
` t4

qe8 ` e0,

and its first two derivatives by

9̂γptq “

ˆ

1
2t

˙

` 2pt ` 2t3
qe8, :̂γptq “

ˆ

0
2

˙

` 2p1 ` 6t2
qe8.
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We determine the polar point

ĉptq “

ˆ

c1ptq
c2ptq

˙

` c8ptqe8 ` e0,

From
0 “

A

ĉ, :̂γ
E

“ 2c2 ´ 1 ´ 6t2

we obtain
c2ptq “

1
2p1 ` 6t2

q.

and from
0 “

A

ĉ, 9̂γ
E

“ c1 ` t ` 6t3
´ t ´ 2t3

we obtain
c1ptq “ ´4t3

Thus, the evolute of γ is given by

eptq “

ˆ

c1ptq
c2ptq

˙

“

ˆ

´4t3

1
2p1 ` 6t2q,

˙

which coincides with the solution from Example 5.4. Note, that we don’t have to compute
c8, if we are only interested in the evolute of γ, and not the osculating circles.

8 Roulettes and cycloidal pendulum

8.1 Interlude: complex numbers and geometry
Complex numbers can be a useful tool for computations in Euclidean, similarity, Möbius,
and other geometries.

§ Consider the action of complex multiplication on the complex plane C – R2

z ÞÑ az, a P C, a ‰ 0.

Geometrically this corresponds to scale-rotation

reiφ
ÞÑ Reiθreiφ

“ Rreipθ`φq,

where a “ Reiθ and z “ reiφ.

§ The action of complex addition

z ÞÑ z ` b, b P C

corresponds to translation.

§ Together we obtain all similarity transformations

z ÞÑ az ` b, a, b P C, a ‰ 0.
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§ The action of complex conjugation

z “ z1 ` iz2 ÞÑ z̄ “ z1 ´ iz2

corresponds to reflection in the real axis.

§ The absolute value of a complex number z “ z1 ` iz2 recovers the Euclidean norm of
the corresponding vector

|z|
2

“ z̄z “ z2
1 ` z2

2 .

It is also given by the product of z with its complex conjugate number z̄.

§ From the complex multiplication of the complex conjugate of a complex number z “

z1 ` iz2 with another complex number w “ w1 ` iw2

z̄w “ z1w1 ` z1w2 ` ipz1w2 ´ w1z2q,

we can recover the scalar product and determinant of the two corresponding vectors
in R2:

xz, wy “ ℜpz̄wq “
1
2pz̄w ` zw̄q,

detpz, wq “ ℑpz̄wq “
1
2i

pz̄w ´ zw̄q.

§ Now we can write reflection in a vector n P C, n ‰ 0 as

z ÞÑ ´

ˆ

z ´ 2xz, ny

}n}
2 n

˙

“ ´z `
z̄n ` zn̄

nn̄
n “

n

n̄
z̄.

§ Inversion in the unit circle is given by

z ÞÑ
1
z̄

,

and inversion in the circle with center c P C and radius r ą 0 by

z ÞÑ c `
r2

z̄ ´ c̄
.

§ Orientation preserving Möbius transformations are given by

z ÞÑ
az ` b

cz ` d
, a, b, c, d P C, ad ´ bc ‰ 0,

and orientation reversing Möbius transformations are given by

z ÞÑ
az̄ ` b

cz̄ ` d
, a, b, c, d P C, ad ´ bc ‰ 0.
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8.2 Euclidean motions and instant center of rotation
Let I Ă R be some interval, and consider a one-parameter family of Euclidean motions

Aptq : I Ñ C, z ÞÑ aptqz ` bptq

with two smooth functions a, b : I Ñ C, |aptq| “ 1 for all t P I.
Consider the trace of some initial point z0 P C under this motion

zptq “ Aptqz “ aptqz0 ` bptq.

An instant center of rotation is given by a point where the velocity vanishes. For every
t P I with 9aptq ‰ 0 there is exactly one such point:

9zptq “ 9aptqz0 ` 9bptq ô z0 “ ´
9bptq

9aptq
.

The point z0 is the initial point which leads to zero velocity. Thus the point in C at the
which zero velocity is attained at t P I is given by

Aptqz0 “ aptqz0 ` bptq “ bptq ´
aptq9bptq

9aptq
.

8.3 Roulettes of curves
A roulette is curve described by a point attached to a given curve as that curve rolls
without slipping along another fixed curve. Let us denote the given fixed curve, and given
rolling curve by

γ, ρ : I Ð C.

The motion of ρ as it rolls along γ is a Euclidean motion

Aptq : z ÞÑ aptqz ` bptq, |aptq| “ 1.

At any given time t P I the point Aptqρptq should coincide with corresponding point on
the fixed curve

Aptqρptq “ aptqρptq ` bptq “ γptq.

Thus,
bptq “ γptq ´ aptqρptq

and Aptq is of the form

Aptqz “ aptqz ` bptq “ aptqpz ´ ρptqq ` γptq.

That ρ rolls along γ without slipping means that the instant center of rotation of the
Euclidean motion Aptq is always the point of contact γptq “ Aptqρptq of the two curves.
As we will see this will lead to the two curves being tangent remaining tangent at any
given time if they were tangent at some time. The instant center of rotation is given by

bptq ´
aptq9bptq

9aptq
“ γptq ´ aptqρptq ´

aptqp 9γptq ´ 9aptqρptq ´ aptq 9ρptqq

9aptq

“ γptq ´ aptq
9γptq ´ aptq 9ρptq

9aptq
,
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which should coincide with γptq. So we obtain

aptq “
9γptq

9ρptq
.

In particular, since |aptq| “ 1, we must have | 9γptq| “ | 9ρptq|, i.e., the two curves must
be parametrized with the same speed. Now Aptq describes a rotation between the corre-
sponding tangent vectors 9ρptq and 9γptq, and thus, the two curves remain tangent if they
were initially tangent.

Definition 8.1. Let γ, ρ : I Ð C be two curves parametrized with the same speed
|γptq| “ |ρptq| for all t P I and tangent for some initial value t0 P I. Let z P C be a point.

Then the roulette tracing the point z attached to the curve ρ as this curve slides
without slipping along the fixed curve γ is given by

σptq “
9γptq

9ρptq
pz ´ ρptqq ` γptq.

Proposition 8.1. The roulette of a point on a straight line as it rolls along a regular
curve is the involute of that curve.

Proof. Let γ : I Ñ C be a regular curve, parametrized by arc-length, and ρ a tangent
line, parametrized by the arc-length parameter of γ:

ρpsq “ γp0q ` sγ1
p0q

and let z be some point on this tangent line

z “ γp0q ` aγ1
p0q

Then the roulette is given by

σptq “
γ1psq

ρpsq
pz ´ ρpsqq ` γpsq “

γ1psq

γ1p0q
pa ´ sqpγ1

p0q ` γpsq “ γ1
p0qpa ´ sq ` γpsq

which coincides with the involute of γ.

Let us compute some more roulette curves:

Example 8.1 (Cycloid). Rolling a circle along a straight line, while following a point on
the circle.

γptq “ Rt, ρptq “ Reipt´ π
2 q

` iR “ iRp1 ´ eit
q

Then
9γptq “ R, 9ρptq “ Reit,

and in particular | 9γptq| “ | 9ρptq| “ R. With z “ 0 the roulette is given by

σptq “
9γptq

9ρptq
pz ´ ρptqq ` γptq “ e´itiRpeit

´ 1q ` Rt

“ Rpt ` i ´ ie´it
q,

or as a map to R2 by
σptq “ R

ˆ

t ´ sin t
1 ´ cos t

˙

.

54



One segment (from cusp to cusp) is given by t P r0, 2πs.
Let us derive a slightly different normalization of this curve. Reflected at the real axis

and translated such that the lowest point lies in the origin:

σ̃pφq “ σ̄pφ ` πq ` Rp2i ´ πq “ Rpφ ` π ´ i ` ieipφ`πq
q ` Rp2i ´ πq

“ Rpφ ` i ´ ieiφ
q,

or as a map to R2:
σ̃pφq “ R

ˆ

φ ` sin φ
1 ´ cos φ

˙

.

Now one segment (from cusp to cusp with lowest point at the origin) is given by φ P

r´π, πs.
Example 8.2 (Cardioid). Rolling a circle along another circle of equal radius, while
following a point on the circle.

We start with two circles of radius R ą 0 centered at ´R and R, such that the initial
point of contact is the origin z “ 0.

γptq “ Reit
´ R “ Rpeit

´ 1q, ρptq “ ´Re´it
` R “ Rp1 ´ e´it

q.

Then
9γptq “ iReit, 9ρptq “ iRe´it

and | 9γptq| “ | 9ρptq| “ R. The roulette is given by

σptq “
9γptq

9ρptq
pz ´ ρptqq ` γptq “ e2itRpe´it

´ 1q ` Rpeit
´ 1q

“ Rp2eit
´ e2it

´ 1q,

or alternatively as

σptq “ Rp2 cos t ` 2i sin t ´ pcos t ` i sin tq2
´ 1q

“ 2Rp1 ´ cos tq cos t ` 2iRp1 ´ sin tq cos t

“ 2R

ˆ

p1 ´ cos tq cos t
p1 ´ sin tq cos t

˙

.

Example 8.3 (Nephroid). Rolling a circle along another circle of twice the radius, while
following a point on the circle.

We start with a circle of radius 2R ą 0 centered at the origin, and a circle of radius
R centered at 3R, such that the initial point of contact is z “ 2R.

γptq “ 2Reit, ρptq “ ´Re´2it
` 2R “ Rp3 ´ e´2it

q

Then
9γptq “ 2iReit, 9ρptq “ 2iRe´2it

and | 9γptq| “ | 9ρptq| “ 2R. The roulette is given by

σptq “
9γptq

9ρptq
pz ´ ρptqq ` γptq “ e3it

p2R ´ Rp3 ´ e´2it
qq ` 2Reit

“ Rp3eit
´ e3it

q,

or alternatively as
σptq “ R

ˆ

3 cos t ´ cos 3t
3 sin t ´ sin 3t

˙

.
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8.4 Cycloidal pendulum
Harmonic oscillator Consider the harmonic oscillator

:sptq “ ´ω2sptq

with initial conditions sp0q “ s0 and 9sp0q “ 0 is solved by

sptq “ s0 cos ωt.

It has the property that the period of one full swing

T “
2π

ω

does not depend on the amplitude s0. Such an oscillator is called isochronous.

Isochronous pendulum The string pendulum, where a mass attached to a string
swings freely under the influence of gravity does not have this property. However, if the
mass is restricted to another path than a circle, can the pendulum become isochronous?

Let
γptq “

ˆ

xptq
yptq

˙

be the trajectory of the mass. If s is the arc-length of γ, and θ the angle that the tangent
line makes with the x-axis, we have

γ1
psq “

dγ

ds
“

dγ

dt

dt

ds
“

ˆ

cos θ
sin θ

˙

and thus
9xptq “ 9sptq cos θptq, 9yptq “ 9sptq sin θptq.

The force acting on the mass along the curve γ is given by

m:sptq “ ´mg cosp
π

2 ` θptqq “ ´mg sin θptq,

where m is the mass and g the gravitational acceleration. On the other hand, we want to
choose γ such that sptq satisfies the harmonic oscillator equation, i.e.,

:sptq “ ´ω2sptq

with some ω. Thus, we must have

g sin θptq “ ω2sptq,

which implies
g 9θptq cos θptq “ ω2 9sptq.

Replacing 9s by 9x, we obtain

9xptq “
g

ω2
9θptq cos2 θptq
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Expressing x as a function of θ we can eliminate the time dependence

dx

dθ
“

g

ω2 cos2 θ,

which is solved by
xpθq “

g

4ω2 p2θ ` sin 2θq ` c1

with some constant of integration c1.
Similarly, replacing 9s by 9y, we obtain

9yptq “
g

ω2
9θptq cos θptq sin θptq “

g

2ω2
9θptq sin 2θptq

Expressing y as a function of θ we can eliminate the time dependence

dy

dθ
“

g

2ω2 sin 2θ,

which is solved by
ypθq “ ´

g

4ω2 pcos 2θq ` c2

with some constant of integration c2.
If we set φ “ 2θ, c1 “ 0, and c2 “ R “

g
4ω2 , we obtain

γpφq “ R

ˆ

φ ` sin φ
1 ´ cos φ

˙

which is the cycloid from Example 8.1. Thus, if we restrict the pendulum to this curve,
the arc-length parameter

sptq “
g

ω2 sin θptq “
g

ω2 sin φptq

2
satisfies the harmonic oscillator equation, i.e.,

sptq “ s0 cos ωt.

Thus
sin φptq

2 “ A cos ωt

with A “
g

ω2s0
ă 1 describing the amplitude of the pendulum.

String construction Can we restrict the string of a pendulum such that the trajectory
of the mass is restricted to the cycloid? If a string wraps around some curve, a point
on the taut end of the string moves along the involute of that curve. Vice versa, if the
involute is given, the curve we need to restrict the string is the evolute of that curve.

Thus, to realize the cycloidal pendulum with mass attached to a string, we need to
compute the evolute of the cycloid.

With
γpφq “ Rpφ ` i ´ ieiφ

q

we obtain

9γpφq “ Rp1 ` eiφ
q, npφq “ i 9γpφq “ iRp1 ` eiφ

q:γpφq “ iReiφ,
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and

| 9γpφq|
2

“ R2
p1 ` eiφ

qp1 ` e´iφ
q “ R2

p2 ` eiφ
` e´iφ

q

“ 2R2
p1 ` cos φq

xnpφq, :γpφqy “
1
2pn̄:γ ` n:̄γq “

R2

2 pp1 ` e´iφ
qeiφ

` p1 ` eiφ
qe´iφ

q “ R2
p2 ` eiφ

` e´iφ
q

“ R2
p1 ` cos φq.

Thus, the evolute of the cycloid γ is given by

γpφq `
| 9γptq|

2

xnptq, :γptqy
nptq “ Rpφ ` i ´ ieiφ

q ` 2iRp1 ` eiφ
q

“ Rpφ ` 3i ` ieiφ
q “ γpφ ` πq ` Rp2i ´ πq,

which is a translated cycloid.

Figure 19. Cycloidal pendulum.

Result A mass attached to a string of length L “ 4R suspended from the origin, such
that the string wraps around a cycloid of radius R with cusp in the origin, moves on a
cycloid

γpφq “ Rpφ ´ 3i ´ ieiφ
q “ R

ˆ

φ ` sin φ
´3 ´ cos φ

˙

,

where the motion is given by
sin φptq

2 “ A cos ωt

with ω2 “
g

4R
and A ď 1, which determines the amplitude of the pendulum motion. The

period is given by

T “
2π

ω
“ 4π

d

R

g
.

9 Billiards and caustics
Here we treat problems on reflecting rays in plane curves.

9.1 Optical properties of conics
We now present some optical properties of conic sections. Light rays are represented by
straight lines. If the rays hit a reflective surface (a “mirror”), the law of reflection states
that the incoming and outgoing ray have the same angle with the normal line of the
surface (or equivalently the tangent line) at the point of reflection.
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F1F2 F1F2 F

-F

Figure 20. Reflection in conic mirrors.

Theorem 9.1. Light rays emitted from one focus of an elliptic mirror after reflection
go through the other focus (see Fig. 20, left). Light rays emitted from one focus of a
hyperbolic mirror are reflected as if emitted from the other focus (see Fig. 20, middle).
Light rays emitted from the focus of a parabolic mirror after reflection become parallel to
the axis of the parabola (see Fig. 20, right).

Proof. We give a proof of the elliptic case only. The other two can be proven similarly. Let
P be a point on the ellipse with distances r1 and r2 from the foci F1 and F2, respectively
(see Figure 21). Extend the line segment F2P by a distance of r1 beyond P . Call the new
endpoint of the extended segment F 1

1. Let ℓ be the perpendicular bisector of F1F
1
1. We

will show that ℓ is the tangent line of the ellipse at P , and thus, F 1
1 is the reflection of F1

in this tangent line. From this, the equality of the angles follows easily.
Indeed, P lies on ℓ because it has equal distance r1 from F1 and F 1

1. Consider any
other point P̃ on ℓ and let r̃1 be its distance to both F1 and F 1

1 and let r̃2 be its distance
to F2. Then the triangle inequality for the triangle F2P̃F 1

1 reads

r̃1 ` r̃2 ą r1 ` r2,

so P̃ does not lie on the ellipse. Hence, ℓ intersects the ellipse in precisely one point, P ,
and thus is tangent to P .

9.2 Elliptic billiards
A billiard trajectory in an ellipse is a sequence of points on that ellipse and their connecting
edges such that at every point the law of reflection is satisfied (see Figure 22).

P2P1

Figure 22. At every point on the ellipse a billiard trajectory satisfies the law of reflection
(equal angles of the incoming and outgoing rays).

In order to state the next theorem on elliptic billiards we need to first introduce
confocal conics.
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rr1
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F1F2

F 1
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rP

r1
r2

r1

Figure 21. Illustration of the proof of the optical properties of an ellipse.

Definition 9.1 (confocal conics). Let F1, F2 be two points in the Euclidean plane R2.
Then the family of all conics with same foci F1 and F2 is called a family of confocal conics.

It is easy to show that up to Euclidean transformation a family of confocal conics is
given by the formula

Qλ “

"

px, yq P R2
ˇ

ˇ

ˇ

ˇ

x2

a1 ` λ
`

y2

a2 ` λ
“ 1

*

, λ P R,

for with some a1 ą a2. It includes ellipses (λ ą ´a2) and hyperbolas (´a1 ă λ ă ´a2).
The foci of this family are given by p˘f, 0q “ p˘

?
a1 ´ a2, 0q.

Figure 23. Confocal conics: Through every point in the plane goes exactly one ellipse and
one hyperbola from a confocal family and intersect orthogonally in this point. Conversely,
an ellipse and a hyperbola from a family of confocal conics always intersect in four points,
while two confocal ellipses or two confocal hyperbolas do not intersect.
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Figure 24. Elliptic billiard trajectories.

Theorem 9.2. The lines of a billiard trajectory inside an ellipse are tangent to a fixed
confocal conic.

Proof. Let A0A1 and A1A2 be the two subsequentive lines of the trajectory, and assume
that the line A0A1 does not intersect the segment rF1F2s. From the optical properties
of the ellipses (see Theorem 9.1) we have =A0A1F1 “ =A2A1F2. Reflect F1 and F2
in the lines A0A1 and A1A2 respectively, we obtain F 1

1 and F 1
2 (see Figure 25). Define

B “ F 1
1F2 X A0A1 and C “ F 1

2F1 X A1A2. Let Q1 be the conic with foci F1, F2 (confocal)
that is tangent to A0A1. From the optical properties of ellipses (equal reflection angles)
we see that Q1 touches A0A1 at B. Similarly, the confocal conic Q2 touches the line A1A2
at C.

To prove that Q1 “ Q2 it is enough to show that |F2F
1
1| “ |F1F

1
2|. The triangles

F1A1F
1
2 and F 1

1A1F2 are congruent, they have the same angle at A1 and equal pairs of
edges at this vertex. Their third edges must also coincide: |F2F

1
1| “ |F1F

1
2|.

Thus, two consecutive and then all edges are tangent to the same confocal conic.

A1

A0

A2

F 1
1

F 1
2

F1 F2

B
C

Figure 25. Proof of Theorem 9.2.

9.3 Caustics
A caustic is the envelope of rays reflected or refracted by an object represented by a curve
in the plane. We will consider parallel incoming rays, and discuss this concept by looking
at an example.
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Figure 26. Caustics of a circle.

Example 9.1. Consider a circle in the plane of radius R, parametrized by

γptq :“ Reit.

We compute the caustic of the circle for the reflection of incoming parallel rays in the
direction of the real axis.

The normal vector of the incoming rays is given by u “ i, A tangent vector at some
point γptq of the curve by

T ptq “ 9γptq “ iReit

Thus, the normal vector of the reflected ray is given by

vptq “
T ptq

T̄ ptq
ū “

´iReit

iRe´it
p´iq “ ie2it,

and the equation for the line of the reflected ray by

0 “ xvptq, z ´ γptqy “
@

ie2it, z ´ Reit
D

“
@

ie2it, z
D

´ R
@

ie2it, eit
D
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The two scalar products can be written as
@

ie2it, z
D

“
1
2pie2itz̄ ´ ie´2itzq,

@

ie2it, eit
D

“
1
2pie2ite´it

´ ie´2iteit
q “ ´

1
2i

peit
´ e´it

q “ ´ sin t.

We arrive at the following equation for the reflected ray

ie´2itz ´ ie2itz̄ ´ 2R sin t “ 0.

To compute the envelope of this one-parameter family of lines, we combine this equation
with its partial derivative w.r.t. t

2e´2itz ` 2e2itz̄ ´ 2R cos t “ 0.

By eliminating z̄ we obtain

4ie´2itz ´ 4R sin t ´ 2iR cos t “ 0.

Solving for z yields

z “ R

ˆ

1
i

sin t ´
1
2 cos t

˙

e2it
“

R

4 p3eit
´ e3it

q,

which is the parametric representation of a nephroid.

10 Families of circles: envelopes and orthogonal tra-
jectories

Evolutes and involutes are envelopes and orthogonal trajectories to a one-parameter family
of lines, respectively. Here we treat the analogous problems for one-parameter families of
circles, which are both Möbius invariant.

Let I Ă R be an open interval,

c : I Ñ R2, r : I Ñ R`,

smooth functions, and consider the one-parameter family of circles

Cptq “
␣

x P R2 ˇ

ˇ F pt, xq :“ }x ´ cptq}
2

´ rptq2
“ 0

(

in the Euclidean plane R2.

10.1 Envelopes of one-parameter families of circles
An envelope of the one-parameter family of circles Cptq is given by a curve γ : I Ñ R2

that satisfies
0 “ F pt, xq “ }x ´ cptq}

2
´ rpt2

q

0 “ BtF pt, xq “ ´2 xx ´ cptq, 9cptqy ´ 2rptq 9rptq

with x “ γptq. The first equation is satisfied by the general ansatz

x “ γptq “ cptq ` rptq

ˆ

cos θptq
sin θptq

˙
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with some function θ : I Ñ R, for which the second equation becomes

9c1 cos θ ` 9c2 sin θ ` 9r “ 0.

Upon introducing the function
τptq :“ tan θptq

2 ,

this equation turns into a quadratic equation

p 9r ´ 9c1qτ 2
` 2 9c2τ ` 9r ` c1 “ 0, (9)

where we use the trigonometric identities

sin θ “
2τ

1 ` τ 2 , cos θ “
1 ´ τ 2

1 ` τ 2 .

Thus, generically the envelope consists of two curves.

Proposition 10.1. For a one-parameter family of cirles Cptq the following holds for any
part of the interval I:

§ If } 9cptq}
2

ą 9rptq2, the envelope consists of two curves.

§ If } 9cptq}
2

“ 9rptq2, the envelope consists of one curve.

§ If } 9cptq}
2

ă 9rptq2, the envelope does not exist.

Proof. The discriminant of the quadratic equation (9) that describes the envelope is given
by

∆ “ 4 9c2
2 ´ 2p 9r ´ 9c1qp 9r ` 9c1q “ 4 } 9cptq}

2
´ 4 9rptq2

Remark 10.1. In the case } 9cptq}
2

ą 9rptq2 let γ1ptq and γ2ptq be the two envelopes. Let
C̃ptq be the circle through γ1ptq and γ2ptq orthogonal to Cptq. Then the inversion ιC̃ptq in
the circle C̃ptq is a first-order symmetry for both envelopes, i.e.,

ιC̃ptq ˝ γiptq “ γiptq, pιC̃ptq ˝ γiq9ptq “ α 9γiptq with some α P R, α ‰ 0.

Finding the envelopes of a one-parameter family of circles is a Möbius invariant prob-
lem. Thus, let us transfer it to the projective model of Möbius geometry. The one-
parameter family of circles Cptq can be represented by a curve outside the Möbius quadric
given by

ĉptq “ cptq `
`

}cptq}
2

´ rptq2˘ e8 ` e0.

Its tangent line is the span rĉptqs _ r 9̂cptqs, where

9̂cptq “ 9cptq ` 2 px 9cptq, cptqy ´ 9rptqrptqq e8.

Now the three cases from Proposition 10.1 correspond to the three possible signatures of
the tangent line:

Proposition 10.2. The tangent line of the Möbius lift rĉptqs of the one-parameter family
of circles Cptq
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§ has signature (++) if } 9cptq}
2

ą 9rptq2,

§ has signature (+0) if } 9cptq}
2

“ 9rptq2,

§ has signature (+-) if } 9cptq}
2

ă 9rptq2.

Proof. We have

xĉptq, ĉptqy3,1 “ rptq2,
A

9̂cptq, 9̂cptq
E

3,1
“ }cptq}

2 ,
A

ĉptq, 9̂cptq
E

3,1
“ rptq 9rptq.

Thus, the determinant of a Gram matrix for the tangent line is given by

det
ˆ

r2 r 9r

r 9r } 9c}
2

˙

“ r2
p} 9c}

2
´ 9r2

q.

Let us have a more direct look at envelope equation in Möbius geometry.

Proposition 10.3. A curve γ : I Ñ R2 is the envelope of a one-parameter family of
circles Cptq if its Möbius lift

γ̂ : I Ñ S2
Ă RP3, γ̂ptq “ γptq ` }γptq}

2 e8 ` e0

satisfies
xγ̂ptq, ĉptqy3,1 “ 0,

A

γ̂ptq, 9̂cptq
E

3,1
“ 0.

Proof.
A

γ̂ptq, 9̂cptq
E

3,1
“ xγptq ´ cptq, 9cptqy ` rptq 9rptq.

Thus, the envelope lies on the polar line of the tangent line of rĉs.

Proposition 10.4. If } 9cptq} ą rptq the Möbius lift of the two envelopes of the one-
parameter family of circles Cptq is given by

prĉptqs _ r 9̂cptqsq
K

X S2.

Discrete envelope of a one-parameter family of circles Similar to the discretiza-
tion of the evolute, we can obtain a simple discretization of the envelope for a discrete
one-parameter family of circles by taking the points of intersection of consecutive circles.

In the projective model of Möbius geometry this corresponds to considering the points
of intersection of the polar line of the edge tangent lines of the Möbius lift of the discrete
one-parameter family of circles.
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Figure 27. Smooth and discrete envelope and orthogonal trajectory of a one-parameter
family of cirlces.
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10.2 Orthogonal trajectories of one-parameter families of circles
An orthogonal trajectory of the one-parameter family of circles Cptq is given by a curve
γ : I Ñ R2 that satisfies

0 “ F pt, γptqq “ }γptq ´ cptq}
2

´ rpt2
q

0 “ detp 9γptq, ∇xF pt, γptqqq “ 2 detp 9γptq, γptq ´ cptqq

Employing the same ansatz as before

x “ γptq “ cptq ` rptq

ˆ

cos θptq
sin θptq

˙

we obtain

detpγptq ´ cptq, 9γptqq “ r det
ˆ

cos θ 9c1
sin θ 9c2

˙

` r2 9θ det
ˆ

cos θ ´ sin θ
sin θ cos θ

˙

,

and thus
c1 sin θ ´ c2 cos θ “ r 9θ.

And with
τptq :“ tan θptq

2 , 9τptq “
9θptqp1 ` τptq2q

2
we obtain

2r 9τ “ 2 9c1τ ´ 9c2p1 ´ τ 2
q,

which is a Riccati equation.
The general solution of a Riccati equation is of the form

τptq “
aptqτ0 ` bptq

cptqτ0 ` dptq

with some coefficients aptq, bptq, cptq, dptq and initial value τ0.
Remark 10.2. For an orthogonal trajectory the inversion ιCptq in the circle Cptq is a first-
order symmetry.

Discrete orthogonal trajectories of a one-parameter family of circles Similar
to the discretization of the involute, we can obtain a simple discretization of orthogonal
trajectories of a family of circles by taking an arbitrary initial point and reflecting it by
inversions in the circles of the discrete one-parameter family of circles.

Same as for discrete involutes, this procedure has the disadvantage, that it highly
depends on a suitable choice for the initial point, to even stay close to the circles of the
family.

We will introduce another discretization, which is based on mapping an initial point
on one of the circles of the family to the other circles by inversion, and thus ensuring,
that we stay on the circles of the family.
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10.3 Tractrix and Darboux transform
Assume that a point moves along a curve γ and pulls an interval pγ, γ̂q so that the distance
}γ̂ ´ γ} ist constant, and the velocity vector γ̂1 is parallel to γ ´ γ̂. The curve γ̂ can be
thought of as a trajectory of the second wheel of a bicycle whose first wheel moves along
the curve γ.

Definition 10.1 (tractrix). Let γ : I Ñ R2 be a plane curve. A curve γ̂ : I Ñ R2 is
called a tractrix of γ if

}γ̂ ´ γ} “ const. and 9̂γ ∥ pγ̂ ´ γq

On the other hand, this is the same as saying that γ̂ lies on a circle with center γ and
constant radius }γ̂ ´ γ}, while moving orthogonal to that circle. Thus, a tractrix is the
special case of an orthogonal trajectory to a one-parameter family of circles where the
radius of the circles is constant.

Lemma 10.5. Let γ : I Ñ R2 be a curve, and γ̂ a tractrix of γ. Then the curve

γ̃ :“ γ ` 2pγ̂ ´ γq “ 2γ̂ ´ γ.

is parametrized by the same speed as γ, i.e.,

} 9γ} “
›

› 9̃γ
›

› ,

and γ̂ is a tractrix of γ̃ as well.

Proof. Let v :“ γ̂ ´ γ. Then

} 9γ}
2

´
›

› 9̃γ
›

›

2
, “

@

9̃γ ` 9γ, 9̃γ ´ 9γ
D

“ 4
A

9̂γ, 9̂γ ´ 9γ
E

„ 2 xv, 9vy “
d
dt

}v}
2

“ 0.

Furthemore,
γ̂ ´ γ̃ “ ´v,

and thus γ̂ is a tractrix of γ̃.

Figure 28. A traktrix and the corresponding Darboux transform of γ.

Definition 10.2 (Darboux transform). Two curves γ, γ̃ : I Ñ R2 parametrized by the
same speed (in particular two arc-length parametrized curves) are called Darboux trans-
forms of each other if

}γ̃ ´ γ} “ const.,
and γ̃ is not just a translate of γ.

68



Lemma 10.5 showed how to construct a Darboux transform from a tractrix. The verse
construction also holds.

Theorem 10.6. Let γ : I Ñ R2 be a curve. Then the following claims are equivalent:

(i) γ̃ is a Darboux transform of γ

(ii) γ̂ :“ 1
2pγ ` γ̃q is a tractrix of γ (and of γ̃q.

Proof.

(ð) Lemma 10.5.

(ñ) It is clear that v :“ 1
2pγ̃ ´ γq is of constant length. It remains to show that 9̂γ ∥ v.

Since 9v K v this is equivalent to 9̂γ K 9v.
A

9̂γ, 9v
E

“

B

1
2p 9γ ` 9̃γq,

1
2p 9̃γ ´ 9γq

F

“
1
4p
›

› 9̃γ
›

›

2
´ } 9γ}

2
q “ 0

10.4 Midcircles
Definition 10.3. Let C1, C2 be two circles (or lines) in xR2. A circle K such that the
inversion in K maps C1 to C2 is called a midcircle of C1 and C2. Given C1 and C2, we
want to find the midcicles K (if they exists).

In the projective model of Möbius geometry the circles C1, C2, K are represented by
points rx1s, rx2s, rys P RP3 outside the Möbius quadric. We assume x1, x2 are normalized
to satisfy

xx1, x1y3,1 “ xx2, x2y3,1 “ 1
and we are looking for y in dependence of x1, x2 (if it exists).

In the Möbius lift the inversion in K is represented by the linear map

ιy : R4
Ñ R4, x ÞÑ x ´ 2

xx, yy3,1

xy, yy3,1
y.

Note that for x P R4

xιypxq, ιypxqy3,1 “ xx, xy3,1 ,

The condition for y is given by rιypx1qs “ rx2s, or equivalently,

ιypx1q “ x1 ´ 2
xx1, yy3,1

xy, yy3,1
y “ ˘x2. (10)

In particular, this means rys P rx1s _ rx2s, i.e., if we exclude the case K “ C1 “ C2

y “ x1 ` σx2 for some σ P R.

If we take the Lorentz product of (10) with y, we obtain the necessary condition
ˇ

ˇ

ˇ
xx1, yy3,1

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
xx2, yy3,1

ˇ

ˇ

ˇ
.
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Note that if C1 and C2 intersect in two points, this condition means, that K intersects
C1 in the same angle as it intersects C2, i.e., K is the angle bisecting circle of C1 and C2.
The derived condition is equivalent to

xx1, x1 ` σx2y
2
3,1 “ xx2, x1 ` σx2y

2
3,1

ô p1 ` σ xx1, x2y3,1q
2

“ pxx1, x2y3,1 ` σq
2

ô σ2
“ 1 if xx1, x2y3,1 ‰ 1.

Thus, two possible solutions for y are given by

y˘ “ x1 ˘ x2,

and one easily checks that indeed

ι˘px1q “ ¯x2.

On the question of existence of the midcircles, we still have to check whether ry˘s lies
outside the Möbius quadric, and thus indeed describes a (real) circle.

First, note that ry`s and ry´s are polar,

xy`, y´y3,1 “ xx1 ` x2, x1 ´ x2y3,1 “ 0,

and thus cannot both lie inside the Möbius quadric. Therefore, there always exists at
least one midcircle. Now

xy˘, y˘y3,1 “ 2p1 ˘ xx1, x2y3,1q.

On the other hand, the signature of the line rx1s _ rx2s is determined by the sign of

det
´

1 xx1,x2y3,1
xx1,x2y3,1 1

¯

“ 1 ´ xx1, x2y
2
3,1 “ p1 ` xx1, x2y3,1qp1 ´ xx1, x2y3,1q

“
1
4 xy`, y`y3,1 xy`, y`y3,1 .

Thus, two midcircles exist if and only if the signature of rx1s _ rx2s is equal to (++),
or equivalently, if the two circles C1 and C2 intersect in two points. We summarize our
findings in the following proposition.

Proposition 10.7. Let C1 and C2 be two circles (or lines) in xR2. Let rx1s, rx2s P RP4 be
their Möbius lifts, respectively, satisfying

xx1, x1y3,1 “ xx2, x2y3,1 “ 1.

§ If C1 and C2 intersect in two points, they have exactly two midcircles, which are the
two angle bisectors of C1 and C2, and given by rx1 ` x2s and rx1 ´ x2s.

§ If C1 and C2 do not intersect or touch, they have exactly one midcircle, given by either
rx1 ` x2s or rx1 ´ x2s.

Since we can exchange xi Ñ ´xi, there is no projectively invariant way to distinguish
the two points rx1`x2s and rx1´x2s. Thus, there is no Möbius invariant way to distinguish
the two midcircles of two (non-oriented) circles C1 and C2. However, if we consider two
oriented circles, the midcircles can be distinguished in the following way.
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Definition 10.4. Let C1, C2 be two oriented circles (or lines) in xR2, and let K be a
midcircle of C1 and C2

§ If ı|KC1 : C1 Ñ C2 preserves orientation, K is called circle of similtude, and its center
is called center of similtude or internal similtude center.

§ If ı|KC1 : C1 Ñ C2 reverses orientation, K is called circle of anti-similtude, and its
center is called center of anti-similtude or external similtude center.

For two circles C1 and C2 in R2, we can encode the orientation in the sign of the
radius. Thus, let c1, c2 P R2 be the two centers and r1, r2 P R two two signed radii. The
lift

xi “
1
ri

pci ` p}ci}
2

´ r2
i qe8 ` e0q, i “ 1, 2

satisfies xxi, xiy3,1 “ 1 and the two possible signs xi Ø ´xi uniquely corresponds to two
possibly signs ri Ø ´ri, and thus the two possible orientations of the circle Ci.

With this specific lift, the two solutions x1 ˘x2 for the midcircles can be distinguished
depending on the combination of orientations of C1 and C2. One may check, that x1 ` x2
always corresponds to the circle of similtude, and x1 ´ x2 to the circle of anti-similtude.
Their existence can now be read off from the sign of

xy˘, y˘y3,1 “ 2p1 ˘ xx1, x2y3,1q “ 2
ˆ

1 ˘
1

2r1r2
pr2

1 ` r2
2 ´ }c1 ´ c2}

2
q

˙

“ ˘
1

r1r2

`

pr1 ˘ r2q
2

´ }c1 ´ c2}
2˘

and we may now derive explicit formulas for the center c˘ and radius r˘ of these two
midcircles.

y˘ “ x1 ˘ x2 “
c1

r1
˘

c2

r2
`

˜

}c1}
2

´ r2
1

r1
˘

}c2}
2

´ r2
2

r2

¸

e8 `

ˆ

1
r1

˘
1
r2

˙

e0

„
r2c1 ˘ r1c2

r2 ˘ r1
`

r1r2

r2 ˘ r1

˜

}c1}
2

´ r2
1

r1
˘

}c2}
2

´ r2
2

r2

¸

e8 ` e0

“ c˘ ` p}c˘}
2

´ r2
˘q ` e0

by comparing coefficients (or using the formulas from Proposition 6.7):

c˘ “
r2c1 ˘ r1c2

r2 ˘ r1
, r2

˘ “ ˘r1r2

˜

1 ´
}c1 ´ c2}

2

pr1 ˘ r2q2

¸

We summarize again:

Proposition 10.8. Let C1 and C2 be two oriented circles in R2 with centers c1, c2 P R2

and signed radii r1, r2 P R.

§ The (unique) circle of similtude exists if and only if

r1r2

˜

1 ´
|c1 ´ c2|

2

pr1 ` r2q2

¸

ą 0,
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and its center and radius are given by

c` “
r1c2 ` r2c1

r1 ` r2
, r` “

g

f

f

er1r2

˜

1 ´
|c1 ´ c2|

2

pr1 ` r2q2

¸

.

§ The (unique) circle of anti-similtude exists if and only if

r1r2

˜

|c1 ´ c2|
2

pr1 ´ r2q2 ´ 1
¸

ą 0,

and its center and radius are given by

c´ “
r1c2 ´ r2c1

r1 ´ r2
, r´ “

g

f

f

er1r2

˜

|c1 ´ c2|
2

pr1 ´ r2q2 ´ 1
¸

.

Figure 29. Midcircles of oriented circles. Circles of similtude (green) and circle of anti-
similtude (red).

10.5 Discrete envelopes and orthogonal trajectories from mid-
circles

Consider two circles C1 and C2 with the same orientation in a pencil of circles through
two points. Then in the limit C1 Ñ C2 the circle of similtude K` goes to C1 “ C2,
and the circle of anti-similtude goes to a circle orthogonal to C1 “ C2. Recalling the
symmetries of smooth envelopes in Remark 10.1 and of smooth orthogonal trajectories
in Remark 10.2, this motivates the following alternative definitions for discrete envelopes
and discrete orthogonal trajectories.
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Figure 30. Midcricles of a discrete one-parameter family of circles.

Definition 10.5. Let I Ă Z be a discrete interval, and let C : I Ñ xR2 be a discrete
one-parameter family of oriented circles. Then γ : I Ñ xR2 is called

(i) a discrete envelope of C if the circle of anti-similtude K´pnq of Cpnq and Cpn ` 1q

exists for all n, n ` 1 P I and
γn`1 “ ιK´

pγnq.

(ii) a discrete orthogonal trajectory of C if the circle of similtude K`pnq of Cpnq and
Cpn ` 1q exists for all n, n ` 1 P I and

γn`1 “ ιK`
pγnq.

Remark 10.3.
(i) The special case of discrete families of lines also leads to alternative definitions for

discrete evolutes and involutes.

(ii) The discrete envelope and orthogonal trajectories defined in this way both have one
degree of freedom. It can be fixed by one initial point on one of the circles.

(iii) The edge pγn`1, γnq of an orthogonal trajectory is orthogonal to the circle of simil-
tude K`pnq.

(iv) If we introduce coordinates

γn “ cn ` rneiθn , τn “ tan θn

2
the discrete envelope satisfies the equation

p∆rn ´ ∆pc1qnqτnτn`1 ´ ∆pc2qnpτn ` τn`1q ` ∆rn ` ∆pc1qn “ 0,

which is a discrete analogue of the quadratic equation satisfied by the smooth en-
velope. Similarly, the discrete orthogonal trajectory satisfies the equation

prn ` rn`1q∆τn “ ∆pc1qnpτn ` τn`1q ´ ∆pc2qnp1 ´ τnτn`1q.

which is a discrete analogue of the Riccati equation satisfied by the smooth orthog-
onal trajectory.
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10.6 Discrete tractrix and Darboux transform
We noted that in the smooth case a tractrix is a special case of an orthogonal trajectory
of a one-parameter family of circles with constant radius.

Definition 10.6. Let γ : Z Ą I Ñ R2 be a discrete curve. A discrete curve γ̂ : I Ñ R2

is called a (discrete) tractrix of γ if γ̂ is a discrete orthogonal trajectory of discrete one-
parameter family of circles with centers γ and constant radii.

We define discrete Darboux transforms in the following way.

Definition 10.7. Two discrete curves γ, γ̃ : Z Ą I Ñ R2 are called (discrete) Darboux
transforms of each other if

}γn`1 ´ γn} “ }γ̃n`1 ´ γ̃n} , and }γ̃n ´ γn} “ const. (11)

and γ̃ is not a parallel translation of γ.

Given γn, γn`1, γ̃n there are two solutions γ̃n`1 satisfying the conditions 11, leading to
a parallelogram and a parallelogram folded in one diagonal, which is also called Darboux
butterfly. The parallelgram is excluded by the condition that γ̃ is not a parallel translation
of γ. Thus, the elementary quadrilaterals of the Darboux transformation consists of
Darboux butterflies.

Figure 31. A Darboux butterfly.

Before we continue we give the following geometric characterization of Darboux but-
terflies.

Lemma 10.9. A quadrilateral x1, x2, x3, x4 P R2 is a Darboux butterfly if and only if the
following three conditions are satisfied

(i) The two diagonals x1 _ x3 and x2 _ x4 are parallel, or equivalently, three (and
therefore all) of the edge midpoints 1

2pxi ` xi`1q, i “ 1, 2, 3, 4 are collinear.

(ii) }x1 ´ x2} “ }x3 ´ x4}.

(iii) The two edges x1 _ x2 and x3 _ x4 are not parallel.

Proof. To see the equivalence of the two conditions in (i), note that the midpoinst of a
quadrilateral form a parallelogram whose sides are parallel to the diagonals.

pðq Clearly, a Darboux butterflies satisfies all three conditions.
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pñq Consider two parallel lines as the diagonals ℓ1, ℓ2 of the quadrilateral and two points
x1 P ℓ1, x2 P ℓ2. Then up two translation there are only two choices for the points
x3 P ℓ1, x4 P ℓ4, such that (ii) is satisfied. Only one these satisfies (iii). By symmetry,
this choice leads to }x1 ´ x4} “ }x2 ´ x3}.

With this observation we obtain a discrete analogue of Theorem 10.6.

Theorem 10.10. Let γ : Z Ą I Ñ R2 be a discrete curve. Then the following claims are
equivalent:

(i) γ̃ is a discrete Darboux transform of γ

(ii) γ̂ :“ 1
2pγ ` γ̃q is a disrcete tractrix of γ (and of γ̃q.

Proof.

pðq }γ̃n ´ γn} “ }γ̃n`1 ´ γn`1} implies }γ̂n ´ γn} “ }γ̂n`1 ´ γn`1} “: r. Furthermore,
1
2pγn ` γn`1q is the center of similtude of the two circles with centers γn and γn`1
and radius r. The three midpoints 1

2pγn ` γn`1q, γ̂n, γ̂n`1 lie on a line. Thus, γ̂n and
γ̂n`1 are symmetric with respect to the circle of similtude.

pñq }γ̂n ´ γn} “ }γ̂n`1 ´ γn`1} implies }γ̃n ´ γn} “ }γ̃n`1 ´ γn`1}, while the two corre-
sponding edges cannot be parallel. The three midpoints 1

2pγn `γn`1q, γ̂n, γ̂n`1 of the
quadrilateral γn, γn`1, γ̃n`1, γ̃n lie on a line. Thus, by Lemma 10.9, this quadrilateral
is a Darboux butterfly.
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γn γn`1

γ̂n`1

γ̂n
γ̃n`1

γ̃n

Figure 32. Discrete tractrix (blue points) as discrete orthogonal trajectory and relation
to discrete Darboux transform (green points).

11 Surfaces and curvature line parametrizations

11.1 Parametrized surfaces
Definition 11.1. Let U Ă R2 be a open set. Then a smooth map

f : U Ñ Rn, pu, vq ÞÑ fpu, vq

is called a (smooth parametrized) surface (patch) in Rn.
The curves

u ÞÑ fpu, vq, v ÞÑ fpu, vq

are called parameter lines of f .

We usually denote the two parameters by u and v. and the partial derivatives with
respect to u and v by

fu :“ Bf

Bu
, fv :“ Bf

Bv
.

Regularity is defined for surface patches by the linear independence of the first partial
derivatives.
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Definition 11.2. A surface f : U Ñ Rn is called regular if fupu, vq and fvpu, vq are
linearly independent at every point pu, vq P U .

For a regular surface the parameter lines are regular curves, and the tangent plane is
well-defined at every point. It is the plane that best approximates the surface patch at
some point up to first order.

Definition 11.3. Let f : U Ñ Rn be a regular surface. Then the plane

Tfpu, vq :“ tfpu, vq ` αfupu, vq ` βfvpu, vq | α, β P Ru

is called the tangent plane of f at pu, vq P U .

11.2 Surfaces in projective geometry
Similar to curves, we can lift a surfaces f : U Ñ Rn to the projective space RPn by

rf̂ s : U Ñ RPn, f̂pu, vq :“
ˆ

fpu, vq

1

˙

.

If f is regular, the partial derivatives

f̂upu, vq “

ˆ

fupu, vq

0

˙

, f̂vpu, vq “

ˆ

fvpu, vq

0

˙

,

describe points at infinity on the lift of the tangent plane

Tfpu, vq “

!

α1f̂pu, vq ` α2f̂upu, vq ` α3fvpu, vq

ˇ

ˇ

ˇ
α1, α2, α3 P R

)

“ rfpu, vqs _ rfupu, vqs _ rfvpu, vqs.

Generally, we define projective surfaces in the following way.

Definition 11.4. Let U Ă R2 be a open set and f̂ : U Ñ Rn`1 a smooth map Then

rf̂ s : U Ñ RPn, pu, vq ÞÑ rf̂pu, vqs

is called a (smooth parametrized) surface (patch) in RPn.
The curves

u ÞÑ fpu, vq, v ÞÑ fpu, vq

are called parameter lines of rf̂ s.

Consider a surface rf̂ s : U Ñ RPn and a smooth function

λ : U Ñ Rzt0u.

Then f̂ and f̃ :“ λf̂ define the same surface in RPn,

rf̂pu, vqs “ rf̃pu, vqs for all pu, vq P U.

Similar to the considerations for curves, the points described by the first partial derivatives
may change, but the span

rf̂pu, vqs _ rf̂upu, vqs _ rf̂vpu, vqs “ rf̃pu, vqs _ rf̃upu, vqs _ rf̃vpu, vqs

remains the same. Thus, the following definition of regularity for surfaces in RPn is
independent of the choice of representative vectors. Furthermore, in affine coordinates, it
coincides with the corresponding definition for surfaces in Rn.
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Definition 11.5. A surface rf̂ s : U Ñ RPn is called regular if rf̂pu, vqs, rf̂upu, vqs,
rf̂vpu, vqs span a plane, or equivalently, if f̂pu, vq, f̂upu, vq, f̂vpu, vq are linearly indepen-
dent.

The same holds for the following definition of the tangent planes for surfaces in RPn.

Definition 11.6. Let rf̂ s : U Ñ RPn be a regular surface. Then the plane

T rf̂ spu, vq :“ rf̂pu, vqs _ rf̂upu, vqs _ rf̂vpu, vqs

is called the tangent plane of rf̂ s at pu, vq P U .

Similar to the considerations for curves, one finds that the introduced notions are also
invariant under reparametrization and under projective transformations. We summarize
in the following proposition.

Proposition 11.1. For a surface rf̂ s : U Ñ RPn, regularity, and the tangent plane are
invariant under

(i) a change of representative vectors

f̂pu, vq Ñ λpu, vqf̂pu, vq

with a smooth non-vanishing function λ.

(ii) reparametrization
f̂pu, vq Ñ f̂ ˝ φpũ, ṽq

with a smooth bijective map φ.

(iii) projective transformations
f̂pu, vq Ñ F f̂pu, vq

with F P GLpn ` 1,Rq.

11.3 Dual representation of surfaces
Instead of describing a surface as a two-parameter family of points, we can equivalently
describe it as the envelope of its two-parameter family of tangent planes. In particular,
for a surface in R3, the tangent planes can be described in terms of a normal field.

Definition 11.7. Let f : U Ñ R3 be a regular surface. Then a smooth map

n : U Ñ R3
zt0u

is called a normal field of f if
n ¨ fu “ 0,

n ¨ fv “ 0.

The tangent plane of a surface f in R3 can be described in terms of a normal field

Tfpu, vq “
␣

x P R3 ˇ

ˇ npu, vq ¨ px ´ fpu, vqq “ npu, vq ¨ px ` hpu, vq “ 0
(
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and some function hpu, vq “ ´npu, vq¨fpu, vq. Thus, the tangent planes of f are described
by the tuple pn, hq, which is unique up to a common scalar multiple, and determined by
the equations

n ¨ fu “ 0,

n ¨ fv “ 0,

n ¨ f ` h “ 0.

(12)

Differentiating the last equation with respect to u and v, respectively, we find that (12)
is equivalent to

f ¨ nu ` hu “ 0,

f ¨ nv ` hv “ 0,

f ¨ n ` h “ 0.

(13)

Note that if we consider the lifts
f̂ :“ pf, 1q,

n̂ :“ pn, hq

to homogeneous coordinates of RP3 and pRP3q˚, respectively, then equations (12) and
(13) become the duality relations for tangent planes of the respective surfaces rf̂ s and rn̂s.

Definition 11.8. Let rf̂ s : U Ñ RP3 be a regular surface. Then

rn̂s :“ prf̂ s _ rf̂us _ rf̂vsq
‹ : U Ñ pRP3

q
˚

is called the dual surface of f .

In homogeneous coordinates the dual surface is determined by the three linearly inde-
pendent equations

n̂ ¨ f̂u “ 0,

n̂ ¨ f̂v “ 0,

n̂ ¨ f̂ “ 0,

(14)

and satisfies
f̂ ¨ n̂u “ 0,

f̂ ¨ n̂v “ 0,

f̂ ¨ n̂ “ 0.

(15)

These equations are completely symmetric in f̂ and n̂.

Proposition 11.2. If the dual surface of a regular surface rf̂ s in RP3 is itself regular,
then the dual surface of a the dual surface is rf̂ s.

Remark 11.1. The primal surface is regular if it is locally not a curve. The dual surface
is regular if the primal surface is locally not developable (see next section).

11.4 Ruled surfaces and developable surfaces
Definition 11.9. A ruled surface is a surface traced out by the movement of a straight
line through space. The lines on the resulting surface are called rulings.

Example 11.1. A one-sheeted hyperboloid is a doubly ruled surface.
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It can be described by connecting corresponding points of two parametrized curves.
Given a, b : I Ñ R3, we obtain a parametrized ruled surface f : I ˆ R Ñ R3

fpu, vq “ p1 ´ vqapuq ` vbpuq “ apuq ` vrpuq, with rpuq :“ bpuq ´ apuq.

Definition 11.10. A developable surface is the envelope of a one-parameter family of
planes.
Proposition 11.3. Every developable surface is a ruled surface.
Proof. Consider a one-parameter family of planes

T puq “
␣

x P R3 ˇ

ˇ npuq ¨ x ` hpuq “ 0
(

.

Then the envelope is the solution of the two equations
n ¨ x ` h “ 0,

nu ¨ x ` hu “ 0.

For each u these are two linear equations, and thus the solution is a line.
Proposition 11.4. A ruled surfaces

fpu, vq “ apuq ` vrpuq

is a developable surface if and only if
detpr, au, ruq “ 0

Proof. A ruled surface is the envelope of a one-parameter family of lines if and only if it
has a fixed tangent plane along each ruling, or equivalently, if all tangent vectors of f

fu “ au ` vru, fv “ r

along a ruling lie in one plane:
0 “ detpr, au, buq “ detpr, au, ruq.

Infinitesimally, this means that adjacent lines of the rulings intersect, and thus enve-
lope a curve in space.
Proposition 11.5. The rulings of a developable surface envelope a curve called the line
of striction.

For the developable surface fpu, vq

fpu, vq “ apuq ` vrpuq,

and the two functions αpuq and βpuq given by
rupuq “ αpuqaupuq ` βpuqrpuq

the line of striction is given by

spuq “ apuq ´
1

αpuq
rpuq.

Proof. For the rulings to be tangent lines of the curve spuq it must satisfy
spuq “ apuq ` λpuqrpuqsu “ au ` λur ` λru “ p1 ` αλqau ` pλu ` βλqr „ r

and thus
λ “ ´

1
α
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11.5 Conjugate line parametrizations
We now study special parametrizations, in the sense that the parameter lines satisfy some
geometric condition. We start with conjugate line parametrizations, which we first intro-
duce for surfaces in R3. Conjugate line paramtrizations are geometrically characterized
by the following condition: Along each parameter line of the surface, the tangent planes
rotate around the tangent line in the other coordinate direction. Put differently: The
tangent planes along one parameter line envelop a surface that is ruled by the tangent
lines in the other coordinate direction.

Definition 11.11. Let f : U Ñ R3 be a regular surface, and n : U Ñ R3 a normal field
of f . Then f is a called a conjugate line parameterization if one and hence all of the
following equivalent conditions hold:

(i) nv ¨ fu “ 0

(ii) nu ¨ fv “ 0

(iii) n ¨ fuv “ 0

(iv) fuv P spanpfu, fvq

(v) fuv “ αfu ` βfv for smooth functions α, β : U Ñ R

Proof. Taking the v-derivative of n ¨ fu “ 0 and the u-derivative of n ¨ fv “ 0, we obtain

nv ¨ fu “ n ¨ fuv

nu ¨ fv “ n ¨ fvu

and since fuv “ fvu by the symmetry of second derivatives, conditions (i), (ii), and (iii)
are equivalent.

Condition (iii) implies (iv) because pfu, fvq is a basis for the orthogonal subspace to
n. This also means that the equation of condition (v) determines the functions α and β
uniquely. In fact, by Cramer’s rule,

α “
detpn, fuv fvq

detpn, fu fvq
, β “

detpn, fu fuvq

detpn, fu fvq
,

which also shows that α and β are smooth because f is. Finally, condition (v) clearly
implies (iii) and (iv).

Conditions (iv) and (v) of Definition 11.11 do not mention the normal field n. We
may use them to define conjugate line parametrizations in Rn:

Definition 11.12. A regular surface f : U Ñ Rn is called a conjugate line parameteriza-
tion if it satisfies one and hence both equivalent conditions (iv) and (v) of Definition 11.11.

The definition for conjugate line parametrizations translates as follows to surfaces in
RPn:

Proposition 11.6. Let f : U Ñ Rn be a regular surface. Let

f̂ :“ λ ¨ pf, 1q : U Ñ Rn`1
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be an arbitrary lift to homogeneous coordinates with a smooth function λ : U Ñ Rzt0u.
Then f is a conjugate line parametrization if and only if f̂ satisfies

f̂uv “ αf̂u ` βf̂v ` γf̂ (16)

with some smooth functions α, β, γ.
Equation (16) states the linear dependence of four representative vectors, or equiva-

lently that four points lie in a plane. While the four points are not projectively well-defined
(the points defined by the derivatives are not invariant under scaling f̂) this property is.

Definition 11.13. Let rf̂ s : U Ñ RPn be a regular surface. Then rf̂ s is called a conjugate
line parametrization if the four points rf̂ s, rf̂us, rf̂vs, rf̂uvs lie in a plane for every pu, vq P U .

We have seen that this property is projectively well-defined. Furthermore, it is a
property of the coordinate lines. Thus, it is invariant under reparametrization of the
surface along the coordinate lines. Finally, it is also invariant under applying a projective
transformation to the surface. We summarize these properties in the following proposition.
Proposition 11.7. A regular surface rf̂ s : U Ñ RPn being a conjugate line parametriza-
tion is invariant under

(i) a change of representative vectors

f̂pu, vq Ñ λpu, vqf̂pu, vq

with a smooth non-vanishing function λ.

(ii) reparametrization along the coordinate lines

f̂pu, vq Ñ f̂pφpũq, χpṽqq

with two smooth bijective functions φ, χ.

(iii) projective transformations
f̂pu, vq Ñ F f̂pu, vq

with F P GLpn ` 1,Rq.
For surfaces in RP3 the property of being a conjugate line parametrization is also

invariant under dualization.
Proposition 11.8. A regular surface rf̂ s : R2 Ą U Ñ RP3 is a conjugate line parametriza-
tion if and only if its dual surface rn̂s : U Ñ pRP3q˚ is a conjugate line parametrization.

Proof. rf̂ s is a conjugate line parametrization if f̂ satisfies an equation of the form (16),
which is equivalent to

f̂uv ¨ n̂ “ 0.

From equations (14), or equivalently, equations (15), we find that this is equivalent to
either of the three equations

f̂u ¨ n̂v “ 0,

f̂v ¨ n̂u “ 0,

f̂ ¨ n̂uv “ 0,

(17)

and thus in turn to
n̂uv “ α̃n̂u ` β̃n̂v ` γ̃n̂,
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Remark 11.2. The first two equations of (17) state, respectively, that

rf̂ s _ rf̂us “ prn̂s _ rn̂vsq
‹,

rf̂ s _ rf̂vs “ prn̂s _ rn̂usq
‹.

which capture the geometric description of conjugate line parametrizations given in the
beginning of the section.

11.6 Curvature line parametrizations
Definition 11.14. Let

f : R2
Ą U Ñ R3

be a smooth regular parametrized surface patch.

(i) f is called orthogonal if
xfu, fvy “ 0

(ii) f is called curvature line parametrization if it is orthogonal and conjugate, i.e.,

xfu, fvy “ 0, and fuv “ αfu ` βfv.

Proposition 11.9. The property of a parametrization to be orthogonal is Möbius invari-
ant.

Proof. Möbius transformations are conformal, i.e., preserve angles.

Conjugate parametrizations, on the other hand, are not Möbius invariant. Are curva-
ture line parametrizations?

Proposition 11.10. Let f : R2 Ą U Ñ R3 be a parametrized surface and

f̂ :“ f ` e0 ` }f}
2 e8

its lift to the Möbius quadric. Then f is a curvature line parametrization if and only if
rf̂ s is a conjugate parametrization.

Proof. For the derivatives of the lift we obtain

f̂u “ fu ` 2 xf, fuy e8,

f̂v “ fv ` 2 xf, fvy e8,

f̂uv “ fuv ` 2 pxf, fuvy ` xfu, fvyq e8.

Let f̂ be a curvature line parametrization. Then

f̂uv “ fuv ` 2 xf, fuvy e8 “ αfu ` βfv ` 2 pα xf, fuy ` β xf, fvyq e8 “ αf̂u ` βf̂v.

The reverse direction is shown similarly.

Corollary 11.11. Curvature line parametrizations are Möbius invariant.
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11.7 Focal surfaces and principal curvature spheres
Let f : R2 Ą U Ñ R3 be a regular parametrized surface with unit normal field

npu, vq :“ fu ˆ fv

}fu ˆ fv}

Lemma 11.12. If f is orthogonal and conjugate, then

nu “ ´κ1fu, nv “ ´κ2fv

with two smooth functions κ1, κ2 : U Ñ R.

Proof. Then
nu “ αfu ` βfv

with two functions α, β. Since f is conjugate and orthogonal, we obtain

0 “ nu ¨ fv “ αfu ¨ fv ` βfv ¨ fv “ βfv ¨ fv

and thus, β “ 0. Similar for nv.

The two values, κ1 and κ2 are called the principal curvatures of the surface f . Points
with κ1 “ κ2 are called umbilic points. Away from umbilic points the reverse is also true.

Lemma 11.13. If
nu “ ´κ1fu, nv “ ´κ2fv

with two smooth functions κ1, κ2 : U Ñ R, then at points with κ1pu, vq ‰ κ2pu, vq, the
parametrization f is orthogonal and conjugate.

Proof. From nu ¨ fv “ nv ¨ fu we obtain

´κ1fu ¨ fv “ nu ¨ fv “ nv ¨ fu “ ´κ2fv ¨ fu.

Thus, if κ1 ‰ κ2 this implies fu ¨ fv “ 0, and further nu ¨ fv “ 0.

We can now characterize curvature line parametrizations by their normals.

Definition 11.15. Let f : R2 Ą U Ñ R3 be a regular parametrized surface. Then the
two-parameter family of lines

ℓ : U Ñ LinespR3
q, pu, vq ÞÑ ℓpu, vq “ tfpu, vq ` λnpu, vq | λ P Ru

is called the normal congruence of the surface f .

Proposition 11.14. Let f : R2 Ą U Ñ R3 be a regular parametrized surface. Then f is
a curvature line parametrization if and only if the ruled surfaces

u ÞÑ ℓpu, v “ constq, v ÞÑ ℓpu “ const, vq

in the normal congruence are developable.

Proof. Since n ¨ n “ 1, we have
nu “ αfu ` βfv

Now
0 “ detpn, fu, nuq “ β detpn, fu, fvq

if and only if β “ 0.

84



Thus, in particular, each of these developable surfaces in the normal congruence has
a line of striction. For a developable surfaces in u-direction

u ÞÑ ℓpu, v “ constq
it is given by

u ÞÑ fpu, vq `
1

κ1pu, vq
npu, vq

Together these lines of striction in u-direction form a surface.
Definition 11.16. Let f : R2 Ą U Ñ R3 be a curvature line parametrization. Then the
two surfaces given by

f p1q
pu, vq :“ fpu, vq `

1
κ1pu, vq

npu, vq, f p2q
pu, vq :“ fpu, vq `

1
κ1pu, vq

npu, vq

are called the focal surfaces of the surface f .
Note that the focal surfaces are a generalization of the evolute of a plane curve to

surfaces. Correspondingly, they each form the centers of a two-parameter family of sphere,
called curvature spheres.
Definition 11.17. Let f : R2 Ą U Ñ R3 be a curvature line parametrization. Then
the two two-parameter families of spheres Spiq with centers f i and radii 1

|κi|
are called

curvature spheres of the surface f .
Remark 11.3. The (unique) midsphere of the two (touching) curvature spheres Sp1q and
Sp2q at any given point pu, vq P U is the mean curvature sphere of the surface f .

In the Möbius lift the curvature spheres are represented by the points

ŝpiq :“ f piq
`

ˆ

›

›f piq
›

›

2
´

1
κ2

i

˙

e8 ` e0 “ f `
1
κi

n `

ˆ

}f}
2

`
2
κi

xf, ny

˙

e8 ` e0

Proposition 11.15. Let f : R2 Ą U Ñ R3 be a curvature line parametrization, and
f̂ “ f ` }f}

2 e8 ` e0

its Möbius lift. Then the Möbius lift rŝp1qs of the curvature spheres Sp1q is given by

rŝp1q
s “

´

rf̂ s _ rf̂us _ rfvs _ rfuus

¯K

,

and, similarly, the Möbius lift rŝp2qs of the curvature spheres Sp2q is given by

rŝp2q
s “

´

rf̂ s _ rf̂us _ rfvs _ rfvvs

¯K

.

Proof. One easily checks
A

ŝp1q, f̂
E

4,1
“

A

ŝp1q, f̂u

E

4,1
“

A

ŝp1q, f̂v

E

4,1
“ 0.

And the Lorentz product with the second derivative
f̂uu “ fuu ` 2p}fu}

2
` xf, fuuyqe8

is given by
A

ŝp1q, f̂uu

E

4,1
“

1
κ1

xn, fuuy ´ }fu}
2

“ 0,

since
xn, fuuy “ ´ xnu, fuy “ κ1 }fu}

2 .
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11.8 Channel surfaces and Dupin cyclides
Definition 11.18. The surfaces given by the envelope of a one-parameter family of
spheres is called a channel surface.

Consider a one-parameter family of spheres

S : R Ą I Ñ R3, Spuq :“
␣

x P R3 ˇ

ˇ F px, uq :“ }cpuq ´ x}
2

´ rpuq
2

“ 0
(

Then an envelope surface
f : R2

Ą U “ I ˆ J Ñ R3

is given by
F pfpu, vq, uq “ 0,

Fupfpu, vq, uq “ 2 xcu, c ´ fy ´ 2ru “ 0.

The first equation defines a sphere, while the second defines a plane. Thus, their inter-
section is given by a circle

C : I Ñ R3, Cpuq “
␣

x P R3 ˇ

ˇ F px, uq “ Fupx, uq “ 0
(

and for each u P I the entire v parameter line lies on Cpuq:

fpu, vq P Cpuq for all v P J.

The u parameter lines are not uniquely defined by the two envelope equations. To obtain
unique u parameter lines we can add the condition of orthogonality

xfu, fvy “ 0.

This leads to a curvature line parametrization of the channel surface. Indeed, by symmetry
note that all normal lines along the circular v parameter lines must go through one point
on the axis of the circle Cpuq, and thus

nv „ fv.

Together with the orthogonality this implies

xnv, fuy “ 0.

In particular, that all normal lines along the v parameter lines go through a common
point implies that the focal surfaces f p2q of the corresponding direction degenerates to a
curve:

f p2q
v “ 0

In fact, this property characterizes channel surfaces.

Proposition 11.16. Let f : R2 Ą U Ñ R3 be a curvature line parametrization. Then
f is a channel surface (in u direction) if and only if its focal surface (in v direction)
degenerates to a curve in the following way:

f p2q
v “ 0
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Proof. We have already demonstrated pñq. Now pðq:

0 “ f p2q
v “ fv `

ˆ

1
κ2

˙

v

n `
1
κ2

nv “
1
κ2 v

n ô pκ2qv “ 0

Thus the curvature spheres Sp2q in have constant radius v direction, i.e., do not depend
on v. (Equivalently the lift rŝp2q

v s degenerates to a curve as well ŝp2q
v “ 0.) This means

that the f is the envelope of this one parameter family of spheres

Remark 11.4. The Möbius lift of the parametrization rf̂ s and of the one-parameter family
of spheres rŝs are related by

A

f̂ , ŝ
E

4,1
“

A

f̂ , ŝu

E

4,1
“ 0

Thus, the circles C are given by prŝs _ rŝusqK. Furthermore, the lift of the curvature
spheres in v direction rŝp2qs describes a curve, which coincides with rŝs.

Figure 33. Smooth and discrete channel surfaces and their focal surfaces.

We now consider the special case of double channel surfaces .

Definition 11.19. A surface which is the envelope of two (distinct) one-parameter fam-
ilies of spheres are called Dupin cyclides.
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By the consideration above these two one-parameter family of spheres must coincide
with the curvature spheres Sp1qpuq and Sp2q of the surface. Furthermore, since the surface
envelopes both families, each sphere from Sp1q must touch each sphere of Sp2q. For the
Möbius lifts rŝp1qs, rŝp2qs this means that all lines rŝp1qs _ rŝp2qs are tangent to the Möbius
quadric S3 Ă RP4, or equivalently,

@

ŝp1q, ŝp2q
D2

4,1 ´
›

›ŝp1q
›

›

2
4,1

›

›ŝp2q
›

›

2
4,1 “ 0

If we add an additional homogeneous coordinate

s̃piq :“
´

ŝpiq,
›

›ŝpiq
›

›

4,1

¯

to define a lift rs̃piqs P L Ă RP5 to a quadric with signature p4, 2q in RP5 the condition
above becomes polarity

@

s̃p1q, s̃p2q
D

4,2 “ 0

with respect to this quadric, the so called Lie quadric. This implies that the two curves
rs̃p1qs and rs̃p2qs must be planar sections of the Lie quadric, i.e, conic section. This means
that the projection back to RP4 is given by two conics, and so is the stereographic pro-
jection to R3, which describes the focal surfaces. Further investigation reveals that the
two focal surfaces are given by two focal conics.

Example 11.2. A torus is a channel surface in two directions, and thus a Dupin cyclide.
This property is invariant under Möbius transformations. So, all Möbius images of a torus
are Dupin cyclides.

11.9 Q-nets, circular nets, and discrete channel surfaces
§ We discretize parametrized surfaces in terms of discrete nets, i.e, maps

f : Z2
Ą U Ñ RPn.

§ A Q-net (discrete conjugate nets) is a net f : U Ñ RPn, such that the four image
points of each quad are contained in a plane, i.e.,

fpm, nq, fpm ` 1, nq, fpm ` 1, n ` 1q, fpm, n ` 1q are coplanar for all m, n.

Equivalently, in affine coordinates, f satisfies an equation of the form

∆1∆2f “ α∆1f ` β∆2f.

§ A circular net (discrete principal nets) is a net f : U Ñ Rn, such that the four image
points of each quad are contained in a circle, i.e.,

fpm, nq, fpm ` 1, nq, fpm ` 1, n ` 1q, fpm, n ` 1q lie on a circle for all m, n.

The axes of the circles can be interpreted as discrete normals (per face). Adjacent dis-
crete normal lines intersect, and in this sense they form discrete developable surfaces.

§ Starting from a discrete one-parameter family of spheres S : Z Ą I Ñ R3, we can
generalize the two definitions for envelopes of circles to this case:
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‚ The sequence of intersection circles of adjacent spheres can be thought of as the
discrete envelope.

‚ Start with one circle on one sphere, and propagate this circle to the other spheres
by inversion in the midspheres of adjacent spheres. The sequence of the obtained
circles can be thought of as the discrete envelope.
To obtain a discrete net, sample the initial circle, and propagate the points by the
same inversions. In this way, one obtains a circular net as the discrete envelope.
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