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1 Orthogonal nets
We start with the definition of (regular) nets, which represent parametrizations of sub-
manifolds of RN , in particular,

§ parametrized curves in the case M “ 1,

§ parametrized surfaces in the case M “ 2, and

§ coordinate systems of (some region of) RN in the case M “ N .

Definition 1.1.
(i) Let U Ă RM be open and connected. Then a smooth map

x : RM
Ą U Ñ RN , ps1, . . . , sM q ÞÑ xps1, . . . , sM q

is called an M-dimensional (smooth) net.

(ii) A net x : RM Ą U Ñ RN is called regular if the M tangent vectors

B1x, . . . , BMx P RN

are linearly independent at every point in U , where Bi “ B

Bsi
denotes the i-th partial

derivative.

(iii) Let x : RM Ą U Ñ RN be a net and ti1, . . . , inu Ă t1, . . . , Mu some indices. Then
the map

psi1 , . . . , sinq ÞÑ xps1, . . . , sM q

for fixed sj with complementary indices is called an n-dimensional subnet of x.
In particular, 1-dimensional subnets are called coordinate lines and 2-dimensional
subnets are called coordinate surfaces.

Remark 1.1. Concerning the “smoothness” of a net, we follow the tradition of classical
differential geometry assuming that all required partial derivatives exist without explicitly
stating. Furthermore, we assume all appearing nets to be regular unless stated otherwise.
Our main object of interest are orthogonal nets.

Definition 1.2.
(i) A net x : RM Ą U Ñ RN is called orthogonal if

xBix, Bjxy “ 0, i, j “ 1, . . . , M, i ‰ j. (1)

(ii) For an orthogonal net x : RM Ą U Ñ RN , the functions Hi : U Ñ R`,

H2
i “ xBix, Bixy , i “ 1, . . . , M

are called its Lamé coefficients.

Remark 1.2.
(i) The notion of orthogonal nets is invariant under Möbius transformations of the

codomain.
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(ii) The metric of an orthogonal net, or its first fundamental form, is diagonal and
entirely determined by its Lamé coefficients,

I “ H2
1 ds2

1 ` . . . ` H2
Mds2

M .

Figure 1. Coordinate surfaces of triply orthogonal coordinate systems.

Definition 1.3. A net x : RM Ą U Ñ RN is called conjugate if for every i, j “ 1, . . ., i ‰ j
the three vectors

BiBjx, Bix, Bjx

are linearly dependent.

Remark 1.3.
(i) The condition of being a conjugate net is a condition on every two-dimensional

subnet, and invariant under projective transformations.

(ii) Conjugate nets are governed by partial differential equations of the form

BiBjx “ ajiBix ` aijBjx

with functions aij, aji : U Ñ R satisfying some consistency conditions if M ě 3.

Theorem 1.1 (Dupin). For N ě 3 every orthogonal coordinate system x : RN Ą U Ñ RN

is conjugate.

Proof. For three distinct i, j, k “ 1, . . . , N differentiating (1) with respect to sk leads to

xBix, BjBkxy ` xBjx, BkBixy “ 0.

By permutation of the indices, these are three equations which sum up to

2 pxBix, BjBkxy ` xBjx, BkBixy ` xBkx, BiBjxyq “ 0.
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Dividing by 2 and subtracting one of the first three equations again leads to

xBix, BjBkxy “ 0.

Thus, for j, k “ 1, . . . , N , j ‰ k,

BjBkx P span tBix | i “ 1, . . . , N, i ‰ j, ku
K

“ spantBjx, Bkxu,

due to the regularity and orthogonality of x.

Example 1.1 (Cylindrical coordinates). Consider the map

x : r0, 8q ˆ r0, 2πq ˆ p´8, 8q Ñ R3, pr, φ, zq ÞÑ

´

r cos φ
r sin φ

z

¯

Its partial derivatives are given by

Brx “

´ cos φ
sin φ

0

¯

, Bφx “

´

´r sin φ
r cos φ

0

¯

, Bzx “

´

0
0
1

¯

.

Thus, x defines a coordinate system at all points with

detpBrx, Bφx, Bzxq “ det
´ cos φ ´r sin φ 0

sin φ r cos φ 0
0 0 1

¯

“ r ‰ 0

The coordinate system is orthogonal since

xBrx, Bφxy “ xBφx, Bzxy “ xBzx, Brxy “ 0,

and its Lamé coefficients are given by

Hr “ }Brx} “ 1, Hφ “ }Bφx} “ r, Hz “ }Bzx} “ 1.

By Theorem 1.1, all coordinate surfaces of x are conjugate nets. Indeed, the second
partial derivatives are given by

BrBφx “
1
r

Bφx, BφBzx “ 0, BzBrx “ 0.
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2 Discrete orthogonal nets
In discrete differential geometry, the classical notion of a net is replaced by that of a
discrete net, which is defined on the square lattice ZM .

Definition 2.1.
(i) A map

x : ZM
Ñ RN , n “ pn1, . . . , nM q ÞÑ xpnq

is called an M-dimensional discrete net.

(ii) Denote the forward and backward difference operators, or discrete tangent vectors,
by

∆ixpnq “ xpn ` eiq ´ xpnq, ∆̄ixpnq “ xpnq ´ xpn ´ eiq

for any n P ZM and i “ 1, . . . , M , where ei P ZM is the unit vector in the i-th
coordinate direction. A discrete net x : ZM Ñ RN is called regular if for any
n P ZM all choices of M discrete tangent vectors, arbitrarily chosen among ∆ixpnq

and ∆̄ixpnq for all i “ 1, . . . , M , are linearly independent.

(iii) n-dimensional discrete subnets are defined as for smooth nets (see Definition 1.1).

Remark 2.1. Note that for now, we assume discrete nets to be defined on the whole lattice
ZM . In some sense, this replaces the openness condition on the domain assuring that,
e.g., for every point in the domain all necessary neighbors are contained in the domain
as well. Furthermore, as in the smooth case, we assume all appearing discrete nets to be
regular unless stated otherwise.

For the purpose of introducing a novel discrete orthogonality condition, instead of
using single lattices as our discrete domains, we consider pairs of dual lattices. For the
square lattice ZM we call

`

Z ` 1
2

˘M its dual square lattice (see Figure 2, left), and say
that any two edges

rn, n ` eis Ă ZM , rn ` 1
2σ, n ` 1

2σ ` ejs Ă
`

Z ` 1
2

˘M

are dual edges, where n P ZM and σ “ pσ1, . . . , σM q P t˘1uM with σi “ 1 and σj “ ´1.
Furthermore, for a point n P ZM , we call the 2M points n ` 1

2σ P
`

Z ` 1
2

˘M , σ P t˘1uM ,
its adjacent points from the dual lattice.

Definition 2.2.
(i) A map

x : ZM
Y
`

Z ` 1
2

˘M
Ñ RN

is called a pair of dual discrete nets.

(ii) A pair of dual discrete nets is called regular if the two discrete subnets x
ˇ

ˇ

ZM
and

x
ˇ

ˇ

´

Z`
1
2
¯M are regular.
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Figure 2. Left: Elementary cube of the square lattice Z3 and its dual edges from
`

Z ` 1
2
˘3.

Right: Its image in R3 such that each pair of dual edges is orthogonal, e.g., the green and
its dual yellow edge are orthogonal. The two marked yellow edges contribute to a discrete
Lamé coefficient, combinatorially located at the center of the small gray cube.

For the following, we consider pairs of dual discrete nets (not just each of their two
discrete subnets) as discrete analogs of smooth nets, and introduce the following discrete
orthogonality condition (see Figure 2).

Definition 2.3.
(i) A pair of dual discrete nets x : ZM Y

`

Z ` 1
2

˘M
Ñ RN is called orthogonal if every

pair of dual edges is orthogonal in RN , i.e.,

x∆ixpnq, ∆jxpn˚
qy “ 0, (2)

for all distinct i, j “ 1, . . . , M and n P ZM , n˚ “ n ` 1
2σ P

`

Z ` 1
2

˘M , where
σ “ pσ1, . . . , σM q P t˘1uM with σi “ 1 and σj “ ´1.

(ii) For a pair of dual discrete nets x : ZM Y
`

Z ` 1
2

˘M
Ñ RN the discrete (squared)

Lamé coefficients
H2

i :
`

Z ` 1
4

˘M
Ñ R, i “ 1, . . . , M

are defined by

H2
i pn ` 1

4σq “

#

@

∆ixpnq, ∆̄ixpn ` 1
2σq

D

, σi “ 1
@

∆̄ixpnq, ∆ixpn ` 1
2σq

D

, σi “ ´1

for all n P ZM and σ “ pσ1, . . . , σM q P t˘1uM .

Remark 2.2. The discrete orthogonality condition is invariant under similarity transforma-
tions. Furthermore, it is invariant under individual translation of each of its two discrete
subnets in space.

The standard discretization of conjugate nets is given by discrete nets with planar
quadrilaterals.
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Definition 2.4. A discrete net x : ZM Ñ RN is called conjugate, or a Q-net, if for all
i, j “ 1, . . . , M, i ‰ j the three vectors

∆i∆jx, ∆ix, ∆jx

are linearly dependent, or equivalently, if all elementary quadrilaterals

pxpnq, xpn ` eiq, xpn ` ei ` ejq, xpn ` ejqq

are coplanar (Exercise).

With this, we obtain the following discrete version of Theorem 1.1 (“discrete Dupin’s
theorem”).

Theorem 2.1. Let N ě 3 and x : ZN Y
`

Z ` 1
2

˘N
Ñ RN be an orthogonal pair of dual

discrete nets. Then its two discrete subnets x
ˇ

ˇ

ZN
and x

ˇ

ˇ

´

Z`
1
2
¯N are discrete conjugate

nets.

Proof. The edge vectors of an elementary quadrilateral

pxpnq, xpn ` eiq, xpn ` ei ` ejq, xpn ` ejqq

lie in the orthogonal complement of the N ´ 2 linearly independent vectors
s∆kxpn ` 1

2σq, σ “ p1, . . . , 1q, k ‰ i, j,

which is of dimension 2.

Remark 2.3. For a discrete conjugate net x : ZM Ñ RN , M ď N , there exists a second
conjugate net x˚ :

`

Z ` 1
2

˘M
Ñ RN such that x and x˚ together form an orthogonal pair

of dual discrete nets. Thus, from the point of view of a single discrete conjugate net, the
discrete orthogonality is not a constraint. Only if we consider pairs of dual discrete nets
as discretizations of one smooth net does the discrete orthogonality become an actual
further constraint.

2.1 Discrete Möbius invariance
The discrete orthogonality constraint is not invariant under mapping each point of an
orthogonal pair of dual discrete nets by a Möbius transformation. Nevertheless, one can
replace the points of the pair of nets by orthogonal spheres to obtain a Möbius invariant
description.

Definition 2.5. Let S be the space of (hyper)spheres in RN . We call a map
S : ZM Y

`

Z ` 1
2

˘M
Ñ S an orthogonal pair of sphere congruences if each two adjacent

spheres from the dual lattices Spnq and Spn ` 1
2σq, n P ZM , σ P t˘1uM , are orthogonal

(see Figure 3).

Orthogonal pairs of sphere congruences are Möbius invariant. Furthermore, given a
pair of dual discrete nets x : ZM Y

`

Z ` 1
2

˘M
Ñ RN we can construct orthogonal spheres

with centers at the points of x: Choosing the radius for one sphere at n P ZM , the radii of
all spheres at adjacent vertices n˚ P

`

Z ` 1
2

˘M of the dual lattice are uniquely determined
by the orthogonality condition. Can this be propagated throughout the whole pair of dual
lattices ZM Y

`

Z ` 1
2

˘M without contradiction?
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Lemma 2.2. Two spheres in RN with centers x, x˚ and radii r, r˚, respectively, are
orthogonal if and only if

xx, x˚
y “ ρ ` ρ˚,

where
ρ “

1
2
`

|x|
2

´ r2˘ , ρ˚
“

1
2
`

|x˚
|
2

´ pr˚
q

2˘ .

Proof. The orthogonality condition of the two spheres is equivalent to

|x ´ x˚
|
2

“ r2
` pr˚

q
2

ô 2 xx, x˚
y “ |x|

2
´ r2

` |x˚
|
2

´ pr˚
q

2.

px, ρq pxi, ρiq

px˚, ρ˚q

px˚
j , ρ˚

j q

Figure 3. Two dual edges from an orthogonal pair of sphere congruences.

Proposition 2.3. Let x : ZM Y
`

Z ` 1
2

˘M
Ñ RN be a pair of dual discrete nets. Then

there exists a one-parameter family of orthogonal pairs of sphere congruences with centers
in the points of x if and only if the pair of discrete nets x is orthogonal.

Moreover, let S : ZM Y
`

Z ` 1
2

˘M
Ñ S be an orthogonal pair of sphere congruences.

Then the pair of dual discrete nets x : ZM Y
`

Z ` 1
2

˘M
Ñ RN given by the centers of S is

orthogonal.

Proof. Consider a pair of dual edges of the net x, and denote the involved vertices such
that ∆ixpnq “ xi ´ x and ∆jxpn˚q “ x˚

j ´ x˚ (see Figure 3). Assume that the radius r

at x is given by ρ “ 1
2

`

|x|
2

´ r2˘. Then the two radii at x˚ and x˚
j are given by

ρ˚
“ xx, x˚

y ´ ρ, ρ˚
j “

@

x, x˚
j

D

´ ρ.

Now the radius at xi may be obtained in two ways

ρi “ xxi, x˚
y ´ ρ˚

“ xxi, x˚
y ´ xx, x˚

y ` ρ,

ρ̃i “
@

xi, x˚
j

D

´ ρ˚
j “

@

xi, x˚
j

D

´
@

x, x˚
j

D

` ρ.

Thus,
ρi “ ρ̃i ô

@

xi ´ x, x˚
j ´ x˚

D

“ 0,

which is the orthogonality of the two dual edges.
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Now an orthogonal pair of dual discrete nets x : ZM Y
`

ZM
˘˚

Ñ RN may be trans-
formed in the following way:

§ Choose an orthogonal pair of sphere congruences S : ZM Y
`

ZM
˘˚

Ñ S with centers
in x.

§ Transform S under a Möbius transformation to obtain S̃.

§ Take the centers x̃ of the transformed pair of sphere congruences S̃.
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3 Curvature line parametrized surfaces
Let x : R2 Ą U Ñ R3 be a smooth regular parametrization of a surface in R3. We denote
its unit normal field by

νps1, s2q “
B1x ˆ B2x

|B1x ˆ B2x|
, ps1, s2q P U.

The metric on x is described by the first fundamental form

Ipv, wq “ xdxpvq, dxpwqy “ v⊺
pdx⊺dxq w “ v⊺

p E F
F G q w

for all v, w P R2, where
E “ xB1x, B1xy ,

F “ xB1x, B2xy ,

G “ xB2x, B2xy .

Definition 3.1. Let x : R2 Ą U Ñ R3 be a parametrization.

(i) x is called orthogonal if F “ 0, i.e., the first fundamental form is diagonal.

(ii) x is called conformal if x is orthogonal and E “ G.

Remark 3.1. For an orthogonally parametrized surface, i.e., F “ 0, its Lamé coefficients
are given by H2

1 “ E and H2
2 “ G.

The “shape” of x is described by the second fundamental form

IIpv, wq “ ´ xdxpvq, dνpwqy “ ´v⊺
pdx⊺dνq w

“ ´ xdνpvq, dxpwqy “ ´v⊺
pdν⊺dxq w “ v⊺

`

e f
f g

˘

w

for all v, w P R2 where

e “
@

ν, B
2
1x

D

“ ´ xB1ν, B1xy ,

f “ xν, B1B2xy “ ´ xB1ν, B2xy “ ´ xB2ν, B1xy ,

g “
@

ν, B
2
2x

D

“ ´ xB2ν, B2xy .

The shape operator is the self-adjoint linear map1

S “ pdxq
´1dν : R2

Ñ R2.

It relates the first and second fundamental form in the following way

IIpv, wq “ Ipv, Swq “ IpSv, wq.

Definition 3.2. A parametrization x : R2 Ą U Ñ R3 is called conjugate if

detpB1x, B2x, B1B2xq “ 0.

Proposition 3.1. A parametrization x : R2 Ą U Ñ R3 is conjugate if f “ 0, i.e., the
second fundamental form is diagonal.

1It describes the derivative of the normal field ν in the domain (or “in coordinates”).
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Proof. In R3, the condition xν, B1B2xy “ 0 is equivalent to B1B2x P spantB1x, B2xu.

The normal curvature at a point ps1, s2q P U in direction v P U is given by

κpvq “
IIpv, vq

Ipv, vq

Thus, there exists an ortho-normal basis e1, e2 P R2 of eigenvectors of S:

Ipe1, e1q “ Ipe2, e2q “ 1, Ipe1, e2q “ 0,

and
Se1 “ κ1e1, Se2 “ κ2e2,

with some κ1, κ2 P R. The two directions e1, e2 P R2, or dxpe1q, dxpe2q P R3 are called
the principal directions of x at ps1, s2q. The normal curvatures in the principal directions
are called the principal curvatures of x at ps1, s2q, and are given by

κpe1q “
IIpe1, e1q

Ipe1, e1q
“ κ1, κpe2q “

IIpe2, e2q

Ipe2, e2q
“ κ2.

For an arbitrary direction vθ “ cos θe1 ` sin θe2 the normal curvature is given by

κpvθq “
IIpvθ, vθq

Ipvθ, vθq
“ κ1 cos2 θ ` κ2 sin2 θ.

A point at which the principal curvatures coincide κ1 “ κ2 is called an umbilic point. At
an umbilic point all normal curvatures coincide. Away from umbilic points the principal
curvatures are the unique and distinct extrema of the normal curvatures.

Definition 3.3.
(i) A curvature line is curve on a surface along principal directions.

(ii) A parametrization is called a curvature line parametrization if its coordinate lines
are curvature lines.

Proposition 3.2. A parametrization x : R2 Ą U Ñ R3 is a curvature line parametriza-
tion if and only if one of the following equivalent conditions is satisfied:

(i) x is orthogonal and conjugate.

(ii) The first and second fundamental form are diagonal.

(iii) F “ f “ 0.

Remark 3.2.
(i) Locally, and away from umbilic points, every surface in R3 has a unique curvature

line parametrization.

(ii) The property of being a curvature line parametrization is Möbius invariant.

(iii) A parametrized surface is a two-parameter family of points in R3. Alternatively,
it can be described as the envelope of a two-parameter family of (oriented) planes,
namely its tangent planes. For a regular non-developable surface these two descrip-
tions are equivalent. Yet the characterization of a curvature line parametrization in
terms of its tangent planes is invariant under Laguerre transformations.
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Definition 3.4.
(i) A parametrization x : R2 Ą U Ñ R3 is called isothermic if it is a conformal

curvature line parametrization.

(ii) A surface is called isothermic if it admits an isothermic parametrization.

Exercise 3.1. Show that a surface is isothermic if and only if its (locally unique, see
Remark 3.2) curvature line parametrization satisfies

E

G
“

α1ps1q

α2ps2q

with two functions α1, α2.

3.1 Triply orthogonal systems and curvature lines
An orthogonal coordinate system x : R3 Ą U Ñ R3 in R3 is also called a triply orthogonal
system.

From Dupin’s Theorem 1.1 and Proposition 3.2 we obtain:

Theorem 3.3. In a triply orthogonal system x : R3 Ą U Ñ R3 the coordinate surfaces
intersect in a curvature line.

Remark 3.3. More generally, two surfaces in R3 that intersect orthogonally, intersect each
other in a curvature line.

For i ‰ j we denote by xij the family of two-dimensional subnets of x in ij-direction,
i.e., its coordinate surfaces. The first fundamental forms of the coordinate surfaces are
given by

Eij “ H2
i , Fij “ 0, Gij “ H2

j .

Let us assume that detpB1x, B2x, B3xq ą 0. Then the normal field of xij is given by

νij “
Bkx

}Bkx}
“

Bkx

Hk

.

with pijkq cyclic permutation of p123q. From this, we obtain

xBiνij, Bixijy “ ´
@

νij, B
2
i xij

D

“ ´
1

Hk

@

Bkx, B
2
i x

D

“
1

Hk

xBiBkx, Bixy “
1

2Hk

Bk xBix, Bixy

“
BkpH2

i q

2Hk

“
HiBkHi

Hk

.

Thus, the second fundamental forms of the coordinate surfaces are given by

eij “ ´
HiBkHi

Hk

, fij “ 0, gij “ ´
HjBkHj

Hk

.
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3.2 Focal nets
Another characterization of a curvature line parametrization is given in the following
proposition:

Proposition 3.4. Let x : R2 Ą U Ñ R3 be a conjugate net. Then x is orthogonal, i.e.,
a curvature line parametrization, if and only if

detpν, B1ν, B1xq “ 0 and detpν, B2ν, B2xq “ 0. (3)

In particular, in a curvature line parametrization the tangent vectors Bix and Biν are
linearly dependent:

B1ν “ ´κ1B1x

B2ν “ ´κ2B2x.

The normal direction ν defines a line

λ ÞÑ xps1, s2q ` λνps1, s2q, λ P R

at every point ps1, s2q P U , together constituting the normal congruence of the net x.
Condition (3) means that the two families of ruled surfaces contained in the normal
congruence along the coordinate lines of x

psi, λq ÞÑ xps1, s2q ` λνps1, s2q, i “ 1, 2, (4)

are developable. Or more intuitively, that infinitesimally close normal lines along the
principal directions intersect. Along a curvature line the points of intersection are given
by the centers of the osculating circles, or curvature spheres, which have radii 1

κi
, i “ 1, 2.

Together they form the curve of striction of the developable surface (4).

Figure 4. A curvature line parametrized surface (white) and its two focal nets (red and
blue). [Image by Ag2gaeh, CC BY-SA 4.0]
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Definition 3.5. Let x : R2 Ą U Ñ R3 be a curvature line parametrization. Then its two
focal nets are given by (see Figure 4),

fi : U Ñ R3, ps1, s2q ÞÑ xps1, s2q `
1

κips1, s2q
νps1, s2q, i “ 1, 2.

Proposition 3.5. The focal net fi is regular at each point ps1, s2q P U with Biκips1, s2q ‰

0, and the normal lines of x are the tangent lines of fi in direction i. Furthermore,

Biκips1, s2q “ 0 ô Bifips1, s2q “ 0.

Proposition 3.6. The two focal nets fi are semi-geodesic conjugate nets.

Remark 3.4. The envelope of a one-parameter family of spheres in R3 is called a channel
surface. The curvature lines in one direction of a channel surface are circles, and thus one
of its focal nets degenerates to a curve, i.e., Bifi “ 0 for one i “ 1, 2 (cf. Remark 3.5). In
fact, this property characterizes channel surfaces. A Dupin cyclide is a channel surface in
both directions, i.e., the envelope of two distinct one-parameter families of spheres, and
therefore characterized by the condition that both of its focal nets degenerate to curves.

3.3 Parallel nets
A parallel surface is a surface of constant offset in normal direction to a given surface. A
net x : R2 Ą U Ñ R3 can be extended to a three-dimensional net by a family of parallel
nets, given by

x̃ : U ˆ I Ñ R3, ps1, s2, s3q ÞÑ xps1, s2q ` ρps3qνps1, s2q, (5)

with some smooth function ρ : I Ñ R on an open interval I Ă R.

Proposition 3.7. Let x : R2 Ą U Ñ R3 be a curvature line parametrization. Away
from the focal points (ρ “ 1

κi
) and points with ρ1 “ 0 the three-dimensional net of parallel

surfaces x̃ is regular.

By Theorem 1.1 a two-dimensional net can be a subnet of a three-dimensional orthog-
onal net, i.e., a triply orthogonal system, only if it is a curvature line parametrization.
Yet every curvature line parametrization can be extended to a triply orthogonal system
by its parallel nets.

Proposition 3.8. Let x : R2 Ą U Ñ R3 be a curvature line parametrization. Then the
three-dimensional net of parallel surfaces x̃ given by (5) is orthogonal with the third Lamé
coefficient given by H2

3 “ pρ1q
2, which only depends on s3.

Remark 3.5. In particular, by Dupin’s Theorem 3.3, all parallel surfaces in (5) are curva-
ture line parametrizations. Furthermore, Proposition 3.8 implies that, generally, curvature
line parametrizations are Möbius invariant (cf. Remark 3.2). Indeed, by Proposition 3.8,
a curvature line parametrization x : R2 Ą U Ñ R3 can be extended to a triply orthogonal
systems x̃. Application of a Möbius transformation maps x̃ to another triply orthogonal
system, and thus, by Theorem 3.3, it maps x to a curvature line parametrization.
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4 Discrete curvature line parametrized surfaces
Two well-established discretizations of curvature line parametrizations are given by cir-
cular nets and conical nets.

Definition 4.1. Let x : Z2 Ñ R3 be a discrete conjugate net.

(i) The net x is called a circular net if all its elementary quadrilaterals are circular,
i.e., each four points pxpnq, xpn ` eiq, xpn ` ei ` ejq, xpn ` ejqq lie on a circle.

(ii) The net x is called a conical net if all four planes corresponding to any elementary
quadrilateral containing a common vertex touch a common cone.

Remark 4.1.
(i) The notion of circular nets is invariant under Möbius transformations.

(ii) Conical nets are more naturally described as maps from the dual lattice into the
set of (oriented) planes of R3. Thus, they correspond to the description of a net
in terms of its tangent planes (cf. Remark 3.2 (iii)). The notion of conical nets is
invariant under Laguerre transformations.

Circular nets and conical nets are intimately related.

Figure 5. Generating a conical net from a circular net.

Given a circular net there exists a canonical three-parameter family of corresponding
conical nets:

§ Let x : Z2 Ñ R3 be a circular net.

§ Associate to each edge rn, n ` eis of Z2 the length bisecting plane of the segment
rxpnq, xpn ` eiqs.

§ Choose a plane at some n P Z2 and reflect it in all bisecting planes.

16



This process is well-defined on Z2 in the sense that it closes along every cycle. Every four
planes associated to an elementary quadrilateral of Z2 intersect in a point, constituting
an associated conical net x˚ : pZ ` 1

2q2 Ñ R3 on the dual lattice.
Vice versa, given a conical net there exists a canonical three-parameter family of

corresponding circular nets:

§ Let x :
`

Z2 ` 1
2

˘2
Ñ R3 be a conical net.

§ Associate to each edge rn˚, n˚ ` eis of
`

Z ` 1
2

˘2 the angle bisecting plane of the two
adjacent face planes.

§ Choose a point at some n P Z2 and reflect it in all bisecting planes.

This process is well-defined on Z2 and constitutes an associated circular net x : Z2 Ñ R3

on the dual lattice.
We call two nets x : Z2 Ñ R3 and x˚ : pZ ` 1

2q2 Ñ R3 obtained by either of the
previously described procedures a pair of associated circular and conical nets.

Proposition 4.1. A pair of associated circular and conical nets constitutes an orthogonal
pair of dual discrete nets (in the sense of Definition 2.3).

Proof. Consider one of the bisecting planes Π. A plane and its reflection in Π intersect
in Π. On the other hand, the line through a point and its reflection in Π is orthogonal to
Π.

Thus, orthogonal pairs of dual discrete conjugate nets are generalizations of pairs
of associated circular and conical nets, and we view them as discrete curvature line
parametrizations.
Remark 4.2. While circular nets are invariant under Möbius transformations and conical
nets are invariant under Laguerre transformations, the associated pairs of such nets are
invariant under the intersection of these transformation groups, i.e., similarity transfor-
mations (on the other hand cf. Section 2.1).

4.1 Discrete focal nets
For a pair of dual discrete conjugate nets x : Z2 Y

`

Z ` 1
2

˘2
Ñ R3 we associate to every

vertex n P Z2 Y
`

Z ` 1
2

˘2 the unit normal vector of the corresponding dual face plane,
i.e.,

νpnq “
∆1xpn˚q ˆ ∆2xpn˚q

|∆1xpn˚q ˆ ∆2xpn˚q|
,

where n˚ “ n ´
`1

2 , 1
2

˘

. The corresponding normal lines

ℓpnq : λ ÞÑ xpnq ` λνpnq, λ P R.

together constitute the discrete normal congruence of the pair of discrete nets x, for which
we immediately obtain a discrete version of Proposition 3.4.

Proposition 4.2. Let x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3 be a pair of dual discrete conjugate nets.

Then x is orthogonal, i.e., a discrete curvature line parametrization, if and only if one of
the following two equivalent conditions is satisfied:
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(i) detpν, ∆1ν, ∆1xq “ 0 and detpν, ∆2ν, ∆2xq “ 0

(ii) Any two adjacent normals ℓpnq and ℓpn ` eiq, i “ 1, 2, intersect (see Figure 6).

Proof. Let n P Z2 Y
`

Z ` 1
2

˘2 and n˚ “ n `
`1

2 , ´1
2

˘

so that ∆1xpnq and ∆2xpn˚q are
dual edges and therefore

νpnq, νpn ` e1q K ∆2xpn˚
q.

Thus, under the assumption νpnq ‰ νpn ` e1q, we obtain

det pν, ∆1ν, ∆1xq pnq “ det pνpnq, νpn ` e1q, ∆1xpnqq “ 0 ô ∆1xpnq K ∆2xpn˚
q.

Figure 6. Patch of an orthogonal pair of dual discrete conjugate nets, its normal congru-
ence, and one quadrilateral of one of its two focal nets.

Remark 4.3. Condition (ii) of Proposition 4.2 may be interpreted in the sense that the
two families of “discrete ruled surfaces” contained in the discrete normal congruence along
the coordinate lines of x are “discrete developable surfaces”.

Definition 4.2. For an orthogonal pair of dual discrete conjugate nets x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3

we define their discrete focal nets fi, i “ 1, 2, by the points of intersection of neighboring
normal lines (see Figure 6)

fi : n ÞÑ ℓpnq X ℓpn ` eiq. (6)

Proposition 4.3. The two discrete focal nets (6) are discrete conjugate nets.
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Proof. The two points fipnq and fipn ` eiq lie on the line ℓpn ` eiq, while the two points
fipn ` ejq and fipn ` ei ` ejq lie on the line ℓpn ` ei ` ejq. By Proposition 4.2 these two
lines intersect.

Remark 4.4. Comparing with Remark 3.4, we obtain natural definitions for discrete chan-
nel surfaces and discrete Dupin cyclides.

4.2 Discrete parallel nets

Figure 7. Patch of an orthogonal pair of dual discrete conjugate nets, and one layer of a
discrete parallel pair of nets.

For an orthogonal pair of dual discrete conjugate nets x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3, a one-

parameter family of discrete parallel surfaces is defined by (see Figure 7)

x̃ : Z3
Y
`

Z ` 1
2

˘3
Ñ R3, pn1, n2, n3q ÞÑ xpn1, n2q ` ρpn1, n2, n3qνpn1, n2q, (7)

where ρ : Z2 Y
`

Z ` 1
2

˘3
Ñ R is chosen such that for i “ 1, 2 the edges ∆ixpn1, n2, n3q

are parallel for all values of n3. This is always possible due to the fact that neighboring
normal lines of x intersect. Thus, the function ρ may only be chosen at one point for each
layer n3 “ const., and each two coordinate surfaces x̃pn1, n2, n3 “ const.q are discrete
conjugate nets with parallel faces.

Similar to the smooth case, x can be extended to a discrete triply orthogonal system
by its parallel surfaces.

Proposition 4.4. Let x : Z2 Y
`

Z ` 1
2

˘2
Ñ R3 be an orthogonal pair of dual discrete

conjugate nets. Then the pair of discrete three-dimensional nets of parallel surfaces x̃
given by (7) is orthogonal with the third discrete Lamé coefficient H2

3 only depending on
n3.
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Proof. The orthogonality of two dual edges ∆1x̃pnq and ∆2x̃pn˚q follows from parallelity
to the corresponding edges of x. An edge ∆3x̃pnq is always parallel to the discrete normal
vector νpn1, n2q, which in turn is orthogonal to any dual edge ∆1x̃pn˚q and ∆2x̃pn˚q.

Let n P Z3 Y
`

Z ` 1
2

˘3, σ1 “ p´1, 1, 1q, σ2 “ p1, 1, 1q, n˚
1 “ n ` 1

2σ1, n˚
2 “ n ` 1

2σ2,
and consider the two corresponding adjacent values of H2

3 . Then

H2
3 pn ` 1

4σ2q ´ H2
3 pn ` 1

4σ1q “
@

∆3xpnq, ∆̄3xpn˚
2q
D

´
@

∆3xpnq, ∆̄3xpn˚
1q
D

“
@

∆3pnq, ∆1∆̄3xpn˚
1q
D

“
@

∆3pnq, ∆̄3x∆1pn˚
1q
D

“ x∆3pnq, ∆1pn˚
1qy ´ x∆3pnq, ∆1pn˚

1 ´ e3qy “ 0.
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5 Confocal conics
Let F1, F2 P R2 be two points in the Euclidean plane.

§ An ellipse with foci F1, F2 is a set of points in the plane, such that for every of its
points X P R2 the sum of distances to F1 and F2 is constant:

dpX, F1q ` dpX, F2q “ const. (8)

§ A hyperbola with foci F1, F2 is a set of points in the plane, such that for every of its
points X P R2 the absolute value of the difference of distances to F1 and F2 is constant:

|dpX, F1q ´ dpX, F2q| “ const.

x

y

f´f
?

a

?
b

x

y

f´f
?

a

a

|b|

Figure 8. Ellipse, hyperbola, and their foci.

Ellipses and hyperbolas are conics and thus can be described by quadratic equations:

Proposition 5.1. Let a, b P R, a ą 0, b ‰ 0, and a ą b. Let

C :“
"

px, yq P R2
ˇ

ˇ

ˇ

ˇ

x2

a
`

y2

b
“ 1

*

and
F1 :“ p´f, 0q, F2 :“ pf, 0q, where f :“

?
a ´ b.

§ If b ą 0, then C is an ellipse with foci F1 and F1.

§ If b ă 0, then C is a hyperbola with foci F1 and F1.

Vice versa, every ellipse or hyperbola can be brought into this form by a Euclidean trans-
formation.

Proof. Exercise.

Definition 5.1. Two conics (two ellipses, two hyperbolas, or an ellipse and a hyperbola)
are called confocal if they have the same foci.
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Consider an ellipse or hyperbola in normal form

x2

a
`

y2

b
“ 1, a ą b.

Then its two foci lie symmetrically on the x-axis, and therefore, any confocal ellipse or
hyperbola must necessarily also be in normal form

x2

ã
`

y2

b̃
“ 1, ã ą b̃.

In particular this means that confocal conics have common principal axes. Now these two
conics in normal form are confocal, if and only if

a ´ b “ ã ´ b̃,

and we arrive at the following algebraic description of families of confocal conics:

Theorem 5.2. Let a ą b. The family of confocal conics with foci

F1 :“ p´f, 0q, F2 :“ pf, 0q, where f :“
?

a ´ b.

is given by
Cλ “

"

px, yq P R2
ˇ

ˇ

ˇ

ˇ

x2

a ` λ
`

y2

b ` λ
“ 1

*

, λ P R.

Remark 5.1. Note that the family Cλ (up to a shift of the parameter λ) only depends on
the difference a ´ b (and not independently on a, b).

Figure 9. Confocal ellipses and hyperbolas.

The family consists of ellipses and hyperbolas, each of these two subfamilies filling the
entire Euclidean plane, respectively.

§ Cλ is empty (or “purely imaginary”) for λ ă ´a.
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§ Cλ is a hyperbola for ´a ă λ ă ´b.

§ Cλ is an ellipse for λ ą ´b.

The cases λ “ ´a, ´b, can be considered as limiting cases:

§ CλÑ´a as the line on the y-axis (“degenerate hyperbola”).

§ CλÑ´b as the line on the x-axis. Or the line segment between the two foci (“degenerate
ellipse”) if λ Œ ´b, and the two rays outside the two foci (“degenerate hyperbola”) if
λ Õ ´b.

Note that for λ Õ `8 the ellipses become infinitely large.

Theorem 5.3. Through every point px, yq P R2 not on the coordinate axes (x ¨ y ‰ 0),
there passes exactly one ellipse and one hyperbola from the confocal family Cλ.

Proof. Given the point px, yq, and clearing the denominators, the confocal conic equation

x2

a ` λ
`

y2

b ` λ
“ 1

is a quadratic equation in λ. Its two roots u1, u2 are real and lie in the intervals

´a ă u1 ă ´b ă u2,

which becomes immediately evident from the qualitative behavior of the function

λ ÞÑ
x2

a ` λ
`

y2

b ` λ
.

Remark 5.2. The claim remains true for points on the coordinate axes if we include the
“degenerate ellipses” and “degenerate hyperbolas”.

Theorem 5.4. A confocal ellipse and hyperbola intersect in exactly 4 points, which lie
mirror symmetric with respect to the common principal axes.

Proof. Let ´a ă u1 ă ´b ă u2. Then

x2

a ` u1
`

y2

b ` u1
“ 1,

x2

a ` u2
`

y2

b ` u2
“ 1

(9)

is an inhomogeneous linear system of two equations in the variables px2, y2q. Its solution
is given by

x2
“

pa ` u1qpa ` u2q

a ´ b
,

y2
“

pb ` u1qpb ` u2q

b ´ a
.

(10)
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Since the right-hand side of both equations is positive, this yields 4 solutions for px, yq:

x “ ˘

?
a ` u1

?
a ` u2

?
a ´ b

,

y “ ˘

a

´pb ` u1q
?

b ` u2
?

a ´ b
.

Each solution is contained in one quadrant of R2, mirror symmetric with respect to the
coordinate axes.

Exercise 5.1. How to obtain the solution to the linear system (9)?

(i) The linear system (9) may be written as

A

ˆ

x2

y2

˙

“

ˆ

1
1

˙

, with A :“
ˆ

1
a`u1

1
b`u1

1
a`u2

1
b`u2

˙

Then we compute

det A “ 1
pa`u1qpb`u2q

´ 1
pa`u2qpb`u1q

“
pu1´u2qpa´bq

pa`u1qpa`u2qpb`u1qpb`u2q
,

A´1
“ 1

det A

ˆ

1
b`u2

´1
b`u1

´1
a`u2

1
a`u1

˙

“ 1
pu1´u2qpa´bq

´

pa`u1qpa`u2qpb`u1q ´pa`u1qpa`u2qpb`u2q

´pa`u1qpb`u1qpb`u2q pa`u2qpb`u1qpb`u2q

¯

and thus
ˆ

x2

y2

˙

“ A´1
ˆ

1
1

˙

“ 1
pu1´u2qpa´bq

´

pa`u1qpa`u2qppb`u1q´pb`u2qq

pb`u1qpb`u2qppa`u1q´pa`u1qq

¯

“ 1
a´b

´

pa`u1qpa`u2q

´pb`u1qpb`u2q

¯

.

(ii) Alternatively, define

gpλq :“ x2

a ` λ
`

y2

b ` λ
´ 1.

Then gpu1q “ gpu2q “ 0 and gpλqpa ` λqpb ` λq is a polynomial in λ of degree 2 of
which the highest order coefficient is -1. Thus,

gpλqpa ` λqpb ` λq “ ´pλ ´ u1qpλ ´ u2q,

or equivalently,

gpλq “
x2

a ` λ
`

y2

b ` λ
´ 1 “ ´

pλ ´ u1qpλ ´ u2q

pa ` λqpb ` λq
.

Evaluating the residues of g at ´a and ´b, we obtain

x2
“ resλ“´agpλq “

pa ` u1qpa ` u2q

a ´ b
,

y2
“ resλ“´bgpλq “

pb ` u1qpb ` u2q

b ´ a
.

Theorem 5.5. A confocal ellipse and hyperbola intersect orthogonally.
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Proof. Confocal conics are given by level sets of the function

fλpx, yq “
x2

a ` λ
`

y2

b ` λ
.

The gradient of fλ is given by

grad fλpx, yq “

ˆ

2x

a ` λ
,

2y

b ` λ

˙

.

Now let ´a ă u1 ă ´b ă u2, and px, yq P R2 one of the 4 points of intersection of the
corresponding hyperbola and ellipse, i.e. satisfying (9). Then

xgrad fu1px, yq, grad fu2px, yqy “

Bˆ

2x

a ` u1
,

2y

b ` u1

˙

,

ˆ

2x

a ` u2
,

2y

b ` u2

˙F

“ 2
ˆ

x2

pa ` u1qpa ` u2q
looooooooomooooooooon

“
(10)

a´b

`
y2

pb ` u1qpb ` u2q
looooooooomooooooooon

“
(10)

b´a

˙

“ 0

5.1 Confocal conics as dual pencils
By embedding R2 Ă RP2, we now look at a description of confocal conics in terms of
projective geometry (cf. Appendix A).

Homogenizing the equation for confocal conics

x2

a ` λ
`

y2

b ` λ
“ 1

by introducing homogeneous coordinates px1, x2, x3q with x “ x1
x3

, y “ x2
x3

we obtain

x2
1

a ` λ
`

x2
2

b ` λ
´ x2

3 “ 0.

Theorem 5.6. The family of confocal conics is a dual pencil of conics.

Proof. The Gram matrices of a confocal family of conics is given by

Qλ “

ˆ 1
a`λ

1
b`λ

´1

˙

,

and thus, the family of dual conics is given by

Q´1
λ “

´

a`λ
b`λ

´1

¯

,

which and corresponds to the family of equations

pa ` λqx̃2
1 ` pb ` λqx̃2

2 ´ x̃2
3 “ 0.
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Figure 10. A pencil of conics that dualizes to a confocal family of conics.

We now determine the three degenerate conics in this pencil of conics, and dually, in
the confocal family: The three corresponding roots of

det Q´1
λ “ ´pa ` λqpb ` λq “ 0

are given by λ “ ´a, ´b, 8.
§ λ “ ´a: The equation of the degenerate conic is given by

pa ´ bqx̃2
2 ` x̃2

3 “ 0.

Since a ´ b ą 0 these are two complex conjugate imaginary lines x̃3 “ ˘i
?

a ´ b x̃2, or
dually, two complex conjugate imaginary points,

G˘ “

” 0
˘i

?
a´b

1

ı

which lie on the y-axis, which is the minor principal axis of the confocal family.

§ λ “ ´b: The equation of the degenerate conic is given by

pa ´ bqx̃2
1 ´ x̃3

3 “ 0.

These are two real lines x3 “ ˘
?

a ´ b x1, or dually the two real points

F˘ “

”

˘
?

a´b
0
1

ı

.

They are the two foci of the confocal family, and lie on the x-axis, which is the major
principal axis.

§ λ “ 8: The equation of the degenerate conic is given by

x̃2
1 ` x̃2

2 “ 0.

These are two complex conjugate imaginary lines x1 “ ˘ix2, or dually two imaginary
points at infinity

Z˘ “

”

1
˘i
0

ı

.

These two points are also called the circle points of similarity geometry.
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Note that the degenerate dual conic consisting of the pair of circle points is independent
of the confocal family, and can be used to characterize confocal conics in the space of dual
pencils: Let

Z :“ Z` Y Z´

denote the degenerate dual conic consisting of the two circle points.

Theorem 5.7. A dual pencil of conics is a family of confocal conics (including confocal
parabolas and concentric circles) if and only if it contains the circle points Z (as a dual
degenerate conic).

As a final note, we sketch how to obtain the orthogonality of two intersecting confocal
conics (already proven in Theorem 5.5) in this projective setup:

Proposition 5.8. Two Euclidean lines ℓ1 and ℓ2 are orthogonal if and only if its two dual
points ℓ‹

1 and ℓ‹
1 are conjugate with respect to the degenerate conic Z‹.

Thus, the orthogonality of confocal conics is closely related to the corresponding dual
pencil containg the degenerate conic Z by dualizing the following statement:

Lemma 5.9. Let Cλ be a pencil of conics. Let ℓ be a common tangent line of two distinct
conics Cλ1 and Cλ2 from the pencil touching them in the points X1 and X2, respectively.
and let ℓ be a line tangent to two conics and in the points X1 and X2. Then X1 and X2
are conjugate with respect to every conic in the pencil.

Proof. Exercise.

Theorem 5.10. Two intersecting confocal conics intersect orthogonally.

Proof. The two tangents at a point of intersection dually correspond to the two touching
points of a common tangent. By Lemma 5.9, these two points are conjugate with respect
to every conic in the pencil, in particular, to the degenerate conic corresponding to the two
circle points Z. Thus, by Proposition 5.8, the two tangent lines intersect orthogonally.

5.2 Confocal coordinates
In Theorem 5.3 we have seen that every point px, yq P R2 with x ¨ y ‰ 0 is the intersection
of two confocal conics:

x2

a ` u1
`

y2

b ` u1
“ 1,

x2

a ` u2
`

y2

b ` u2
“ 1,

(11)

which are given by pu1, u2q P U , where

U :“ I1 ˆ I2 :“
␣

pu1, u2q P R2 ˇ

ˇ ´a ă u1 ă ´b ă u2
(

.

In Theorem 5.4 we have seen that (11) is equivalent to

x2
“

pa ` u1qpa ` u2q

a ´ b
,

y2
“

pb ` u1qpb ` u2q

b ´ a
.

(12)
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and thus, vice versa, for each pu1, u2q P U there are exactly 4 solutions px, yq P R2,
one in each quadrant of R2. This means, that one obtains a coordinate system in (or a
parametrization of) the first quadrant R2

` “ tpx, yq P R2 | x ą 0, y ą 0u by

U Ñ R2
`, pu1, u2q ÞÑ

ˆ

xpu1, u2q

ypu1, u2q

˙

,

$

’

’

&

’

’

%

xpu1, u2q “

?
a ` u1

?
a ` u2

?
a ´ b

ypu1, u2q “

a

´pb ` u1q
?

b ` u2
?

a ´ b

(13)

Figure 11. Confocal coordinate system in one quadrant using a “square root parametriza-
tion”.

More generally, any coordinate system, whose coordinate lines are contained in con-
focal conics is called a confocal coordinate system.

Definition 5.2. A coordinate system x : U Ñ R2 is called a confocal coordinate system
if its coordinate lines xps1 “ const, s2q and xps1, s2 “ constq are contained in confocal
conics.

Theorem 5.11. Confocal coordinate systems are orthogonal coordinate systems:

xB1x, B2xy “ 0.

Proof. Follows from Theorem 5.5.

Exercise 5.2. Show that the Lamé coefficients of (13) are given by

H2
1 “ }B1x}

2
“

u1 ´ u2

4pu1 ` aqpu1 ` bq
, H2

2 “ }B2x}
2

“
u2 ´ u1

4pu2 ` aqpu2 ` bq
,

and thus, in particular,

H2
1

H2
2

“ ´
α2pu2q

α1pu1q
, α1pu1q “ pu1 ` aqpu1 ` bq, α2pu2q “ pu2 ` aqpu2 ` bq.
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At least locally we can assume that

U “ I1 ˆ I2

with two intervals I1, I2 Ă R. Then x is a confocal coordinate system if there exist two
smooth functions

u1 : I1 Ñ I1, s1 ÞÑ u1ps1q,

u2 : I2 Ñ I2, s2 ÞÑ u2ps2q
(14)

such that (11), or equivalently, (12) is satisfied with px, yq “ xps1, s2q and u1 “ u1ps1q, u2 “ u2ps2q.
Thus, all confocal coordinates are essentially reparametrizations of the “square root
parametrization” (13) along the coordinate lines.

Note that the operation of reparametrization does not have a simple counterpart in
the discrete context. The following reformulation turns out to be more convenient for
finding certain confocal coordinates, and plays an important role in the discretization.

Exercise 5.3. How do the Lamé coefficients change under reparametrization? Derive
differential equations for the functions uipsiq such that H2

1 ps1q

H2
2 ps2q

“ 1. Compare the result
with Exercise 5.4.

Theorem 5.12. Let

x : R2
Ą I1 ˆ I2 Ñ R2, xps1, s2q “

ˆ

xps1, s2q

yps1, s2q

˙

be a coordinate system. Then x is a confocal coordinate system if and only if there exist
functions

f1, g1 : I1 Ñ R, f2, g2 : I2 Ñ R

with
f1ps1q

2
` g1ps1q

2
“ a ´ b,

f2ps2q
2

´ g2ps2q
2

“ a ´ b
(15)

such that
$

’

’

&

’

’

%

xps1, s2q “
f1ps1qf2ps2q

?
a ´ b

yps1, s2q “
g1ps1qg2ps2q

?
a ´ b

(16)

Proof. Let x be a confocal coordinate system. Then there exist functions u1, u2 as in
(14), and we can define the functions f1, f2, g1, g2 by

f1ps1q “
a

a ` u1ps1q, f2ps2q “
a

a ` u2ps2q,

g1ps1q “
a

´pb ` u1ps1q, g2ps2q “
a

b ` u2ps2q.

Then (15) and (16) are satisfied.
Now assume there exist functions f1, f2, g1, g2 satisfying (15) and (16). Equations (15)

are the compatibility conditions for the system

u1ps1q “ f1ps1q
2

´ a, u2ps2q “ f2ps2q
2

´ a,

u1ps1q “ ´g1ps1q
2

´ b, u2ps2q “ g2ps2q
2

´ b,
(17)

Thus, u1, u2 can be consistently defined satisfying (17). Then (11), or equivalently, (12)
is satisfied.
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Thus, finding confocal coordinates reduces to solving the two equation (15). A distin-
guished solution is given by

f1ps1q “
?

a ´ b cos s1, f2ps2q “
?

a ´ b cosh s2,

g1ps1q “
?

a ´ b sin s1, g2ps2q “
?

a ´ b sinh s2,

leading to the confocal coordinate system
#

xps1, s2q “
?

a ´ b cos s1 cosh s2

yps1, s2q “
?

a ´ b sin s1 sinh s2
(18)

which is naturally periodic in s1 and covers the entire plane R2.

Exercise 5.4. Show that the Lamé coefficients of (18) are equal.

Remark 5.3. Essentially the same confocal coordinate system is obtained by considering
the coordinate lines of the holomorphic functions C Ñ C, z ÞÑ cos z, or z ÞÑ sin z.

y

x

Figure 12. Confocal coordinate system using a ”trigonometric functions parametrization”.

Some more confocal coordinate systems are shown in Figures 13, 14, 15.
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y

x

Figure 13. Confocal coordinate system, diagonally related to two families of straight lines
tangent to an ellipse.

y

x

Figure 14. Confocal coordinate system, diagonally related to two families of concentric
circles.
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y

x

Figure 15. Confocal coordinate system, diagonally related to vertical lines and a hyper-
bolic pencil of circles.

In (16) we see that each component of a confocal coordinate system factorizes into the
product of functions that each only depends on one of the variable.2 Geometrically this
means, that any two coordinate lines of the same family are related by an affine scaling
along the coordinate axes. It turns out, that this property together with the orthogonality
characterizes confocal coordinate systems.

Theorem 5.13. Let

x : R2
Ą I1 ˆ I2 Ñ R2, xps1, s2q “

ˆ

xps1, s2q

yps1, s2q

˙

be a coordinate system that satisfies the following two conditions:

(i) x factorizes:
#

xps1, s2q “ f1ps1qf2ps2q

yps1, s2q “ g1ps1qg2ps2q

with some smooth functions f1, g1 : I1 Ñ R, f2, g2 : I2 Ñ R that do not vanish:3

f1ps1q ‰ 0, g1ps1q ‰ 0 for any s1 P I1

f2ps2q ‰ 0, g2ps2q ‰ 0 for any s2 P I2
(19)

and whose derivatives do not constantly vanish:4

f 1
1 ‰ 0, g1

1 ‰ 0, f 1
2 ‰ 0, g1

2 ‰ 0 (20)
2This can also be expressed by B1B2 log x “ 0.
3By this, we consider the coordinate system away from the axes.
4By this, we exclude the case of coordinate lines that are parallel to the axes, which only leads to

square grid parametrizations.
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(ii) x is orthogonal:
xB1x, B2xy “ 0. (21)

Then x is a confocal coordinate system, or, as a degenerate case, a polar coordinate
system.

Remark 5.4. Note that the functions f1, f2, g1, g2 are only equal to the ones in Theo-
rem 5.12 up to a factor each.

For the proof it is be more convenient to consider the squares of all involved functions.
To this end, we introduce

F1ps1q :“ f1ps1q
2, G1ps1q :“ g1ps1q

2, F2ps2q :“ f2ps2q
2, G2ps2q :“ g2ps2q

2.

With this we have
#

x2
“ F1F2

y2
“ G1G2.

The conditions (19) and (20) become

F1ps1q ‰ 0, G1ps1q ‰ 0 for any s1 P I1

F2ps2q ‰ 0, G2ps2q ‰ 0 for any s2 P I2

and
F 1

1 ‰ 0, G1
1 ‰ 0, F 1

2 ‰ 0, G1
2 ‰ 0

For the orthogonality condition (21) we obtain

xB1x, B2xy “ 0
ô f 1

1f2f1f
1
2 ` g1

1g2g1g
1
2 “ 0

ô F 1
1F

1
2 ` G1

1G
1
2 “ 0. (22)

To show that x is a confocal coordinate system we need to show the existence of
functions u1 and u2 such that (11) holds, or equivalently,

F1F2

ã1ps1q
`

G1G2

b̃1ps1q
“ 1,

F1F2

ã2ps2q
`

G1G2

b̃2ps2q
“ 1,

(23)

with functions ã1, b̃1, ã2, b̃2 such that

ã1 ´ b̃1 “ ã2 ´ b̃2 “ const ‰ 0.

Proof.

§ The orthogonality condition as orthogonality of two curves
The orthogonality condition (22) says that the tangent vectors of two planar curves

γ1ps1q :“
´

F1ps1q

G1ps1q

¯

, γ2ps2q :“
´

F2ps2q

G2ps2q

¯

are always orthogonal:

xγ1
1ps1q, γ1

2ps2qy “ 0 for all s1 P I1, s2 P I2.
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Since γ1
1 and γ1

2 have no constantly vanishing components, this implies that both curves
γ1 and γ2 must lie on straight lines:

γ1ps1q “ α1ps1qv1 ` w1, γ2ps2q “ α2ps2qv2 ` w2,

with some constant vectors v1 “

´

v1
1

v2
1

¯

, w1 “

´

w1
1

w2
1

¯

, v2 “

´

v1
2

v2
2

¯

, w2 “

´

w1
2

w2
2

¯

P R3 with

xv1, v2y “ 0, v1
1, v2

1, v1
2, v2

2 ‰ 0

(in particular v1 ‰ 0, v2 ‰ 0) and two functions α1, α2.

§ The case of polar coordinates
We now have

x2
` y2

“ F1G1 ` F2G2

“ xγ1ps1q, γ2ps2qy

“ α1ps1q xv1, w2y ` α2ps2q xv2, w1y ` xw1, w2y .

(24)

If xv1, w2y “ 0, this implies that the coordinate lines s2 “ const are circles, and
therefore, the coordinate lines s1 “ const must be lines through the origin. In this
case, we obtain polar coordinates. Similarly for xv2, w1y “ 0.
Thus, let xv1, w2y ‰ 0 and xv2, w1y ‰ 0. In particular, this means that w1 ‰ 0, w2 ‰ 0.

§ The conic equations
Aiming for (23) we attempt to construct a quadratic equation from

xv1, γ2ps2qy “ xv1, α2ps2qv2 ` w2y “ xv1, w2y

Using F1ps1q ‰ 0 and G1ps1q ‰ 0 we obtain

xv1, w2y “ v1
1F2 ` v2

1G2

“
v1

1
F1

F1F2 `
v2

1
G1

G1G2

“
v1

1
α1v1

1 ` w1
1
F1F2 `

v2
1

α1v2
1 ` w2

1
G1G2,

or equivalently (using xv1, w2y , v1
1, v2

1 ‰ 0)

F1F2

ã1ps1q
`

G1G2

b̃1ps1q
“ 1

with

ã1ps1q “ xv1, w2y

ˆ

α1ps1q `
w1

1
v1

1

˙

, b̃1ps1q “ xv1, w2y

ˆ

α1ps1q `
w2

1
v2

1

˙

.

One similarly obtains
F1F2

ã2ps2q
`

G1G2

b̃2ps2q
“ 1

with

ã2ps2q “ xv2, w1y

ˆ

α2ps2q `
w1

2
v1

2

˙

, b̃2ps2q “ xv2, w1y

ˆ

α2ps2q `
w2

2
v2

2

˙

.
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§ The confocality
The differences

ã1ps1q ´ b̃1ps1q “ xv1, w2y

ˆ

w1
1

v1
1

´
w2

1
v2

1

˙

“
xv1, w2y detpw1, v1q

v1
1v2

1

and
ã2ps2q ´ b̃2ps2q “ xv2, w1y

ˆ

w1
2

v1
2

´
w2

2
v2

2

˙

“
xv2, w1y detpw2, v2q

v1
2v2

2

are constant (do not depend on s1 and s2).
To see that ã1 ´ b̃1 “ ã2 ´ b̃2, choose (w.l.o.g.) v1, v2, w1, w2 such that

}v1} “ }v2} “ 1, w1 “ λ1v2, w2 “ λ2v1 (25)

with some λ1, λ2 ‰ 0 and use

xv1, v2y “ v1
1v1

2 ` v2
1v2

2 “ 0.

Furthermore, ã1 ´ b̃1 ‰ 0 since xv1, w2y ‰ 0 and detpw1, v1q ‰ 0, and similarly
ã2 ´ b̃2 ‰ 0.

Exercise 5.5. Show that the choice (25) is indeed possible, and use this to show ã1 ´ b̃1 “

ã2 ´ b̃2.

Remark 5.5. The orthogonality condition (22) may be written as

B1B2
`

x2
` y2˘

“ B1B2 pF1F2 ` G1G2q “ 0,

which is equivalent to (cf. (24))

x2
` y2

“ A1ps1q ` A2ps2q

with some functions A1, A2. In the “square root parametrization” (13), or more generally
using the functions u1 and u2 defined in (14), one obtains

x2
` y2

“ u1ps1q ` u2ps2q ` a ` b.

Thus, the curves
u1ps1q ` u2ps2q “ const

are circles (see Figure 16).

Exercise 5.6. Prove all claims in Remark 5.5.
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y

x

Figure 16. The confocal coordinate system with “square root parametrization” is diago-
nally related to concentric circles with center in the origin.
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6 Confocal quadrics
We now consider confocal quadrics in R3.

Proposition 6.1. Any ellipsoid, one-sheeted hyperboloid, or two-sheeted hyperboloid in
R3 (which we collectively call non-parabolic non-degenerate quadric) can be brought into
the following form by a Euclidean transformation:

Q “

"

px, y, zq P R3
ˇ

ˇ

ˇ

ˇ

x2

a
`

y2

b
`

z2

c
“ 1

*

with some a ą 0, b, c ‰ 0, a ą b ą c.

§ If a, b, c ą 0, then Q is an ellipsoid.

§ If a, b ą 0, c ă 0, then Q is a one-sheeted hyperboloid.

§ If a ą 0, b, c ă 0, then Q is a two-sheeted hyperboloid.

Definition 6.1. Two quadrics (non-degenerate and non-parabolic) are called confocal if
they have the same principal planes, and the two conic sections in each of these principal
planes are confocal.

Consider a non-parabolic non-degenerate quadric in normal form

x2

a
`

y2

b
`

z2

c
“ 1, a ą b ą c.

Then any confocal quadric must necessarily also be in normal form

x2

ã
`

y2

b̃
`

z2

c̃
“ 1, ã ą b̃ ą c̃.

Now these two quadrics in normal form are confocal, if and only if

a ´ b “ ã ´ b̃, a ´ c “ ã ´ c̃,

and therefore, also
b ´ c “ b̃ ´ c̃.

Theorem 6.2. By a Euclidean transformation, any family of confocal quadrics can be
brought into the form:

Qλ “

"

px, y, zq P R3
ˇ

ˇ

ˇ

ˇ

x2

a ` λ
`

y2

b ` λ
`

z2

c ` λ
“ 1

*

, λ P R. (26)

with some a ą b ą c.

Remark 6.1. Note that the family Qλ (up to a shift of the parameter λ) only depends on
two of the differences, say a ´ b and a ´ c (and not independently on a, b and c).
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Figure 17. A confocal ellipsoid, one-sheeted hyperboloid, and two-sheeted hyperboloid.

The family consists of ellipsoids, one-sheeted hyperboloids, and two-sheeted hyper-
boloids each of these three subfamilies filling the entire Euclidean space, respectively.

§ Qλ is empty (or “purely imaginary”) for λ ă ´a.

§ Qλ is a two-sheeted hyperboloid for ´a ă λ ă ´b.

§ Qλ is a one-sheeted hyperboloid for ´b ă λ ă ´c.

§ Qλ is an ellipsoid for λ ą ´c.

The cases λ “ ´a, ´b, ´c can be considered as limiting cases, which we study in more
detail in the projective description of the family as a dual pencil of quadrics.

Theorem 6.3. Through every point px, y, zq P R3 not on the coordinate planes (x ¨ y ¨ z ‰ 0),
there passes exactly one ellipsoid, one one-sheeted hyperboloid, and one two-sheeted hy-
perboloid from the confocal family Qλ.

Proof. Exercise (similar to Theorem 5.3).

Theorem 6.4. A confocal ellipsoid, one-sheeted hyperboloid, and two-sheeted hyperboloid
intersect in exactly 8 points, which lie mirror symmetric with respect to the common
principal planes.

Proof. Exercise (similar to Theorem 5.4).

Theorem 6.5. If two confocal quadrics intersect, they intersect orthogonally.

Proof. Exercise (similar to Theorem 5.5).

6.1 Confocal quadrics as dual pencils
By embedding R3 Ă RP3, we look at the projective description of confocal quadrics.
Homogenizing the equation for confocal quadrics

x2

a ` λ
`

y2

b ` λ
`

z2

c ` λ
“ 1
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by introducing homogeneous coordinates px1, x2, x3, x4q with x “ x1
x4

, y “ x2
x4

, z “ x3
x4

, we
obtain

x2
1

a ` λ
`

x2
2

b ` λ
`

x2
3

c ` λ
´ x2

4 “ 0.

Thus, the corresponding Gram matrix and its inverse are given by

Qλ “

¨

˝

1
a`λ

1
b`λ

1
c`λ

´1

˛

‚, Q´1
λ “

ˆ

a`λ
b`λ

c`λ
´1

˙

,

and it holds again:

Theorem 6.6. The family of confocal quadrics is a dual pencil of quadrics.

We now determine the four degenerate quadrics in this pencil of quadrics, and dually,
in the confocal family: The four corresponding roots of

det Q´1
λ “ ´pa ` λqpb ` λqpc ` λq “ 0

are given by λ “ ´a, ´b, ´c, 8.

§ λ “ ´a: The equation of the degenerate quadric is given by

pa ´ bqx̃2
2 ` pa ´ cqx̃2

3 ` x2
4 “ 0.

Since a ´ b ą 0 and a ´ c ą 0 this is a imaginary cone with real vertex r1, 0, 0, 0s, or
dually (and in affine coordinates), an imaginary conic in the principal plane x “ 0:

y2

a ´ b
`

z2

a ´ c
` 1 “ 0, x “ 0.

§ λ “ ´b: The equation of the degenerate quadric is given by

pa ´ bqx̃2
1 ´ pb ´ cqx̃2

3 ´ x2
4 “ 0.

This is a cone with vertex r0, 1, 0, 0s, or dually (and in affine coordinates), a hyperbola
in the principal plane y “ 0:

x2

a ´ b
´

z2

b ´ c
“ 1, y “ 0. (27)

§ λ “ ´c: The equation of the degenerate quadric is given by

pa ´ cqx̃2
1 ` pb ´ cqx̃2

2 ´ x2
4 “ 0.

This is a cone with vertex r0, 0, 1, 0s, or dually (and in affine coordinates), an ellipse
in the principal plane z “ 0:

x2

a ´ c
`

y2

b ´ c
“ 1, z “ 0. (28)
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§ λ “ 8: The equation of the degenerate quadric is given by

x̃2
1 ` x̃2

2 ` x̃2
3 “ 0.

This is an imaginary cone with real vertex r0, 0, 0, 1s, or dually, an imaginary conic in
the plane at infinity:

x1
1 ` x2

2 ` x2
3 “ 0, x4 “ 0.

This is also called the absolute conic Z of similarity geometry, which does not depend
on the confocal family.

Theorem 6.7. A dual pencil of quadric is a family of confocal quadrics (including limiting
cases such as concentric spheres) if and only if it contains the absolute conic Z (as a dual
degenerate quadric).

Remark 6.2. The projective description of confocal quadrics can be used exactly as in
the two-dimensional case (Theorem 5.10) to show that two confocal quadrics intersect
orthogonally (Theorem 6.5).

6.2 Focal conics
In the projective description of confocal conics, the common foci, which are located on
the major axis, appeared as a degenerate conic in the dual pencil of conics. Thus, by
comparison, we can say that in the three-dimensional case, the role of the foci is taken by
the two real conics (28) and (27), which are located in two of the principal planes.
Remark 6.3. In the two-dimensional case the other pair of imaginary points on the minor
axis may be understood as a second pair of foci, while in the three-dimensional case the
imaginary conic in the remaining principal plane may be understood as a third focal conic.

A closer look reveals, that that two conics (28) and (27) are located in orthogonal
planes while containing each others foci, respectively.

Definition 6.2. Two (planar) conics C1 and C2 in R3 are called focal conics if the two
planes which contain them are orthogonal, the foci of C1 lie on C2, and the foci of C2 lie
on C1.

Figure 18. Two focal conics.
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Theorem 6.8. Two conics
x2

a
`

y2

b
“ 1, a ą b

x2

ã
`

z2

b̃
“ 1, ã ą b̃

in normal form in the xy-plane and xz-plane are focal conics if and only if

ã “ a ´ b, b̃ “ ´b.

Proof. Exercise.

Proposition 6.9. Let C1, C2 be a pair of focal conics in R3. Then C2 consists of all vertices
of right circular cones (cones of revolution) that contain C1, and vice versa, C1 consists of
all vertices of right circular cones that contain C2.

Remark 6.4.
(i) This means that from a point on C2 the conic C1 looks like a circle.

(ii) Moreover, it holds that the axis of the cone is the tangent of the focal conic in its
vertex.

For the proof we recall the definition of Dandelin spheres. All ellipses and hyperbolas
arise as planar sections of right circular cones. Let R be a right circular cone and P a
plane that is not parallel to a tangent plane of R and does not contain the vertex of R.
Then the intersection C :“ R X P is an ellipse or hyperbola, The two spheres that touch
R in a circle and P in a point are called Dandelin spheres.

Figure 19. Dandelin spheres of an ellipse cut from a right circular cone.

Proposition 6.10. The two Dandelin spheres touch the conic in its two foci.

Proof. We consider the case where C is an ellipse. Let F1 and F2 be the two touching
points of the Dandelin spheres, and C1 and C2 the two touching circles of the cone R.
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Consider a point X P C and the (straight line) generator ℓ of the cone passing through X.
Let X1 “ ℓ X C1 and X2 “ ℓ X C2 be the intersection points with the touching circles.

Since all touching segments to a sphere from a point have equal lengths, we obtain
that

dpX, F1q ` dpX, F2q “ dpX, X1q ` dpX, X2q “ dpX1, X2q

is constant for all points on C. Thus C is an ellipse with foci F1 and F2.

Exercise 6.1. Prove the case where C is a hyperbola.

Figure 20. Right circular cone containing an ellipse. Its vertex is located on the focal
conic.

Partial proof of Proposition 6.9. Let C1 be an ellipse with points A, B on the principal
axis and foci E, F (see Figure 20). Let R be a right circular cone with vertex S that
contains C1. We only show that S is contained in the focal conic C2.

For symmetry reasons S must lie in the plane that contains C2. Consider the Dandelin
sphere that touches the plane that contains C1 in the point F . Let A1, B1 be the two
touching points of the Dandelin sphere with the cone R in the plane that contains C2.
Then

dpA, Sq “ dpA, A1q ` dpA1, Sq “ dpA, F q ` dpB1, Sq

dpB, Sq “ dpB, B1q ` dpB1, Sq “ dpB, F q ` dpB1, Sq,

and therefore

dpA, Sq ´ dpB, Sq “ dpA, F q ´ dpB, F q “ dpE, F q “ const,

which describes a hyperbola with foci A, B which contains the points E, F .

Exercise 6.2. Complete the proof in the reverse direction, and for the case where the
circular cones contain the hyperbola.

Definition 6.3. Let Q be a (non-degenerate non-parabolic) quadric in R3. Then the pair
of focal conics in the family of confocal quadrics of Q is called the focal conics of Q.

Proposition 6.11. A tangent cone from any point of a focal conic to its quadric is a
right circular cone (if it exists).
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Idea of the proof. The family of tangent cones from a fixed point to a dual pencil of
quadrics is a (degenerate) dual pencil of quadrics. It contains one of the focal conics (and
thus a right circular cone) and the absolute conic Z at infinity. Thus, the entire family
consists of (coaxial) right circular cones.

Remark 6.5. By also considering imaginary (right circular) tangent cones, the focal conics
of a quadric consist of exactly all vertices of right circular tangent cones to the quadric.
Remark 6.6. The focal conics allow for a “string construction” of ellipsoids, generalizing
the property (8) of ellipses (see Figure 21).

Figure 21. String construction of an ellipsoid from a pair of focal conics.

6.3 Confocal coordinates
In Theorem 6.3 we have seen that every point px, y, zq P R3 with x ¨ y ¨ z ‰ 0 is the
intersection of three confocal quadrics:

x2

a ` u1
`

y2

b ` u1
`

z2

b ` u1
“ 1,

x2

a ` u2
`

y2

b ` u2
`

z2

b ` u2
“ 1,

x2

a ` u3
`

y2

b ` u3
`

z2

b ` u3
“ 1,

(29)

which are given by pu1, u2, u3q P U , where

U :“ I1 ˆ I2 ˆ I3 :“
␣

pu1, u2, u3q P R3 ˇ

ˇ ´a ă u1 ă ´b ă u2 ă ´c ă u3
(

.

In Theorem 6.4, we have seen that, vice versa, for each pu1, u2, u3q P U there are exactly
8 solutions px, y, zq P R3, one in each octant of R3, and mirror symmetric with respect to
the coordinate planes. This, is evident from the fact that the solution of the linear system
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(11) is given by

x2
“

pa ` u1qpa ` u2qpa ` u3q

pa ´ bqpa ´ cq
,

y2
“

pb ` u1qpb ` u2qpb ` u3q

pb ´ aqpb ´ cq
,

z2
“

pc ` u1qpc ` u2qpc ` u3q

pc ´ aqpc ´ bq
.

(30)

This means, that one obtains a coordinate system in (or a parametrization of) the first
octant R3

` “ tpx, y, zq P R3 | x ą 0, y ą 0, z ą 0u by

U Ñ R3
`, pu1, u2, u3q ÞÑ

¨

˝

xpu1, u2, u3q

ypu1, u2, u3q

zpu1, u2, u3q

˛

‚,

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

xpu1, u2, u3q “

?
a ` u1

?
a ` u2

?
a ` u3

?
a ´ b

?
a ´ c

ypu1, u2, u3q “

a

´pb ` u1q
?

b ` u2
?

b ` u3
?

a ´ b
?

b ´ c

zpu1, u2, u3q “

a

´pc ` u1q
a

´pc ` u3q
?

c ` u3
?

a ´ c
?

b ´ c

(31)

Figure 22. Three quadrics and some parameter lines from a confocal coordinate system
in one octant using a “square root parametrization”, and then reflected to all octants.

Definition 6.4. A coordinate system x : U Ñ R3 is called a confocal coordinate system if
its coordinate planes xps1 “ const, s2, s3q, xps1, s2 “ const, s3q, and xps1, s2, s3 “ constq
are contained in confocal quadrics.

Theorem 6.12. Confocal coordinate systems are orthogonal coordinate systems:

xBix, Bjxy “ 0 for all i “ 1, 2, 3, i ‰ j.

Proof. Exercise (follows from Theorem 6.5).
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Remark 6.7. By Theorem 1.1, confocal quadrics intersect each other in curvature lines.
Thus, every confocal coordinate system also yields curvature line parametrizations of the
quadrics it contains as coordinate surfaces.

Exercise 6.3. Show that (31) satisfies the Euler-Poisson-Darboux system

BiBjx “
1

2pui ´ ujq
pBjx ´ Bixq .

Start by showing that the partial derivatives of the x (and similarly y and z) satisfy

Bix “
x

2pa ` uiq
.

Exercise 6.4. Show that the Lamé coefficients of (31) are given by

H2
1 “

pu1 ´ u2qpu1 ´ u3q

4pu1 ` aqpu1 ` bqpu1 ` cq
, H2

2 “
pu2 ´ u3qpu2 ´ u1q

4pu2 ` aqpu2 ` bqpu2 ` cq
,

H2
3 “

pu3 ´ u1qpu3 ´ u2q

4pu3 ` aqpu3 ` bqpu3 ` cq
,

and thus, in particular,

H2
i

H2
j

“ ´
αjkpuj, ukq

αikpui, ukq
, αlmpul, umq “

pul ` aqpul ` bqpul ` cq

pul ´ umq
.

Conclude that quadrics are isothermic surfaces (see Defintion 3.4 and Exercise 3.1).

Exercise 6.5. Show that the coefficients of the second fundamental forms of the coordi-
nate surfaces (see Section 3.1) of (31), are given by

eij “
1

Hk

ui ´ uj

4pui ` aqpui ` bqpui ` cq
, gij “

1
Hk

uj ´ ui

4puj ` aqpuj ` bqpuj ` cq
,

and thus, in particular,

eij

gij

“ ´
βjpujq

βipuiq
, βipuiq “ pui ` aqpui ` bqpui ` cq.

The principal curvatures of the coordinate surfaces are given by eij

Eij
, gij

Gij
. Show that the

principal curvatures coincide if and only if ui “ uJ , and conclude that the umbilic points
of quadrics are the intersection points with its focal conics.

At least locally we can assume that

U “ I1 ˆ I2 ˆ I3

with three intervals I1, I2, I3 Ă R. Then x is a confocal coordinate system if there exist
three smooth functions

u1 : I1 Ñ I1, s1 ÞÑ u1ps1q,

u2 : I2 Ñ I2, s2 ÞÑ u2ps2q,

u3 : I3 Ñ I3, s3 ÞÑ u3ps3q,

such that (29), or equivalently, (30) is satisfied with px, y, zq “ xps1, s2, s3q and u1 “ u1ps1q,
u2 “ u2ps2q, u3 “ u3ps3q.

45



Exercise 6.6. How do the coefficients of the second fundamental form change under
reparametrization along the coordinate lines? Derive differential equations for the func-
tions uipsiq such that

e12

g12
“ 1,

e13

g13
“ ´1,

e23

g23
“ 1.

Theorem 6.13. Let

x : R3
Ą I1 ˆ I2 ˆ I3 Ñ R3, xps1, s2, s3q “

¨

˝

xps1, s2, s3q

yps1, s2, s3q

zps1, s2, s3q

˛

‚

be a coordinate system. Then x is a confocal coordinate system if and only if there exist
functions

f1, g1, h1 : I1 Ñ R, f2, g2, h2 : I2 Ñ R, f3, g3, h3 : I3 Ñ R

with
f1ps1q

2
` g1ps1q

2
“ a ´ b, f1ps1q

2
` h1ps1q

2
“ a ´ c,

f2ps2q
2

´ g2ps2q
2

“ a ´ b, f2ps2q
2

` h2ps2q
2

“ a ´ c,

f3ps3q
2

´ g3ps3q
2

“ a ´ b, f3ps3q
2

´ h3ps3q
2

“ a ´ c,

(32)

such that
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

xps1, s2, s3q “
f1ps1qf2ps2qf3ps3q

?
a ´ b

?
a ´ c

yps1, s2, s3q “
g1ps1qg2ps2qg3ps3q

?
a ´ b

?
b ´ c

zps1, s2, s3q “
h1ps1qh2ps2qh3ps3q

?
a ´ c

?
b ´ c

(33)

Proof. Exercise (similar to Theorem 5.12). Note the fundamental relations

u1ps1q “ f1ps1q
2

´ a, u2ps2q “ f2ps2q
2

´ a, u3ps3q “ f3ps3q
2

´ a,

u1ps1q “ ´g1ps1q
2

´ b, u2ps2q “ g2ps2q
2

´ b, u3ps3q “ g3ps3q
2

´ b,

u1ps1q “ ´h1ps1q
2

´ c, u2ps2q “ h2ps2q
2

´ c, u3ps3q “ h3ps3q
2

´ c.

Thus, finding confocal coordinates reduces to solving the three pairs of quadratic
equations (32). A distinguished solution is given in terms of Jacboi elliptic functions (see
Appendix B.2):

f1ps1q “
?

a ´ b snps1, k1q, f2ps2q “
?

b ´ c
dnps2, k2q

k2
, f3ps3q “

?
a ´ c

1
snps3, k3q

g1ps1q “
?

a ´ b cnps1, k1q, g2ps2q “
?

b ´ c cnps2, k2q, g3ps3q “
?

a ´ c
dnps3, k3q

snps3, k3q

h1ps1q “
?

a ´ b
dnps1, k1q

k1
, h2ps2q “

?
b ´ c snps2, k2q, h3ps3q “

?
a ´ c

cnps3, k3q

snps3, k3q

(34)
with moduli 0 ă ki ă 1, i “ 1, 2, 3:

k2
1 “

a ´ b

a ´ c
, k2

2 “ 1 ´ k2
1 “

b ´ c

a ´ c
, k3 “ k1,
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The associated confocal coordinate system
$

’

&

’

%

xps1, s2, s3q “
?

a ´ c snps1, k1q dnps2, k2q nsps3, k3q

yps1, s2, s3q “
?

a ´ c cnps1, k1q cnps2, k2q dsps3, k3q

zps1, s2, s3q “
?

a ´ c dnps1, k1q snps2, k2q csps3, k3q

is naturally periodic in s1 and s2, and covers the entire space R3.

Figure 23. Three quadrics and some parameter lines from a confocal coordinate system
using a “Jacobi elliptic functions parametrization”.

Theorem 6.14. Let

x : R3
Ą I1 ˆ I2 ˆ I3 Ñ R3, xps1, s2, s3q “

¨

˝

xps1, s2, s3q

yps1, s2, s3q

zps1, s2, s3q

˛

‚

be a coordinate system that satisfies the following two conditions:

(i) x factorizes:
$

’

&

’

%

xps1, s2, s3q “ f1ps1qf2ps2qf3ps3q

yps1, s2, s3q “ g1ps1qg2ps2qg3ps3q

zps1, s2, s3q “ h1ps1qh2ps2qh3ps3q

with some smooth functions fi, gi, hi : Ii Ñ R, i “ 1, 2, 3 that do not vanish:5

fipsiq ‰ 0, gipsiq ‰ 0, hipsiq ‰ 0 for all si P Ii, i “ 1, 2, 3 (35)

and whose derivatives do not constantly vanish:6

f 1
i ‰ 0, g1

i ‰ 0, h1
i ‰ 0, for all i “ 1, 2, 3 (36)

(ii) x is orthogonal:

xBix, Bjxy “ 0 for all i, j “ 1, 2, 3 i ‰ j (37)
5By this, we consider the coordinate system away from the coordinate planes.
6By this, we exclude the case of coordinate surfaces that are contained in planes, which leads to square

grid and cylindrical coordinates.
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Then x is a confocal coordinate system (including degenerate cases in which two or three
of the semi-axes coincide).

Again for the proof, we introduce the squares

Fi :“ f 2
i , Gi :“ g2

i , Hi :“ h2
i , for i “ 1, 2, 3.

With this we have
$

’

&

’

%

x2
“ F1F2F3

y2
“ G1G2G3

z2
“ H1H2H3

The conditions (35) and (36) become

Fipsiq ‰ 0, Gipsiq ‰ 0, Hipsiq ‰ 0 for all si P Ii, i “ 1, 2, 3

and
F 1

i ‰ 0, G1
i ‰ 0, H 1

i ‰ 0 for alli “ 1, 2, 3.

For the orthogonality conditions (37) we obtain

F 1
1F

1
2F3 ` G1

1G
1
2G3 ` H 1

1H
1
2H3 “ 0,

F1F
1
2F

1
3 ` G1G

1
2G

1
3 ` H1H

1
2H

1
3 “ 0,

F 1
1F2F

1
3 ` G1

1G2G
1
3 ` H 1

1H2H
1
3 “ 0.

(38)

To show that x is a confocal coordinate system we show that three equations

F1F2F3

ãipsiq
`

G1G2G3

b̃ipsiq
`

H1H2H3

c̃ipsiq
“ 1, for i “ 1, 2, 3 (39)

hold with some functions ãi, b̃i, c̃i, which satisfy

ãi ´ b̃i “ ãj ´ b̃j “ const ‰ 0,

ãi ´ c̃i “ ãj ´ c̃j “ const ‰ 0.

for i, j “ 1, 2, 3, i ‰ j.

Proof.

§ The orthogonality condition as orthogonality of curves and surfaces
Introducing the three curves

γipsiq :“
ˆ

Fipsiq

Gipsiq

Hipsiq

˙

, for i “ 1, 2, 3

and the three surfaces

Γipsj, skq :“
ˆ

FjpsjqFkpskq

GjpsjqGkpskq

HjpsjqHkpskq

˙

, for pijkq cyclic permutation of p123q

the orthogonality conditions (38) can be written as

xγ1
i, BjΓiy “ 0 for i, j “ 1, 2, 3, i ‰ j.
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By Lemma 6.15 the two tangent vectors BjΓi, BkΓi of the surface Γi are linearly inde-
pendent, and thus, γi must lie on a line (while Γi must lie in a plane):

γipsiq “ αipsiqvi ` wi

with some constant vectors vi “

ˆ

v1
i

v2
i

v3
i

˙

, wi “

ˆ

w1
i

w2
i

w3
i

˙

P R3 with

v1
i , v2

i , v3
i ‰ 0

and non-constant functions αi : Ii Ñ R.
By Lemma 6.16 (40), the vectors vi, wi satisfy the following additional conditions:7

xv1, v2, v3y “ xv1, v2, w3y “ xv1, w2, v3y “ xw1, v2, v3y “ 0,

where x¨, ¨, ¨y denotes the trilinear form
Bˆ

v1
1

v2
1

v3
1

˙

,

ˆ

v1
2

v2
2

v3
2

˙

,

ˆ

v1
3

v2
3

v3
3

˙F

“ v1
1v1

2v1
3 ` v2

1v2
2v2

3 ` v3
1v3

2v3
3.

on R3.

§ The degenerate cases
As the reader may verify during the following of the proof, the cases in which one
or two of the constants xvi, wj, wky vanish lead to the degenerate cases of confocal
coordinates in which two or three of the semi-axis coincide. We exclude these cases
from our investigation and only focus on the non-degenerate cases. Thus, we assume

xv1, w2, w3y ‰ 0, xw1, v2, w3y ‰ 0, xw1, w2, v3y ‰ 0.

§ The quadric equations
Aiming for (39) we attempt to construct a quadratic equation from

xv1, Γ1y “ xv1, γ2, γ3y “ xv1, α2v2 ` w2, α3v3 ` w3y “ xv1, w2, w3y

Using F1ps1q ‰ 0, G1ps1q ‰ 0, H1ps1q ‰ 0 we obtain

xv1, w2, w3y “ v1
1F2F3 ` v2

1G2G3 ` v3
1H2H3

“
v1

1
F1

F1F2F3 `
v2

1
G1

G1G2G3 `
v3

1
H1

H1H2H3

“
v1

1
α1v1

1 ` w1
1
F1F2F3 `

v2
1

α1v2
1 ` w2

1
G1G2G3 `

v3
1

α1v3
1 ` w3

1
H1H2H3.

Treating xv2, Γ2y “ xw1, v2, w3y and xv3, Γ2y “ xw1, v2, w3y in a similar way, we obtain
altogether (using xvi, wj, wky , v1

i , v2
i , v3

i ‰ 0)

F1F2F3

ãipsiq
`

G1G2G3

b̃ipsiq
`

H1H2H3

c̃ipsiq
“ 1, i “ 1, 2, 3

7These generalize the orthogonality condition xv1, v2y “ 0 from the two-dimensional case.
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with
ãipsiq “ xvi, wj, wky

ˆ

αipsiq `
w1

i

v1
i

˙

,

b̃ipsiq “ xvi, wj, wky

ˆ

αipsiq `
w2

i

v2
i

˙

,

c̃ipsiq “ xvi, wj, wky

ˆ

αipsiq `
w3

i

v3
i

˙

.

where i, j, k “ 1, 2, 3 distinct.

§ The confocality
The differences

ãipsiq ´ b̃ipsiq “ xvi, wj, wky

ˆ

w1
i

v1
i

´
w2

i

v2
i

˙

and
ãipsiq ´ c̃ipsiq “ xvi, wj, wky

ˆ

w1
i

v1
i

´
w3

i

v3
i

˙

are constant.
Furthermore, by Lemma 6.16 (41), we find that

ãi ´ b̃i “ ãj ´ b̃j ‰ 0, ãi ´ c̃i “ ãj ´ c̃j ‰ 0

for i, j “ 1, 2, 3, i ‰ j,

Lemma 6.15. For i “ 1, 2, 3 the two tangent vectors BjΓi, BkΓi in the proof of Theorem
6.14 are linearly independent.

Proof. We show this for i “ 1. The cases i “ 2, 3 follow analogously. The two tangent
vectors under consideration are given by

B2Γ1 “

ˆ

F 1
2F3

G1
2G3

H 1
2H3

˙

, B3Γ1 “

ˆ

F2F 1
3

G2G1
3

H2H 1
3

˙

.

Multiplying these by the non-singular matrix
ˆ

1{F2F3

1{G2G3

1{H2H3

˙

we obtain
ˆ

F 1
2{F2

G1
2{G2

H1
2{H2

˙

“ 2
ˆ

f 1
2{f2

g1
2{g2

g1
2{g2

˙

,

ˆ

F 1
3{F3

G1
3{G3

H1
3{H3

˙

“ 2
ˆ

f 1
3{f3

g1
3{g3

g1
3{g3

˙

,

Now multiplying by the non-singular matrix

1
2

´

f1f2f3
g1g2g3

h1h2h3

¯

we obtain
ˆ

f1f 1
2f3

g1g1
2g3

h1h1
2h3

˙

“ B2x,

ˆ

f1f2f 1
3

g1g2g1
3

h1h2h1
3

˙

“ B3x,

which are linearly independent since x is a coordinate system.
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Lemma 6.16. The vectors vi, wi, i “ 1, 2, 3 in the proof of Theorem 6.14 satisfy

xv1, v2, v3y “ xv1, v2, w3y “ xv1, w2, v3y “ xw1, v2, v3y “ 0, (40)

and consequently

xvi, wj, wky

ˆ

wl
i

vl
i

´
wm

i

vm
i

˙

“ xvj, wi, wky

ˆ

wl
j

vl
j

´
wm

j

vm
j

˙

‰ 0 (41)

for i, j, k “ 1, 2, 3 distinct and l, m “ 1, 2, 3.

Proof. The orthogonality conditions (38) can also be written as

BiBj xγ1, γ2, γ3y “ 0 for i, j “ 1, 2, 3 i ‰ j

which is equivalent to

xγ1, γ2, γ3y “ A1ps1q ` A2ps2q ` A3ps3q

with three functions A1, A2, A3. Substituting γipsiq “ αipsiqvi ` wi into xγ1, γ2, γ3y we
obtain

xα1v1 ` w1, α2v2 ` w2, α3v3 ` w3y “

α1α2α3 xv1, v2, v3y ` α1α2 xv1, v2, w3y ` α2α3 xw1, v2, v3y ` α3α1 xv1, w2, v3y

`α1 xv1, w2, w3y ` α2 xw1, v2, w3y ` α3 xw1, w2, v3y ` xw1, w2, w3y .

Since αi are non-constant functions, the right-hand side is a sum of functions each de-
pending only on one variable, if and only if (40).

Thus, we have

xα1v1 ` w1, α2v2 ` w2, α3v3 ` w3y

“ α1 xv1, w2, w3y ` α2 xw1, v2, w3y ` α3 xw1, w2, v3y ` xw1, w2, w3y .

Since αi is a non-constant function, this identity holds for two different values of αi, and
therefore, by linearity, for αi being replaced by any real number, i.e.,

xλ1v1 ` w1, λ2v2 ` w2, λ3v3 ` w3y

“ λ1 xv1, w2, w3y ` λ2 xw1, v2, w3y ` λ3 xw1, w2, v3y ` xw1, w2, w3y .

for any λ1, λ2, λ3 P R. In particular, for

λ1 “ ´
wl

1
vl

1
, λ2 “ ´

wm
2

vm
2

, λ1 “ ´
wn

1
vn

1

with l, m, n “ 1, 2, 3 distinct, which leads to

0 “
wl

1
vl

1
xv1, w2, w3y `

wm
2

vm
2

xw1, v2, w3y `
wn

3
vn

3
xw1, w2, v3y ´ xw1, w2, w3y .

Taking the differences of any pair of these equations leads to the qualities in (41).
Now assume that

xvi, wj, wky

ˆ

w1
i

v1
i

´
w2

i

v2
i

˙

“ 0
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for one and therefore all i “ 1, 2, 3. Then, by the assumptions xvi, wj, wky ‰ 0 and
v1

i , v2
i ‰ 0, this is equivalent to

det
´

v1
i w1

i

v2
i w2

i

¯

“ 0.

Since
Fi “ αiv

1
i ` w1

i , Gi “ αiv
2
i ` w2

i ,

this implies that Fi and Gi are proportional for all i “ 1, 2, 3, and therefore,
x

y
“ const,

which contradicts x being a coordinate system. Similarly, if any of the other terms
xvi, wj, wky

´

wl
i

vl
i

´
wm

i

vm
i

¯

vanishes.

6.4 Generalization to RN

A normal form for confocal quadrics in RN is given by

Qλ “

#

px1, . . . , xN q P RN

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

x2
i

ai ` λ
“ 1

+

, λ P R

with some a1 ą a2 ą ¨ ¨ ¨ ą aN . With this, all claims about confocal quadrics from this
section (including their proofs) easily generalize to arbitrary dimension.

Theorem 6.17. The family of confocal quadrics is a dual pencil of quadrics.

Theorem 6.18. If two confocal quadrics intersect, they intersect orthogonally.

For a point px1, . . . , xN q P RN not on the coordinate hyperplanes (x1 ¨ . . . ¨ xN ‰ 0),
the equation

N
ÿ

i“1

x2
i

ai ` λ
“ 1

has N real roots u1, . . . , uN lying in the intervals

´a1 ă u1 ă ´a2 ă u2 ă . . . , ă ´aN ă uN .

These N roots correspond to N confocal quadrics (of different type) of the family Qλ:

px1, . . . , xN q P

N
č

i“1
Qui

ô

N
ÿ

k“1

x2
k

ak ` ui

“ 1, i “ 1, . . . , N

ô x2
k “

śN
i“1pui ` akq

ś

i‰kpak ´ aiq
, k “ 1, . . . , N.

Theorem 6.19. Through every point px1, . . . , xN q P RN not on the coordinate hyperplanes
(x1 ¨ . . . ¨ xN ‰ 0), there passes exactly one quadric of each type from the confocal family
Qλ.

Theorem 6.20. N quadrics of different type from a confocal family Qλ intersect in exactly
2N points, which lie mirror symmetric with respect to the common principal hyperplanes.
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Definition 6.5. A coordinate system x : RN Ą U Ñ RN is called a confocal coordinate
system if its coordinate hyperplanes xpsi “ constq, i “ 1, . . . , N , are contained in confocal
quadrics.

Theorem 6.21. Let

x : RN
Ą I1 ˆ . . . ˆ IN Ñ RN , xps1, . . . , sN q “

¨

˚

˝

x1ps1, . . . , sN q

...
xN ps1, . . . , sN q

˛

‹

‚

be a coordinate system. Then x is a confocal coordinate system if and only if there exist
functions

fk
i : Ii Ñ R, i, k “ 1, . . . , N,

with
#

f 1
i psiq

2 ´ fk
i psiq

2 “ a1 ´ ak, k ď i,

f 1
i psiq

2 ` fk
i psiq

2 “ a1 ´ ak, k ą i,

such that
xkps1, ¨ ¨ ¨ , sN q “

śN
i“1 fk

i psiq
ś

i‰kpak ´ aiq
.

Theorem 6.22. Let

x : RN
Ą I1 ˆ . . . ˆ IN Ñ RN , xps1, . . . , sN q “

¨

˚

˝

x1ps1, . . . , sN q

...
xN ps1, . . . , sN q

˛

‹

‚

be a coordinate system that satisfies the following two conditions:

(i) x factorizes:

xkps1, . . . , sN q “

N
ź

i“1
fk

i psiq, k “ 1, . . . , N

with some smooth functions fk
i : Ii Ñ R, i “ 1, . . . , N that do not vanish:8

fk
i psiq ‰ 0, for all si P Ii, i “ 1, . . . , N

and whose derivatives do not constantly vanish:9

pfk
i q

1
‰ 0, for all i “ 1, . . . , N

(ii) x is orthogonal:

xBix, Bjxy “ 0 for all i, j “ 1, . . . , N i ‰ j

Then x is a confocal coordinate system (including degenerate cases in which some of the
semi-axes coincide).

8By this, we consider the coordinate system away from the coordinate hyperplanes.
9By this, we exclude the case of subnets that are contained in affine subspaces, which leads to square

grids and generalized cylindrical coordinates.
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7 Discrete confocal quadrics
To obtain a discretization of confocal quadrics we apply the characterizing properties from
Theorem 6.22 for (smooth) confocal coordinates to Definition 2.3 of discrete orthogonal
nets.

Thus, consider applying the factorizability condition

xkpnq “ fk
1 pn1qfk

2 pn2q ¨ ¨ ¨ fk
N pnN q, k “ 1, . . . , N,

to an orthogonal pair of dual discrete nets x : ZN Y
`

Z ` 1
2

˘N
Ñ RN defined on the dual

pair of square lattices ZN and
`

Z ` 1
2

˘N . Then the functions fk
i must each be defined

on 1
2Z, and thus, the net x can be extended to all of

`1
2Z

˘N . The two dual lattices ZM

and
`

Z ` 1
2

˘M are just one pair of dual sublattices of
`1

2Z
˘M . More generally we call two

lattices
ZM

` 1
2δ, ZM

` 1
2 δ̄,

a pair of dual sublattices of
`1

2Z
˘M , where

δ “ pδ1, . . . , δM q P t0, 1u
M , δ̄ “ p1 ´ δ1, . . . , 1 ´ δM q P t0, 1u

M .

The stepsize 1
2 square lattice

`1
2Z

˘M has 2M´1 such pairs of dual sublattices.

Definition 7.1.
(i) A map

x :
`1

2Z
˘M

Ñ RN

is called a stepsize 1
2 discrete net.

(ii) A stepsize 1
2 discrete net is called regular if all of its 2M (stepsize 1) discrete subnets

are regular.

(iii) A stepsize 1
2 discrete net is called orthogonal if all of its 2M´1 pairs of dual discrete

subnets are orthogonal.

Remark 7.1.
(i) For a general stepsize 1

2 discrete net, the discrete orthogonality constraint (2) only
correlates the two nets from each pair of dual discrete subnets. The 2M´1 different
pairs of dual discrete subnets are not mutually correlated by this condition unless
an additional constraint, like the factorizability, is introduced.

(ii) Each of the 2M´1 different pairs of dual discrete subnets leads to a different definition
of discrete Lamé coefficients on the lattice

`1
2Z ` 1

4

˘M . In general these do not
coincide.

Theorem 7.1. Let

x :
`1

2Z
˘N

Ą U “ I1 ˆ . . . ˆ IN Ñ RN , xps1, . . . , sN q “

¨

˚

˝

x1pnq

...
xN pnq

˛

‹

‚

be a discrete coordinate system that satisfies the following two conditions:
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(i) x factorizes:

xkpnq “

N
ź

i“1
fk

i pniq, k “ 1, . . . , N

with some smooth functions fk
i : Ii Ñ R, i “ 1, . . . , N that do not vanish:

fk
i pniq ‰ 0, for all ni P Ii, i “ 1, . . . , N (42)

and whose differences do not constantly vanish:

∆pfk
i q ‰ 0, for all i “ 1, . . . , N (43)

(ii) x is orthogonal, in the sense of Definition 7.1.

Then there exist a1, . . . , aN P R and sequences ui :
`1

2Z ` 1
4

˘

Ñ R, such that

N
ÿ

k“1

xkpnqxkpn ` 1
2σq

ak ` ui

“ 1, ui “ uipni ` 1
4σiq, i “ 1, . . . , N (44)

for any n P U and σ P t˘1uN (apart from degenerate cases which arise as limits in which
two or more of the values ak coincide).

As the most instructive example, we will proof the Theorem for N “ 3. Thus, we
denote

fi :“ f 1
i , gi :“ f 2

i , hi :“ f 3
i , for i “ 1, 2, 3.

and introduce the “discrete squares”

Fipni`
1
4q :“ fipniqfipni`

1
2q, Gipni`

1
4q :“ gipniqgipni`

1
2q, Hipni`

1
4q :“ hipniqhipni`

1
2q,

for ni P Ii and i “ 1, 2, 3. With this we have, e.g.,
$

’

&

’

%

xpnqxpn ` 1
2σq “ x1pnqx1pn ` 1

2σq “ F1F2F3

ypnqypn ` 1
2σq “ x2pnqx2pn ` 1

2σq “ G1G2G3

zpnqzpn ` 1
2σq “ x3pnqx3pn ` 1

2σq “ H1H2H3

with σ “ p1, 1, 1q. The conditions (42) and (43) become

Fipniq ‰ 0, Gipniq ‰ 0, Hipniq ‰ 0 for all ni P Ii, i “ 1, 2, 3

and
∆1{2Fi ‰ 0, ∆1{2Gi ‰ 0, ∆1{2Hi ‰ 0 for all i “ 1, 2, 3,

where
∆1{2F pnq “ F pn ` 1

2q ´ F pnq.

For the orthogonality conditions (21) we obtain

p∆1{2F1qp∆1{2F2qF3 ` p∆1{2G1qp∆1{2G2qG3 ` p∆1{2H1qp∆1{2H2qH3 “ 0,

F1p∆1{2F2qp∆1{2F3q ` G1p∆1{2G2qp∆1{2G3q ` H1p∆1{2H2qp∆1{2H3q “ 0,

p∆1{2F1qF2p∆1{2F3q ` p∆1{2G1qG2p∆1{2G3q ` p∆1{2H1qH2p∆1{2H3q “ 0.

(45)
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For (44) we show:
F1F2F3

ãipniq
`

G1G2G3

b̃ipniq
`

H1H2H3

c̃ipniq
“ 1, for i “ 1, 2, 3

hold with some functions ãi, b̃i, c̃i, which satisfy

ãi ´ b̃i “ ãj ´ b̃j “ const ‰ 0,

ãi ´ c̃i “ ãj ´ c̃j “ const ‰ 0.

for i, j “ 1, 2, 3, i ‰ j. This now looks identical to the smooth case

Proof for N “ 3.

§ The orthogonality condition as orthogonality of discrete curves and surfaces
Introducing the three discrete curves

γipniq :“
ˆ

Fipniq

Gipniq

Hipniq

˙

, for i “ 1, 2, 3

and the three discrete surfaces

Γipnj, nkq :“
ˆ

FjpnjqFkpnkq

GjpnjqGkpnkq

HjpnjqHkpnkq

˙

, for pijkq cyclic permutation of p123q

the orthogonality conditions (45) can be written as
A

∆1{2γi, ∆1{2
j Γi

E

“ 0 for i, j “ 1, 2, 3, i ‰ j.

By Lemma 7.2 the two discrete tangent vectors ∆1{2
j Γi, ∆1{2

k Γi of the discrete surface Γi

are linearly independent, and thus, γi must lie on a line (while Γi must lie in a plane):

γipniq “ αipniqvi ` wi

with some non-constant functions αi : Ii Ñ R. and constant vectors viwi P R3 with
v1

i , v2
i , v3

i ‰ 0, which satisfy some further conditions according to Lemma 7.3.

§ The degenerate cases, quadric equations, and confocality
The remainder of the proof (deriving the quadratic equations and showing that they
belong to a confocal family) is identical to the proof of the smooth case (Theorem 6.14).

Lemma 7.2. For i “ 1, 2, 3 the two difference vectors ∆1{2
j Γi, ∆1{2

k Γi in the proof of The-
orem 7.1 are linearly independent.

Proof. Same as Lemma 6.15 upon replacing F 1
i by ∆1{2Fi and f 1

i by ∆fi etc.

Lemma 7.3. The vectors vi, wi, i “ 1, 2, 3 in the proof of Theorem 7.1 satisfy

xv1, v2, v3y “ xv1, v2, w3y “ xv1, w2, v3y “ xw1, v2, v3y “ 0,

and consequently

xvi, wj, wky

ˆ

wl
i

vl
i

´
wm

i

vm
i

˙

“ xvj, wi, wky

ˆ

wl
j

vl
j

´
wm

j

vm
j

˙

‰ 0

for i, j, k “ 1, 2, 3 distinct and l, m “ 1, 2, 3.
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Proof. Same as Lemma 6.16 upon replacing BiBj xγ1, γ2, γ3y “ 0 by ∆i∆j xγ1, γ2, γ3y “ 0.

Theorem 7.1 motivates the following definition for discrete confocal quadrics:

Definition 7.2. A discrete coordinate system x :
`1

2Z
˘N

Ą U Ñ RN is called a discrete
confocal coordinate system if there exist a1, . . . , aN P R, and sequences ui :

`1
2Z ` 1

4

˘

Ñ R,
i “ 1, . . . , N such that

N
ÿ

k“1

xkpnqxkpn ` 1
2σq

ak ` ui

“ 1, ui “ uipni ` 1
4σiq, i “ 1, . . . , N (46)

for any n P U and σ P t˘1uN , or equivalently,

xkpnqxkpn ` 1
2σq “

śN
j“1puj ` akq

ś

j‰kpak ´ ajq
, uj “ ujpnj ` 1

4σjq, k “ 1, . . . , N.

for any n P U and σ P t˘1uN .

Remark 7.2.
(i) Different choices for the discrete functions ui lead to different “discrete reparametriza-

tions” of the system of confocal coordinates.

(ii) By relabeling, we can assume a1 ą . . . ą aN . A reasonable additional condition on
discrete confocal quadrics is to require the sequences ui to lie in the intervals

´a1 ă u1 ă ´a2 ă u2 ă . . . ă ´aN ă uN .

Discrete confocal coordinates admit the following geometric interpretation via polarity
with respect to sequences of classical confocal quadrics.

Theorem 7.4. Let n P U and σ P t˘1uN . Then the two adjacent points xpnq, xpn ` 1
2σq

of a discrete confocal coordinate system are related by polarity with respect to the N con-
focal quadrics

N
ÿ

k“1

x2
k

ak ` ui

“ 1, ui “ uipni ` 1
4σiq, i “ 1, . . . , N

Proof. Equation (46) describes exactly the stated polarity relation.

This yields a geometric construction for one pair of discrete dual nets from a system
of discrete confocal coordinates:

§ Choose a family of classical confocal quadrics Qλ (choice of a1, . . . , aN P R).

§ Sample each subfamily arbitrarily (choice of sequences uip
1
2ni ` 1

4q).

§ Choose one point (per pair of dual subnets) and propagate by polarity with respect
to the quadrics Qui
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Figure 24. Geometric construction of the point x˚ in the case N “ 2 as the intersection
of the polar lines Π1 and Π2 of x with respect to Q1 and Q2.

Exercise 7.1. Show that this geometric construction always closes (is independent of the
path).

Exercise 7.2. Show that for a discrete confocal coordinate system the discrete Lamé
coefficients defined by the different pairs of dual discrete subnets coincide on

`1
2Z ` 1

4

˘N ,
i.e, at each n P

`1
2Z

˘N and for i “ 1, ..., N the 2N´1 scalar products
@

∆ixpn ` 1
2δq, ∆̄ixpn ` 1

2σ ` 1
2 δ̄q

D

are equal for all δ “ pδ1, . . . , δM q P t0, 1uM and δ̄ “ p1´δ1, . . . , 1´δM q and σ “ p1, . . . , 1q.
They are given by

H2
i pnq “

`

uipni ` 1
2q ´ uipniq

˘ `

uipniq ´ uipni ´ 1
2q
˘

ś

j‰i puipniq ´ ujpnjqq
śN

k“1 puipniq ´ akq
.

This resembles the property derived in Exercise 6.4 which describes that quadrics are
isothermic.

If we rescale the functions fk
i we obtain:

Theorem 7.5. Let a1, . . . , aN P R and ui :
`1

2Z ` 1
4

˘

Ñ R, i “ 1, . . . , N some sequences
Let fk

i : 1
2Z Ñ R be solutions of the difference equations

fk
i pniqf

k
i pni ` 1

2q “

#

uipni ` 1
4q ` ak, k ď i,

´
`

uipni ` 1
4q ` ak

˘

, k ą i.
(47)

Then, x defined by

xkpnq “

śN
i“1 fk

i pniq
śk´1

i“1
?

ai ´ ak

śN
i“k`1

?
ak ´ ai

is a discrete confocal coordinate system.

Remark 7.3. If ui are chosen such that

´a1 ă u1 ă ´a2 ă u2 ă . . . ă ´aN ă uN ,

all discrete squares of fk
i and therefore of xk are positive:

fk
i pniqf

k
i pni ` 1

2q ą 0.
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By eliminating the sequences ui from (47), we obtain a characterization of discrete
confocal coordinates similar to Theorem 6.13:

Theorem 7.6. Let
fk

i : 1
2Z Ñ R, i, k “ 1, . . . , N

be functions satisfying

f 1
i pniqf

1
i pni ` 1

2q ´ fk
i pniqf

k
i pni ` 1

2q “ a1 ´ ak, k ď i,

f 1
i pniqf

1
i pni ` 1

2q ` fk
i pniqf

k
i pni ` 1

2q “ a1 ´ ak, k ą i.

Then, x defined by

xkpnq “

śN
i“1 fk

i pniq
śk´1

i“1
?

ai ´ ak

śN
i“k`1

?
ak ´ ai

is a discrete confocal coordinate system.

7.1 Discrete confocal coordinates in terms of Γ-functions
The parametrization of smooth confocal coordinates in terms of square roots (31) was
characterized by taking the quantities ui as coordinates with further reparametrization,
i.e., choosing the function uipsiq “ si. To derive a discrete version of this parametrization
we set

uipni ` 1
4q “ ni ` εi, i “ 1, . . . , N,

where εi P R are some fixed shifts. With this choice, equations (47) turn into

fk
i pniqf

k
i pni ` 1

2q “

$

&

%

ni ` ak ` εi, k ď i,

´
`

ni ` ak ` εi

˘

, k ą i.
(48)

These equations can be solved in terms of Γ-functions.
The Γ-function is given by

Γpxq “

ż 8

0
tx´1e´tdt.

It solves the functional equation

Γpx ` 1q “ xΓpxq

with initial value Γp1q “ 1, and can be taken as an analytic continuation of the factorial
function:

Γpnq “ pn ´ 1q!, for n P N.

We use the gamma function to define a “discrete square root” by10

puq1{2 “
Γpu ` 1

2q

Γpuq
,

which satisfies the identities

puq1{2pu ` 1
2q1{2

“ u, p´uq1{2p´u ´ 1
2q1{2

“ ´u ´ 1
2 .

10The Pochhammer symbol is more generally defined by puqδ “
Γpu`δq

Γpuq
.
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With this we can write solutions of (48) as

fk
i pniq “

$

&

%

pni ` ak ` εiq1{2 for i ě k,

p´ni ´ ak ´ εi ` 1
2q1{2

for i ă k.

One can impose boundary conditions

xk|nk“´αk
“ 0 for k “ 1, . . . , N,

xk|nk´1“´αk
“ 0 for k “ 2, . . . , N,

on the integer lattice ZN for certain integers α1 ą ¨ ¨ ¨ ą αN , which imitate the corre-
sponding property of the continuous confocal coordinates. These boundary conditions
are satisfied provided that

ak ´ αk ` εk “ 0, ak ´ αk ` εk´1 “
1
2 ,

for which the shifts εk should satisfy εk´1 ´ εk “ 1
2 . Choosing εk “ ´k

2 and ak “ αk ` k
2 ,

we finally arrive at the solutions

fk
i pniq “

$

&

%

pni ` αk ` k´i
2 q1{2

for i ě k,

p´ni ´ αk ´ k´i
2 ` 1

2q1{2
for i ă k.

(49)

Figure 25. Three discrete confocal quadrics as part of a (stepsize 1) subnet of a discrete
confocal coordinate system (49) in R3 given in terms of Γ-functions.
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7.2 Discrete confocal conics in terms of trigonometric functions

y

x

Figure 26. Two-dimensional discrete confocal coordinate system on
`1

2Z
˘2 in terms of

trigonometric functions.
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y

x

y

x

Figure 27. Pairs of dual orthogonal sublattices. (top) Sublattice on Z2 in blue and on
`

Z ` 1
2
˘2 in red. (bottom) Sublattice on Z ˆ pZ ` 1

2q in blue and on pZ ` 1
2q ˆ Z in pink.
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y

x

y

x

Figure 28. Polarity relation for discrete confocal conics. Gray points show discrete
confocal coordinates on

`1
2Z

˘2. The corresponding classical confocal conics which give rise
to the polarity relation between gray points are shown in orange (for the values u

`

n1 ` 1
4
˘

)
and green (for the values v

`

n2 ` 1
4
˘

). (left) Symmetric case with c1 “ c2 “ 0. All orange
conics are hyperbolas and all green conics are ellipses. Note that near the coordinate axes
those conics become degenerate and the polarity relation is not injective anymore. (right)
Asymmetric case with c1 “ 0.1, c2 “ 0.3. Moving along the n2-direction, the polarity across
the y-axis is established by a conic with value u

`

n1 ` 1
4
˘

ă ´a, which is purely imaginary,
while the polarity across the x-axis is established by a conic with value u

`

n1 ` 1
4
˘

ą ´b,
which is an ellipse.
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7.3 Discrete confocal coordinates in terms of Jacobi elliptic func-
tions

Figure 29. Three discrete confocal quadrics as part of a (stepsize 1) subnet of a discrete
confocal coordinate system in R3 in terms of Jacobi elliptic functions.

Figure 30. Part of an orthogonal pair of dual (stepsize 1) subnets of a discrete confocal
coordinate system in R3 in terms of Jacobi elliptic functions
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8 Diagonally related nets on surfaces
For the purposes of this chapter we adopt a slightly more general notion of nets (on
surfaces):

Definition 8.1. A net N on a surface Σ is a collection of two (one-parameter) families
of curves on Σ, such that for every point on Σ there exists exactly one curve from each
of the two families through that point.

Let
N “

`

pαs1qs1PI1
, pβs2qs2PI2

˘

be a net on a surface Σ. Then curves from different families intersect in a unique point

Ps1,s2 “ αs1 X βs2 .

We call ps1, s2q the coordinates of the point Ps1,s2 . Note that the coordinates of a point are
not uniquely defined by the net, but only a net together with a specific parametrization
of the two families of curves.

Let αs1 , αs̃1 , βs2 , βs̃2 be two pairs of curves from the two families of N . They form a
quadrilateral with vertices Ps1,s2 , Ps1,s̃2 , Ps̃1,s̃2 , Ps̃1,s2 , where pPs1,s2 , Ps̃1,s̃2q and pPs̃1,s2 , Ps1,s̃2q

are pairs of opposite vertices.

Definition 8.2. Let N1, N2 be two nets on a surface Σ. Then N2 is called diagonal to N1
if the following condition is satisfied for any quadrilateral formed by four curves of N1:
If one pair of opposite vertices is connected by a curve from N2, then the other pair of
opposite vertices is connected by a curve from N2.

Figure 31. Diagonal relation between two nets, and equivalent characterization by
Lemma 8.1

Exercise 8.1. Let

N1 “
`

pαs1qs1PI1
, pβs2qs2PI2

˘

, N2 “
`

pγt1qt1PJ1
, pδt2qt2PJ2

˘

be two nets on a surface Σ. Show that the following four conditions are equivalent:
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(i) For any quadrilateral formed by four curves of N1:
If one pair of opposite vertices is connected by a curve γt1 then the other pair of
opposite vertices is connected by a curve δt2 .

(ii) For any quadrilateral formed by four curves of N1:
If one pair of opposite vertices is connected by a curve δt2 then the other pair of
opposite vertices is connected by a curve γt1 .

In terms of using coordinates for the two nets we may reformulate the statement as the
equivalence of the following two conditions:

(i) For any two points with coordinates ps1, s2q, ps̃1, s̃2q P I1 ˆ I2:
If ps1, s2q and ps̃1, s̃2q have the same t1-coordinate then ps̃1, s2q and ps1, s̃2q have the
same t2-coordinate.

(ii) For any two points with coordinates ps1, s2q, ps̃1, s̃2q P I1 ˆ I2:
If ps1, s2q and ps̃1, s̃2q have the same t2-coordinate then ps̃1, s2q and ps1, s̃2q have the
same t1-coordinate.

Lemma 8.1. Let

N1 “
`

pαs1qs1PI1
, pβs2qs2PI2

˘

, N2 “
`

pγt1qt1PJ1
, pδt2qt2PJ2

˘

be two nets on a surface Σ. Then N2 is diagonal to N1 if and only if the following holds:
For any three curves αs1 , βs2 , βs̃2 let γt1 be the curve through Ps1,s2 and δt2 be the curve
through Ps1,s̃2. Then the two points

Ps̃1,s2 “ βs2 X δt2 , Ps̃1
1,s̃2 “ βs̃2 X γt1

lie on the common curve αs̃1, i.e., s̃1 “ s̃1
1

Proof. Exercise.

It turns out that the notion of diagonally related nets is symmetric:

Theorem 8.2. Let N1, N2 be two nets on a surface Σ. Then N2 is diagonal to N1 if and
only if N1 is diagonal to N2.

Figure 32. Symmetry of the diagonal relation.
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Proof. Let N2 is diagonal to N1. Consider three curves γt1 , γt̃1 , δt2 from N2. Let αs1 be
the curve through Pt1,t2 and βs2 be the curve through Pt̃1,t2 . By Lemma 8.1, we need to
show that the two points

Pt1,t̃2 “ γt1 X βs2 , Pt̃1,t̃1
2

“ γt̃1 X αs1

lie on the common curve δt̃2 , i.e., t̃2 “ t̃1
2.

Let
βŝ2 be the curve through Pt1,t2 ,

βs̃2 be the curve through Pt̃1,t̃1
2
,

αŝ1 be the curve through Pt̃1,t2 ,

αs̃1 be the curve through Pt1,t̃2 .

Let O :“ αs1 X βs2 and

γt̂1 , δt̂2 be the two curves through O.

Since N2 is diagonal to N1

γt̂1 is the diagonal of the quadrilateral αs1 , αŝ1 , βs2 , βŝ2 ,

δt̂2 is the diagonal of the quadrilateral αs1 , αs̃1, βs2 , βŝ2 ,

δt̂2 is the diagonal of the quadrilateral αs1 , αŝ1 , βs2 , βs̃2 ,

Thus,
δt̂2 is the diagonal of the big quadrilateral αŝ1 , αs̃1 , βŝ2 , βs̃2 .

Since N2 is diagonal to N1

γt̂1 is the diagonal of the big quadrilateral αŝ1 , αs̃1 , βŝ2 , βs̃2 .

Thus,
γt̂1 is the diagonal of the quadrilateral αs1 , αs̃1 , βs2 , βs̃2 .

Finally, again since N2 is diagonal to N1, the two points Pt1,t̃2 , Pt̃1,t̃1
2

must lie on the same
curve δt̃2 .

Figure 33. Proof of Theorem 8.2.
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8.1 Dual pencils and tangent lines
As an example of diagonally related nets in the plane we will show the following theorem:

Theorem 8.3. Let N1 be a net formed formed by conics from a dual pencil P of conics
in RP2, and let N2 be a net formed by the tangent lines of one of the conics of P. Then
N1 and N2 are diagonally related.

Proof. Follows from Lemma 8.4.

Lemma 8.4. Let a1, a2, a3, a4 be four tangent lines of a conic Q in RP2, and let pL1, L2q

and pM1, M2q be two opposite pairs of vertices of the quadrilateral formed by these lines.
Let Q1 be a conic containing the two points L1, L2. Then there exists a conic Q2 in the
dual pencil of conics spanned by Q and Q1 that contains the two points M1, M2.

Moreover, in this case, the two tangent lines of Q1 in L1, L2 and the two tangent lines
of Q2 in M1, M2 intersect in a common point.

Proof. We prove the (projective) dual statement, which is Lemma 8.5.

Figure 34. Lemma 8.4 and the proof of the dual statement, Lemma 8.5

Lemma 8.5. Let A1, A2, A3, A4 be four points on a conic Q in RP2, and let pℓ1, ℓ2q and
pm1, m2q be two opposite pairs of edges of the quadrangle formed by these four points. Let
Q1 be a conic tangent to the two lines ℓ1, ℓ2. Then there exists a conic Q2 in the pencil
of conics spanned by Q and Q1 that is tangent to the two lines m1, m2.

Moreover, in this case, the two touching points of Q1 and L1, L2 and the two touching
points of Q2 and M1, M2 are collinear.

Proof. Let P1 be the pencil of conics spanned by Q and Q1. Then P1 defines a line in the
space conics, which is a 5-dimensional projective space. Let P2 be the pencil of all conics
through the four points A1, A2, A3, A4. Then P2 is another line in the space of conics,
that intersects the line P1. Consider the two pairs of lines D1 “ ℓ1 Y ℓ2 and D2 “ m1 Ym2
as two degenerate conics in the pencil P2. The two lines ℓ1 and ℓ2 are tagent lines of
Q1. Thus, by Lemma 8.6, the pencil spanned by D1 and Q1 contains a double line L. In
the space of conics, the point corresponding to L lies in the plane spanned by the two
concurrent lines corresponding to P1 and P2. Thus, the pencil spanned by D2 and L
contains a conic Q2 which is also contained in P1. By Lemma 8.6 the conic Q2 is tangent
to the lines m1 and m2.

68



Lemma 8.6. Let ℓ1, ℓ2 be two lines in RP3 and X1 P ℓ1, X2 P ℓ2 a point on each line.
Then the family of all conics tangent to ℓ1 in X1 and to ℓ2 in X2 is a pencil of conics
containing the degenerate conic consisting of the two lines ℓ1, ℓ2 and the degenerate conic
consisting of the double line joining X1 and X2

Proof. Exercise.

y

x

Figure 35. Confocal conics constitute a dual pencil of conics. Thus, by Theorem 8.3,
the net of confocal ellipses and hyperbolas is diagonally related to the net formed by the
tangent lines of one conic of the confocal family.

y

x

Figure 36. By Graves-Chasles Theorem the quadrilaterals in Figure 35 possess incircles.
Furthermore the centers of these incircles constitute a special case of a discrete confocal
coordinate system.
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8.2 Diagonally related parametrizations
If x : R2 Ą U “ I1 ˆ I2 Ñ RN is a parametrization of a surface then its coordinate lines

N “

´

`

xps1, s2 “ s0
2q
˘

s1PI1
,
`

xps1 “ s0
1, s2q

˘

s2PI2

¯

for some s0
1 P I1, s0

2 P I2

define a net on the surface xpUq. Note that a reparametrization along the coordinate
lines xpφ1ps1q, φ2ps2qq does not change the net it defines.

We now introduce the new variables

t1 “ s1 ` s2, t2 “ s1 ´ s2,

which generate the parametrization

ypt1, t2q “ x

ˆ

t1 ` t2

2 ,
t1 ´ t2

2

˙

.

Lemma 8.7. The nets corresponding to the parametrizations x and y are diagonally
related.

Proof. Let ps1, s2q and ps̃1, s̃2q be two points with the same t1-coordinate:

t1 “ s1 ` s2 “ s̃1 ` s̃2.

Then ps̃1, s2q and ps1, s̃2q have the same t2-coordinate:

t2 “ s̃1 ´ s2 “ s1 ´ s̃2.

The following theorem, which we give without proof, states that up to reparametriza-
tion along the coordinate lines, this change of variables generates all diagonal nets for a
given parametrization

Theorem 8.8. Let xps1, s2q and ypt1, t2q be two parametrizations of the same surface.
Then the corresponding nets are diagonally related if and only there exist two smooth
functions φ1 and φ2 such that

ypt1, t2q “ x pφ1pt1 ` t2q, φ2pt1 ´ t2qq .

8.3 Diagonally related nets on quadrics
We now look at some examples of nets that diagonal to the net of curvature lines on
quadrics, which we have derived as side product of our studies of confocal coordinate
systems in Section 6.

Theorem 8.9. The net of curvature lines on a one-sheeted hyperboloid and the net of
asymptotic lines (generators of the hyperboloid) are diagonal. Furthermore, the deforma-
tion of this hyperboloid along its confocal family:

§ preserves the curvature lines, the asymptotic lines, and their diagonal relation,

§ preserves the distance between any two points on an asymptotic line (“isometric along
asymptotic lines”),
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§ in the planar limits becomes a net of confocal conics (confocal to one of the focal conics)
and a net of tangent lines of the focal conic (see Section 8.1).

Idea of the proof. This can be derived from the parametrization (34) of confocal quadrics
in terms of Jacobi elliptic functions. In particular, for any s2 P p0, Kpk2qq

ps1, s3q ÞÑ xps1, s2, s3q

is a curvature line parametrization of a one-sheeted hyperboloid. In this parametrization
its asymptotic lines are given by s1 ` s3 “ const and s1 ´ s3 “ const. The deformation is
described by change of the parameter s2.

Figure 37. Diagonally related nets of curvature lines and asymptotic lines on a one-
sheeted hyperboloid and its deformation along confocal quadrics.

Figure 38. “Isometrically” deformable model of a one-sheeted hyperboloid at TU Wien.
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On ellipsoids and two-sheeted hyperboloids have no asymptotic lines (since they have
positive Gaussian curvature). Instead (conjugate) characteristic lines can be viewed as an
analogous net of lines on positively curved surfaces. Characteristic lines are characterized
by the two properties of being conjugate and bisected by the curvature lines. Analogous to
the diagonal relation of curvature lines and asymptotic lines on one-sheeted hyperboloids,
the parametrization (34) of confocal quadrics in terms of Jacobi elliptic functions yields
the diagonal relation of curvature lines and conjugate characteristic lines.

Figure 39. Diagonally related nets of curvature lines and characteristic lines on an ellipsoid
and a two-sheeted hyperboloid.

As opposed to the asymptotic lines on a one-sheeted hyperboloid the characteristic
lines on ellipsoids and two-sheeted hyperboloid do not give rise to an “isometric” defor-
mation of the quadrics. Yet for ellipsoids a different net of lines, which are also diagonally
related to curvature lines does.

8.3.1 Circular cross sections of quadrics

To find circles on quadrics we use the following projective characterization:

Proposition 8.10. Consider the embedding of Euclidean space into projective space
R3 Ă RP3 Ă CP3, together with the absolute (imaginary) conic at infinity:

Z : x2
1 ` x2

2 ` x2
3 “ 0, x4 “ 0.

Then a quadric Q Ă RP3 is a sphere if and only if it (its complexification) contains Z.

Proof. Exercise.

Considering circles as the intersection of spheres, this implies that a conic C Ă Π in
some plane Π Ă RP3 is a circle if and only if it intersects the absolute conic Z in two
points.

Thus, to find the circular sections of a quadric Q, one should consider the restriction
of Q to the plane at infinity x4 “ 0. The resulting conic generically intersects Z in four
points, which are pairs of complex conjugate points. Each pair of these complex conjugate
points spans a real line at infinity, and each plane through one of those two lines intersects
the quadric Q in a circle (if the intersection is not empty). Thus, generically a quadric in
R3 has two famalies of circular sections.

72



Figure 40. Circular cross sections of an ellipsoid and a one-sheeted hypreboloid.

We specify this claim for the case of ellipsoids:

Theorem 8.11. Let a ą b ą c ą 0 and Q Ă R3 the ellipsoid

x2

a
`

y2

b
`

z2

c
“ 1.

Then the circular sections of Q are given by the two families of parallel planes

Π˘pλ˘q :
b

1
b

´ 1
a

x ˘

b

1
c

´ 1
b

z “ λ˘, λ˘ P

”

´

b

a´c
b

,
b

a´c
b

ı

. (50)

Proof. We introduce homogeneous coordinates x “ x1
x4

, y “ x2
x4

, z “ x3
x4

and the constants
α :“ 1

a
, β :“ 1

b
, γ :“ 1

c
, which satisfy 0 ă α ă β ă γ. Then the ellipsoid Q is given by

αx2
1 ` βx2

2 ` γx2
3 ´ x2

4 “ 0.

Its four intersection points with Z are given by

Pσ,τ “

»

—

—

–

σ
?

γ ´ β
τi

?
γ ´ α

?
β ´ α

0

fi

ffi

ffi

fl

, σ, τ P t`, ´u,

and come in two complex conjugate pairs

P`,` “ sP`,´, P´,` “ sP´,´.

Thus they span two real lines at infinity

ℓ˘ “ P˘,` _ P˘,´ “ span

$

’

’

&

’

’

%

¨

˚

˚

˝

˘
?

γ ´ β
0

?
β ´ α

0

˛

‹

‹

‚

,

¨

˚

˚

˝

0
1
0
0

˛

‹

‹

‚

,

/

/

.

/

/

-

The two one-parameter families of planes that contain ℓσ, respectively, are given by

Π˘pλ˘q :
a

β ´ α x1 ¯
a

γ ´ β x3 ´ λ˘x4 “ 0
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for λ˘ P R Y t8u. The planes from each family Π˘ intersect in a line at infinity and
therefore are parallel planes. Furthermore, by construction, their intersection with Q (if
not empty) gives all circles contained in Q.

It remains to show for which values of λ˘ the intersection Π˘pλ˘q X Q is not empty.
Let

Q “ diagpα, β, γ, ´1q

be the Gram matrix of Q, and
qpxq “ x⊺Qx

the corresponding quadratic form. With

p˘pλ˘q “

¨

˚

˚

˝

?
β ´ α

0
¯

?
γ ´ β

´λ˘

˛

‹

‹

‚

the poles of Π˘pλ˘q have homogeneous coordinates Q´1p˘pλ˘q. Thus, Q X Π˘pλ˘q is not
empty if and only if

0 ď qpQ´1p˘pλ˘qq “ p˘pλ˘q
⊺Q´1p˘pλ˘q “

β ´ α

α
`

γ ´ β

γ
´ λ2

˘ “ β

ˆ

1
α

´
1
γ

˙

´ λ2
˘.

Exercise 8.2. Show that the poles of the two families of planes Π˘ lie (on the outside
segments) of the lines that intersect opposite umbilic points of the ellipsoid Q. Thus, in
particular, the planes Π˘pλ˘q are parallel to the tangent planes of Q in its umbilic points.

The two families of circular sections of an ellipsoid constitute a net on the ellipsoid.

Theorem 8.12. On any ellipsoid, the net of curvature lines and the net of circular
sections are diagonally related.

Proof. Let a ą b ą c ą 0. We consider the ellipsoid as part of the confocal family (26)
with λ “ 0. Then the corresponding confocal coordinates (33) yield a curvature line
parametrization of the ellipsoid for

u3ps3q “ 0,

or equivalently,
f3ps3q

2
“ a, g3ps3q

2
“ b, h3ps3q

2
“ c.

Thus, this parametrization is given by
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xps1, s2q “

c

a

pa ´ bqpa ´ cq
f1ps1qf2ps2q

yps1, s2q “

d

b

pa ´ bqpb ´ cq
g1ps1qg2ps2q

zps1, s2q “

c

c

pa ´ cqpb ´ cq
h1ps1qh2ps2q

(51)
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with
f1ps1q

2
` g1ps1q

2
“ a ´ b, f1ps1q

2
` h1ps1q

2
“ a ´ c,

f2ps2q
2

´ g2ps2q
2

“ a ´ b, f2ps2q
2

` h2ps2q
2

“ a ´ c,

We show that there exist solutions f1, f2, g1, g2, h1, h2 such that the diagonal net given by
the curves

s˘ “ s1 ˘ s2 “ const

are the circular cross sections of the ellipsoid. Substituting the parametrization (51) into
the planes Π˘pλ˘q given by (50) we obtain

f1ps1qf2ps2q ˘ h1ps1qh2ps2q “
a

bpa ´ cq λ˘. (52)

For the diagonal lines s˘ “ const to lie in these planes, the parameters λ` and λ´ must
be functions only depending on s` and s´, respectively. Thus, the functions f1, f2, h1, h2
must be solutions of the equations

f1ps1q
2

` h1ps1q
2

“ a ´ c,

f2ps2q
2

` h2ps2q
2

“ a ´ c,

f1ps1qf2ps2q ˘ h1ps1qh2ps2q “
a

bpa ´ cq λ˘ps1 ˘ s2q,

which are readily solved by trigonometric functions

f1ps1q “
?

a ´ c sinps1q, f2ps2q “
?

a ´ c cosps1q,

h1ps1q “
?

a ´ c cosps1q, h2ps2q “
?

a ´ c sinps2q.

The last two equations due to the addition law

sinps1q cosps2q ˘ cosps1q sinps2q “ sinps1 ˘ s2q,

and thus the functions λ˘ are given by

λ˘ps˘q “

c

a ´ c

b
sinps˘q

The functions g1 and g2 are then obtained from

g1ps1q
2

“ a ´ b ´ pa ´ cq sin2
ps1q,

g2ps2q
2

“ pa ´ cq cos2
ps1q ´ a ` b.

(53)

The right-hand sides are positive as long as

sin2
ps1q ă

a ´ b

a ´ c
, cos2

ps2q ą
a ´ b

a ´ c
,

which have open intervals as solutions since

0 ă
a ´ b

a ´ c
ă 1.
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Remark 8.1. Since g1 and g2 are determined by the square roots of (53), we obtain two
separate parametrizations of the ellipsoid, one for y ą 0 and one for y ă 0. Geometrically,
this reflects the fact that the net of circular sections becomes degenerate for y “ 0 in the
sense that the two families of circles become tangent in these points and furthermore
tangent one of the families o curvature lines.

Similar to the asymptotic lines on one-sheeted hyperboloids, the circular sections of
ellipsoids admit an “isometric” deformation:

Theorem 8.13. The deformation of an ellipsoid given by its confocal family scaled to
have the same second semi-axis:

§ preserve the curvature lines, the circular sections, and their diagonal relation

§ preserves the distance between any two points on a circular section (“isometric along
circular sections”),

§ in the planar limits becomes a net of confocal conics and a net of circles touching a
conic.

Figure 41. Diagonally related nets of curvature lines and circular sections on an ellipsoid
and its “isometric” deformation along the circular sections.
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8.3.2 Discrete ellipsoid with circular cross sections

Let a ą b ą c ą 0. Similar to (51) we obtain a discrete curvature line parametrized
ellipsoid by taking two layers from a 3-dimensional discrete confocal coordinate system:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

xpn1, n2q “

c

a

pa ´ bqpa ´ cq
f1pn1qf2pn2q

ypn1, n2q “

d

b

pa ´ bqpb ´ cq
g1pn1qg2pn2q

zpn1, n2q “

c

c

pa ´ cqpb ´ cq
h1pn1qh2pn2q

(54)

with

f1pn1qf1pn1 ` 1
2q ` g1pn1qg1pn1 ` 1

2q “ a ´ b, f1pn1qf1pn1 ` 1
2q ` h1pn1qh1pn1 ` 1

2q “ a ´ c,

f2pn2qf2pn2 ` 1
2q ´ g2pn2qg2pn2 ` 1

2q “ a ´ b, f2pn2qf2pn2 ` 1
2q ` h2pn2qh2pn2 ` 1

2q “ a ´ c,

for pn1, n2q P Z2 Y pZ ` 1
2q2.

Proposition 8.14. The discrete net xpn1, n2q on (54) is a discrete curvature line parametriza-
tion of an ellipsoid in the following sense:

(i) Any two points xpn1, n2q and xpn1 ˘ 1
2 , n2 ˘ 1

2q are polar points with respect to the
ellipsoid

Q : x2

a
`

y2

b
`

z2

c
“ 1. (55)

(ii) All quadrilaterals xpn1, n2q, xpn1 ` 1, n2q, xpn1 ` 1, n2 ` 1q, xpn1, n2 ` 1q are planer.

(iii) All edges ∆1xpn1, n2q and ∆2xpn1 ` 1
2 , n2 ´ 1

2q are orthogonal.

The discrete diagonal nets of x are given by introducing the coordinates pn`, n´q P Z2:

n˘ “
n1 ˘ n2

2 .

This yields four diagonal sublattices of stepsize 1

Z ˆ Z, pZ ` 1
2q ˆ pZ ` 1

2q, pZ ` 1
2q ˆ Z, Z ˆ pZ ` 1

2q,

which come as two dual pairs.
The discrete ellipsoid (54) is closely related to the smooth ellipsoid (55). Thus, we may

try to find a parametrization such that the coordinate polygons of the discrete diagonal
nets lie in the planes Π˘pλ˘q given in (50). Substituting (54) into (50) we find, in the
same way as (52):

f1pn1qf2pn2q ˘ h1pn1qh2pn2q “ bpa ´ cqλ˘.

To have the diagonal polygons n˘ “ const to lie in these planes, the functions f1, f2, h1, h2
must satisfy the equations

f1pn1qf1pn1 ` 1
2q ` h1pn1qh1pn1 ` 1

2q “ a ´ c,

f2pn2qf2pn2 ` 1
2q ` h2pn2qh2pn2 ` 1

2q “ a ´ c,

f1pn1qf2pn2q ˘ h1pn1qh2pn2q “
a

bpa ´ cqλ˘pn1 ˘ n2q,

77



which are again solved by trigonometric functions

f1pn1q “ ε
?

a ´ c sinpδn1q, f2pn2q “ ε
?

a ´ c cospδn1q,

h1pn1q “ ε
?

a ´ c cospδn1q, h2pn2q “ ε
?

a ´ c sinpδn2q

with some constant 0 ă δ ă π and

ε “
1

b

cos δ
2

,

and
λ˘pn˘q “ ε2

c

a ´ c

b
sinp2δn˘q.

The functions g1 and g2 are then obtained by the recurrence relations

g1pn1 ` 1
2q “

a ´ b ´ f1pn1qf1pn1 ` 1
2q

g1pn1q
, g2pn2 ` 1

2q “
f2pn2qf2pn2 ` 1

2q ´ a ` b

g2pn2q
.

The following proposition further establishes why the diagonal polygons n˘ “ const
may be thought of as discrete circles:

Proposition 8.15. Along a diagonal polygon n´ “ n0
´ “ const a point xpn`, n´ “ n0

´q

and the line through xpn` ´ 1
2 , n´ “ n0

´q, xpn` ` 1
2 , n´ “ n0

´q are polar in the plane
Π´pλ´pn0

´qq are polar with respect to the circle Q X Πipλ´pn0
´qq. Similarly, along the

diagonals n` “ const.

Proof. By Proposition 8.14 (i), the line through xpn` ´ 1
2 , n´ “ n0

´q, xpn` ` 1
2 , n´ “ n0

´q

lies in the polar plane of the point xpn`, n´ “ n0
´q with respect to the ellipsoid Q Since the

three points lie in the plane Π´pλ´pn´qq the polarity can be restricted to the intersection
of Q with this plane, which is a circle.

Remark 8.2. Note that by the same reasoning we obtain discrete tangent cones to the
discrete circles: The planes of the planar quadrilaterals of x along any diagonal n˘ “ const
intersect in a common point.

The discrete circles allow for an “isometric” deformation similar to Theorem 8.13.
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Figure 42. (top) Two dual sublattices of a discrete curvature line parametrization of an
ellipsoid. (bottom) The diagonally related discrete circles in two stages of the “isometric”
deformation.
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9 Classification of pencils of quadrics

9.1 Polynomial matrices
Definition 9.1. Let F “ R (or F “ C) be the field of real (or complex) numbers, and let
Frλs be the ring of polynomials over F in one variable (denoted by λ).

(i) A matrix

A P Frλs
mˆn

“

"

paijqi“1,...,m
j“1,...,n

ˇ

ˇ

ˇ

ˇ

aij P Frλs

*

with polynomial entries is called a polynomial matrix.

(ii) The degree of a polynomial matrix A P Frλsmˆn is given by

deg A “ max tdeg aij | i “ 1, . . . , m, j “ 1, . . . , nu .

A polynomial matrix A P Frλsmˆn is called constant if deg A “ 0.

(iii) The rank of a polynomial matrix A P Frλsmˆn is given by

rk A “ max tk | non-zero k ˆ k minor of Au .11

A square polynomial matrix A P Frλsnˆn is called regular if rk A “ n, or equivalent,
if det A ‰ 0.

(iv) A square polynomial matrix A P Frλsnˆn is called invertible if it has an inverse in
Frλsnˆn, i.e., if there exists a matrix A´1 P Frλsnˆn such that

A´1A “ AA´1
“ I.

For constant square matrices A P Fnˆn one has

A invertible ô A regular.

The same holds for matrices A P Fpλqnˆn with entries in the field of rational functions
Fpλq. For polynomial square matrices A P Frλsnˆn one only has

A invertible ñ A regular.

Example 9.1. Consider the polynomial matrix

A “

ˆ

λ 0
λ2 λ ` 1

˙

P Frλs
2ˆ2.

It has deg A “ 2 and rk A “ 2, and thus is regular. Its determinant is given by

det A “ λpλ ` 1q ‰ 0,

Thus, viewed as a rational matrix, A is invertible in Fpλq2ˆ2 with

A´1
“

1
det A

ˆ

λ ` 1 0
´λ2 λ

˙

“

ˆ 1
λ

0
´ λ

λ`1
1

λ`1

˙

But since A´1 R Frλs2ˆ2, as a polynomial matrix, A is not invertible.
11A k ˆ k minor is the determinant of a k ˆ k submatrix of A.
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Proposition 9.1. Let A P Frλsnˆn be a square polynomial matrix. Then A is invertible
if and only if its determinant is a non-zero constant, i.e.,

det A P Fzt0u.

Proof.
(ð) If det A P Fzt0u, then A is invertible in Fpλqnˆn. In particular, the entries of the

inverse A´1 are given by the cofactors12 of A (which are polynomials) divided by the
determinant. Since the determinant is constant, the entries of A´1 are polynomials.

(ñ) If A has a polynomial inverse A´1 P Frλsnˆn, then det A and det A´1 are polynomi-
als, and

pdet Aqpdet A´1
q “ detpAA´1

q “ 1.

This implies det A ‰ 0 and deg det A “ 0.

9.1.1 Multiplication and division of polynomial matrices

For two polynomials a, b P Frλs one has

degpabq “ deg a ` deg b.

For two polynomial matrices A, B P Frλsnˆn this does not necessarily hold: We can write

A “ Asλ
s

` As´1λ
s´1

` ¨ ¨ ¨ ` A0,

B “ Btλ
t

` Bt´1λ
t´1

` ¨ ¨ ¨ ` B0,

where Ai are the constant matrices containing the coefficients of degree i of A. In par-
ticular, deg A “ s and As ‰ 0. Similarly, deg B “ t and Bt ‰ 0. We call As and Bt

the leading coefficient matrices of A and B, respectively. Then the (possibly) leading
coefficient of the product is given by AsBt:

AB “ AsBtλ
s`t

` Ops ` t ´ 1q.

In general AsBt can be zero.

Exercise 9.1.
(i) Show that if either As or Bt are invertible, then

degpABq “ deg A ` deg B.

(ii) Compute the degree of A2 from Exercise 9.1.

We now turn to the division with remainder of polynomial matrices:

Proposition 9.2. Let A, B P Frλsnˆn be two square polynomial matrices, where the
leading coefficient matrix of B is invertible. Then A can be divided with remainder by B
(from the left and from the right) in the following sense:

There exist two unique polynomial matrices Q, R P Frλsnˆn (quotient and remain-
der) such that

A “ QB ` R and deg R ă deg B.

Similarly, for the division from the right.
12The cofactors of A are the signed minors.
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Proof.
Existence: We write

A “ Asλ
s

` As´1λ
s´1

` ¨ ¨ ¨ ` A0,

B “ Btλ
t

` Bt´1λ
t´1

` ¨ ¨ ¨ ` B0,

where s “ deg A and t “ deg B. Thus, As ‰ 0 and Bt is invertible.
If t ą s, we can take Q “ 0, R “ M . Thus, assume s ě t. With

Q̃ :“ AsB
´1
t λs´t,

R̃ :“ A ´ Q̃B

we have

Q̃B “ AsB
´1
t Bλs´t

“ Asλ
s

` AsB
´1
t Bt´1λ

s´1
` ¨ ¨ ¨ ` AsB

´1
t B0λ

s´t.

and furthermore,
A “ Q̃B ` R̃

where deg R̃ ă s. Applying the same procedure recursively to R̃, we can lower deg R̃
below deg B (induction in s ´ t).

Uniqueness: Exercise.

9.1.2 Equivalence of polynomial matrices

Definition 9.2. Let A P Frλsnˆn be a square polynomial matrix. Then the following two
operations on A are called elementary operations:

(i) Multiplying a row (or column) by a number α P Fzt0u. Equivalently multiplying A
from the left (or right) by the elementary matrix

Eipαq :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

1
. . .

1
α Ð i

1
. . .

1
Ò

i

(ii) Adding a row (or column) multiplied by a P Frλs to another row (or column).
Equivalently multiplying A from the left (or right) by the elementary matrix

Fijpaq :“

¨

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‚

1
a Ð i

. . .

1
Ò

j

i ‰ j
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Two polynomial matrices A, B P Frλsnˆn are called equivalent if they are related by a
sequence of elementary transformations, or equivalently, if there exist elementary matrices
P1, . . . , Pr, Q1, . . . , Qs such that

B “ P1 ¨ ¨ ¨ PrAQ1 ¨ ¨ ¨ Qs. (56)

Lemma 9.3.
(i) The inverse operations of elementary operations are elementary operations. Equiv-

alently, all elementary matrices Eipαq, Fijpaq are intevertible and its inverses given
by elementary matrices.

(ii) The equivalence of polynomial matrices is an equivalence relation.

(iii) Interchanging two rows (or columns) is a sequence of elementary operations.

Proof. Exercise.

We now define invariants of polynomial matrices under elementary operations. Up to a
constant the determinant of a polynomial matrix is invariant under elementary operations,
and so is the greatest common divisor of all entries of the matrix. This generalizes to the
following set of invariants:

Definition 9.3. Let A P Frλsnˆn be a square polynomial matrix of rank ℓ “ rk A. Then
for k “ 1, . . . , ℓ the monic13 greatest common divisor Dk of all k ˆ k minors of A is called
the k-th minor divisor of A. We also define D0 :“ 1.

Lemma 9.4.
(i) The minor divisors are invariant under elementary operations.

(ii) Dk divides Dk`1 for k “ 0, . . . , ℓ ´ 1.

Proof.
(i) Elementary operations turn a minor m into

m ÞÑ αm, α P Fzt0u,

or m ÞÑ m ` am̃, a P Frλs,

where m̃ is another minor of the same size.

(ii) By Laplace expansion of determinants.

Since each minor divisor divides the next, we can define further polynomial invariants
by their quotients:

Definition 9.4. Let A P Frλsnˆn be a square polynomial matrix of rank ℓ “ rk A. Then
for k “ 1, . . . , ℓ

Ik “
Dk

Dk´1

is called the k-th invariant factor of A.
13Monic polynomials are polynomials with leading coefficient equal to 1.
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Thus, the invariant factors can be obtained from the minor divisors, and vice versa,

Dk “ I1 ¨ ¨ ¨ Ik, k “ 0, . . . , ℓ.

By elementary operations a polynomial matrix can be diagonalized in such a way that
its minor divisors and the invariant factors can be easily read off.

Theorem 9.5 (Smith normal form).
(i) Any square polynomial matrix A P Frλsnˆn is equivalent to a diagonal matrix

¨

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‚

I1
. . .

Ik

0
. . .

0

,

where I1, . . . , Ik P Frλs are monic polynomials, such that Ii divides Ii`1, i “ 1, . . . , k ´ 1.

(ii) The diagonal matrix in (i) is unique and called the Smith normal form of A. Its
entries I1, . . . , Ik are the invariant factors of A.

Proof.
(i) Denote by

δpAq :“ min tdeg aij | aij ‰ 0u

the minimal degree of the non-zero entries of A. The decrease of this value is taken
as an indicator of progress during the following algorithm, which uses elementary
operations to reach the desired form of the matrix.

(a) Choose an entry aij with deg aij “ δpAq.
Make it monic.
Bring it to position a11.

(b) Decrease degree along the 1st column (using polynomial division by a11).
If δpAq decreased: Go to (a).

Else: A “

¨

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n

0
... Ã
0

˛

‹

‹

‹

‚

.

(c) Decrease degrees along the 1st row (using polynomial division by a11).
If δpAq decreased: Go to (a).

Else: A “

¨

˚

˚

˚

˝

a11 0 ¨ ¨ ¨ 0
0
... Ã
0

˛

‹

‹

‹

‚

.

(d) If there exists an entry in Ã not divisible by a11: Decrease degree of this entry
(using polynomial division by a11) and go to (a).
Else-if Ã “ pq or Ã “ 0: Terminate.
Else: Continue with Ã at (a).
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In section (b) and (c) the value of δpAq can only strictly decrease finitely many
times. Similarly, in the if clause of section (d), the value of δpAq is decreased
strictly. Thus, in all sections, the else clause must be reached after finitely many
steps. Once the else clause of section (d) is reached, the algorithm continues with a
matrix of smaller dimension. Since again, this can only happen finitely many times,
the algorithm eventually terminates.

(ii) Because Ik divides Ik`1 the minor divisors are given by

Dk “ I1 ¨ ¨ ¨ Ik, k “ 0, . . . , ℓ.

and thus, I1, . . . , Iℓ are the invariant factors. Since the invariant factors are uniquely
determined by A, the diagonal matrix in (i) is unique.

Corollary 9.6. The invariant factor Ik divides the invariant factor Ik`1.
Exercise 9.2. Compute the invariant factors of the polynomial matrix

¨

˝

0 0 λ2 ´ 1
λ2 ` λ λ2 ´ λ 0

λ2 0 0

˛

‚

by deriving its Smith normal form.
Theorem 9.7. Two polynomial matrices A, B P Frλsnˆn are equivalent, if and only if
there exist two invertible polynomial matrices P, Q P Frλsnˆn such that

B “ PAQ.

Proof.
(ñ) By (56) and Lemma 9.3 (i).

(ð) We show that every invertible matrix is a product of elementary matrices. Let
P P Frλsnˆn be an invertible matrix. Then det P P Fzt0u. Thus, the n-th minor
divisor is equal to 1, and therefore, all invariant factors are equal to 1. Then its
Smith normal form is given by the identity matrix I, and therefore,

P “ P1 ¨ ¨ ¨ PrIP 1
1 ¨ ¨ ¨ Ps “ P1 ¨ ¨ ¨ PrP

1
1 ¨ ¨ ¨ Ps

where P1, . . . , Pr, P 1
1, . . . , Ps are elementary matrices.

We summarize the different characterization of equivalence of polynomial matrices in
the following theorem:
Theorem 9.8. For A, B P Frλsnˆn the following statements are equivalent:

(i) A and B are equivalent (related by elementary operations).

(ii) B “ PAQ for some invertible P, Q P Frλsnˆn.

(iii) A and B have the same minor divisiors

(iv) A and B have the same invariant factors.

(v) A and B have the same Smith normal form.
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9.1.3 Elementary divisors and Segre symbols

We introduce yet another way to encode the invariant factors of a polynomial matrix.
Let A P Frλsnˆn be a polynomial matrix with invariant factors I1, . . . , Iℓ. Since Ik

divides Ik`1 the irreducible factors of Ik also appear in Ik`1 with greater or equal multi-
plicity. Let e1, . . . , es ps ď ℓq be the irreducible factors of Iℓ, then

I1 “ eµ11
1 ¨ ¨ ¨ eµs1

s ,

...

Iℓ “ eµ1ℓ
1 ¨ ¨ ¨ eµsℓ

s .

where µij P N Y t0u with

0 ď µi1 ď ¨ ¨ ¨ ď µiℓ, µiℓ ą 0

for i “ 1, . . . , s.

Definition 9.5. For a polynomial matrix A P Frλsnˆn, the unordered list

eµ11
1 , . . . , eµ1ℓ

1 , . . . , eµs1
s , . . . , eµsℓ

s

where entries with µij “ 0 are dropped, is called the list of elementary divisors of A, while
each entry e

µij

i is called an elementary divisor or A.

Theorem 9.9. Two polynomial matrices A, B P Frλsnˆn are equivalent, if and only if
they have the same rank and the same list of elementary divisors.

Proof. Exercise.

Exercise 9.3. Determine the list of elementary divisors for the polynomial matrix from
Exercise 9.2.

Let A P Crλsnˆn be a complex polynomial matrix. Then all irreducible factors are
linear

ei “ λ ´ λi, i “ 1, . . . , s

and can be identified with the corresponding roots λ1, . . . λs P C.
Remark 9.1. For a real polynomial matrix A P Rrλsnˆn the irreducible factors can be of
degree 1 or 2. While the invariant factors do not depend on whether A is taken as a real
or complex matrix, the list of elementary divisors may differ.

If we interpret A as a one-parameter family of matrices, then for λ P C the constant
matrix Apλq has rank ℓ except for the λ “ λi. Thus, the roots λ1, . . . , λs correspond to
the matrices Apλ1q, . . . , Apλsq in the family of lower rank. More generally:

Theorem 9.10. Let A P Crλsnˆn be a complex polynomial matrix of rank rk A “ ℓ, and

I1 “ pλ ´ λ1q
µ11 ¨ ¨ ¨ pλ ´ λsq

µs1 ,

...

Iℓ “ pλ ´ λ1q
µ1ℓ ¨ ¨ ¨ pλ ´ λsq

µsℓ .
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its invariant factors. Then for i, k “ 1, . . . , ℓ the value

µ̃ik :“ µi1 ` ¨ ¨ ¨ ` µik

is the least of the multiplicities of λi as a root of the k ˆ k minors of A (if µ̃ik “ 0 , then
λi is not a common root of the k ˆk minors at all). In particular, the rank of the constant
matrices Apλ1q, . . . , Apλsq is given by

rk Apλiq “ max tk | µ̃ik “ 0u “ max tk | µik “ 0u .

If A is regular (ℓ “ n), then λ1, . . . , λs are the roots of the determinant

det A „ I1 ¨ ¨ ¨ In “ pλ ´ λ1q
µ̃1n ¨ ¨ ¨ pλ ´ λsq

µ̃sn .

with multiplicities µ̃1n, . . . , µ̃sn. In particular, the constant matrices Apλ1q, . . . , Apλsq are
exactly the non-regular matrices in the family Apλq, and furthermore,

s
ÿ

i“1
µ̃in “

s
ÿ

i“1

n
ÿ

k“1
µik “ degpdet Aq.

Proof. Follows from Dk “ I1 ¨ ¨ ¨ Ik, and in particular, if A is regular, det A „ Dn “

I1 ¨ ¨ ¨ In.
Exercise 9.4. Interpret the polynomial matrix from Exercise 9.2 as a one-parameter
family of matrices. What are the degenerate matrices in this family and what are their
ranks?

If we drop all trivial elementary divisors, we can write the list of elementary divisors
as

pλ ´ λ1q
ν11 , . . . , pλ ´ λ1q

ν1h1 , . . . , pλ ´ λsq
νs1 , . . . , pλ ´ λsq

νshs

where νi1 ě ¨ ¨ ¨ ě νihi
ą 0, hi ą 1.

Definition 9.6. The symbol

rpλ1 : ν11, . . . , ν1h1q, . . . , pλs : νs1, . . . , νshsqs

is called the characteristic or Segre symbol of A. The numbers pν11, . . . , ν1h1q are called
the characteristic numbers of λi. Given the list of roots λ1, . . . , λs the Segre symbol is
sometimes abbreviated to the characteristic numbers only:

rpν11, . . . , ν1h1q, . . . , pνs1, . . . , νshsqs

Exercise 9.5. Determine the Segre symbol for the polynomial matrix from Exercise 9.2.
We summarize the conditions the Segre symbol of a complex polynomial matrix must

satisfy in the following:
Proposition 9.11. Let A P Crλsnˆn a regular complex polynomial matrix. Then its Segre
symbol

rpλ1 : ν11, . . . , ν1h1q, . . . , pλs : νs1, . . . , νshsqs

satisfies
(i) 1 ď s ď degpdet Aq.

(ii) λ1, . . . , λs P C, λi ‰ λj for i ‰ j.

(iii) νi1 ě ¨ ¨ ¨ ě νihi
ą 0, hi ě 1.

(iv)
řs

i“1
řhi

j“1 νij “ degpdet Aq.
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9.1.4 Equivalence of polynomial matrices of degree one

For two polynomial matrices of degree 1, the invertible matrices from Theorem 9.7 can
be taken as constant matrices:

Theorem 9.12. Let A, B P Frλsnˆn be two polynomial matrices of degree 1 with invertible
leading coefficient matrices. Then A and B are equivalent if and only if there exist two
invertible constant matrices S, T P Fnˆn, such that

B “ SAT.

Proof.
(ð) Follows directly from Theorem 9.7.

(ñ) Let A and B be equivalent, and S, T P Frλsnˆn invertible such that

B “ SAT,

or equivalently
S´1B “ AT. (57)

Divide S´1 from the left by A and T from the right by B (the leading coefficient
matrix of B is regular):

S´1
“ AQ ` R,

T “ Q̃B ` R̃.

with deg R ă deg A “ 1 and deg R̃ ă deg B “ 1. Thus, R and R̃ are constant
matrices and we obtain

pAQ ` RqB “ ApQ̃B ` R̃q,

or equivalently,
ApQ ´ Q̃qB “ AR̃ ´ RB.

Assume Q ‰ Q̃. Then, the left-hand side has degree at least 2 (since the leading
coefficient matrices of A and B are regular), and the right-hand side has at most
degree 1. Thus, Q “ Q̃, and therefore

AR̃ “ RB.

It remains to show that R and R̃ are invertible. Divide S from the left by B (the
leading coefficient matrix of B is regular):

S “ BQ̂ ` R̂

with deg R̂ ă deg B “ 1, and thus, R̂ is a constant matrix. Using (57) we obtain

I “ S´1S

“ S´1
pBQ̂ ` R̂q

“ ATQ̂ ` S´1R̂

“ ATQ̂ ` pAQ ` RqR̂

“ ApTQ̂ ` QRq ` RR̂
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Assume TQ̂`QR ‰ 0. Then, the right-hand side would have at least degree 1 (since
the leading coefficient matrix of A is regular). Thus, TQ̂ ` QR “ 0 and therefore

I “ RR̂.

Hence, R is invertible, and so is R̃ by symmetry.

Remark 9.2. The equivalence of two polynomial matrices A, B P Frλsnˆn with constant
matrices S, T P Fnˆn is the same as the simultaneous equivalence of the coefficient matrices
of A and B. In particular, in the case of degree 1, let A1, A0, B1, B0 P Fnˆn be the
coefficient matrices of A and B:

A “ A1λ ` A0, B “ B1λ ` B0.

Then
B1λ ` B0 “ SpA1λ ` A0qT “ SA1Tλ ` SA0T

is equivalent to
B1 “ SA1T and B0 “ SA0T.

Thus, the two pairs pA1, A0q and pB1, B0q of constant coefficient matrices are equivalent.
For complex polynomial matrices of degree 1 we can narrow down the conditions on

the Segre symbol from Proposition 9.11:

Proposition 9.13. Let A P Crλsnˆn a complex polynomial matrix of degree 1 with in-
vertible leading coefficient matrix. Then its Segre symbol

rpλ1 : ν11, . . . , ν1h1q, . . . , pλs : νs1, . . . , νshsqs

satisfies

(i) 1 ď s ď n.

(ii) λ1, . . . , λs P C, λi ‰ λj for i ‰ j.

(iii) νi1 ě ¨ ¨ ¨ ě νihi
ą 0, hi ě 1.

(iv)
řs

i“1
řhi

j“1 νij “ n.

Furthermore, if A “ A1λ ` A0 with A1 ‰ αA0 for some α P Czt0u, then additionally

(v) s ą 1 or h1 ă n.

Proof. A “ A1λ ` A0 with det A1 ‰ 0 ensures that

det A “ det A1λ
n

` Opn ´ 1q

has degree n. Thus, conditions (i) - (iv) follow from Proposition 9.11.
Regarding condition (v), assume s “ 1 and h1 ě n. Then, h1 “ n because of condition

(iv). Thus, the list of elementary divisors is

pλ ´ λ1q, ¨ ¨ ¨ , pλ ´ λ1q.
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and therefore all invariant factors are equal to pλ ´ λ1q. This implies that

A1λ ` A0 “ pλ ´ λ1qP

for some matrix P , and thus
A0 “ ´λP “ ´λA1,

which contradicts A1 ‰ αA0.

The Segre symbol of degree 1 polynomial matrix is invariant under the following change
of variable:

λ “
aλ̃ ` b

cλ̃ ` d

Proposition 9.14. Let A P Crλsnˆn be a polynomial matrix of degree 1 with regular
leading coefficient matrix, and let

rpλ1 : ν11, . . . , ν1h1q, . . . , pλs : νs1, . . . , νshsqs

be the Segre symbol of A.
Let A “ A1λ ` A0 with A1, A0 P Cnˆn, det A1 ‰ 0, and Ã1, Ã0 P Cnˆn with

Ã1 “ aA1 ` cA0

Ã0 “ bA1 ` dA0

with a, b, c, d P C, ad ´ bc ‰ 0 such that det Ã1 ‰ 0. Then
“`

λ̃1 : ν11, . . . , ν1h1

˘

, . . . ,
`

λ̃s : νs1, . . . , νshs

˘‰

is the Segre symbol of Ã “ Ã1λ ` Ã0, where

λi “
aλ̃i ` b

cλ̃i ` d
, i “ 1, . . . , s.

Proof. We find
Ã “ Ã1λ ` Ã0 “ paA1 ` cA0qλ ` bA1 ` dA0

“ A1paλ ` bq ` A0pcλ ` dq

“ pcλ ` dq

ˆ

A1
aλ ` b

cλ ` d
` A0

˙

.

Thus, the polynomial entries aij of A and ãij of Ã are related by

ãijpλq “ pcλ ` dqaij

ˆ

aλ ` b

cλ ` d

˙

.

Therefore, a k-minor dpλq of A and a k-minor d̃pλq of Ã involving the same entries are
related by

d̃pλq “ pcλ ` dq
kd

ˆ

aλ ` b

cλ ` d

˙

.

For i “ 1, . . . , s consider the the matrix A1λi ` A0, and let λ̃i such that

A1λi ` A0 „ Ã1λ̃i ` Ã0 “ A1paλ̃i ` bq ` A0pcλ̃i ` dq
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This is possible, since det Ã1 ‰ 0. Furthermore cλ̃i ` d ‰ 0, and thus,

λi “
aλ̃i ` b

cλ̃i ` d
.

Assume λi is a root of dpλq with multiplicity ν, i.e.,

dpλq “ pλ ´ λiq
νgpλq

with gpλiq ‰ 0. Then

d̃pλq “ pcλ ` dq
k

ˆ

aλ ` b

cλ ` d
´

aλ̃i ` b

cλ̃i ` d

˙ν

g

ˆ

aλ ` b

cλ ` d

˙

“
pad ´ bcqν

pcλ̃i ` dqν
pcλ ` dq

k´ν
pλ ´ λ̃iq

νg

ˆ

aλ ` b

cλ ` d

˙

Since ν ď k, cλ̃i ` d ‰ 0, and g
´

aλ̃i`b
cλ̃i`d

¯

‰ 0, this implies that λ̃i is a root of d̃pλq with
multiplicity ν.

9.1.5 Similarity of constant matrices

If a constant matrix A P Fnˆn is interpreted as the representative matrix of a linear
endomorphism with respect to a given basis, then the representative matrices of the same
linear map with respect to other bases are given by similar matrices.

Definition 9.7. Two constant matrices A, B P Fnˆn are called similar (or conjugate) if
there exists a constant invertible matrix S P Fnˆn such that

B “ SAS´1.

Theorem 9.15. Two constant matrices A, B P Fnˆn are similar, if and only if their
characteristic matrices λI ´ A and λI ´ B are equivalent (as polynomial matrices).

Proof.
(ñ) Let A and B be similar, i.e., B “ SAS´1 with some constant invertible matrix

S P Fnˆn. Then the characteristic matrix of B

λI ´ B “ λI ´ SAS´1
“ SpλI ´ AqS´1

is equivalent to A.

(ð) Let λI ´ A and λI ´ B be equivalent. Then, by Theorem 9.12, there exist constant
invertible matrixes S, T P Fnˆn, such that

λI ´ B “ SpλI ´ AqT,

As in Remark 9.2, this is the simultaneous equivalence of the two pairs of constant
coefficient matrices pI, Aq and pI, Bq, i.e.,

I “ ST, and B “ SAT.

In particular, T “ S´1.
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9.1.6 Congruence of pairs of constant matrices

If a constant matrix A P Fnˆn is interpreted as the Gram matrix of a bilinear form with
respect to a given basis, then the Gram matrices of the same bilinear form with respect
to other bases are given by congruent matrices.

Definition 9.8. Two constant matrices A, B P Fnˆn are called congruent if there exists
a constant invertible matrix S P Fnˆn such that

B “ SAS⊺.

Now, similar to Remark 9.2, the congruence of two polynomial matrices A, B P Frλsnˆn

with constant matrix S P Fnˆn is the same as the simultaneous congruence of the coeffi-
cient matrices of A and B. In particular, in the case of degree 1, let A1, A0, B1, B0 P Fnˆn

be the coefficient matrices of A and B:

A “ A1λ ` A0, B “ B1λ ` B0.

Then
B1λ ` B0 “ SpA1λ ` A0qS⊺

“ SA1S
⊺λ ` SA0S

⊺

is equivalent to
B1 “ SA1S

⊺ and B0 “ SA0S
⊺.

Thus, the two pairs pA1, A0q and pB1, B0q of constant coefficient matrices are congruent.
The Gram matrix of a symmetric bilinear form is a symmetric matrix. For the con-

gruence of complex symmetric matrices of degree 1 we obtain the following relation to
equivalence of polynomial matrices.

Theorem 9.16. Let A, B P Crλsnˆn be two complex symmetric matrices of degree 1 with
invertible leading coefficient matrices. Then A and B are equivalent if and only if they
are congruent (by a constant congruence matrix), i.e., there exists an invertible constant
matrix S P Cnˆn such that

B “ SAS⊺.

Proof.
(ð) Follows directly from Theorem 9.7.

(ñ) Let A and B be equivalent. By Theorem 9.12, there exist two constant matrices
S, T P Cnˆn such that

B “ SAT.

In particular SAT is symmetric. By Lemma 9.17, this implies that

UA “ AU⊺, with U :“ T ´⊺S.

By Lemma 9.18, there exists a polynomial square root R P Cnˆn of U , i.e.,

R “

r
ÿ

k“0
akUk

such that
U “ R2,
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Since R is a polynomial expression in U it also satisfies

RA “ AR⊺,

and we obtain

B “ SAT “ T ⊺T ´⊺SAT “ T ⊺UAT “ T ⊺R2AT “ T ⊺RAR⊺T

Thus, with S̃ :“ T ⊺R, we have
B “ S̃⊺AS̃.

Lemma 9.17. Let S, T P Fnˆn be two invertible constant matrices, and A P Frλsnˆn a
symmetric polynomial matrix. Then the following three statements are equivalent:

(i) SAT is symmetric.

(ii) T ´⊺SA is symmetric.

(iii) UA “ AU⊺ with U :“ T ´⊺S.

Proof. Exercise.

Lemma 9.18. Let U P Cnˆn be an complex invertible constant matrix. Then there exist
r P N, and a0, . . . , ar P C such that

R “

r
ÿ

k“0
akUk

is a square root of U , i.e.,
U “ R2.

No proof.

Corollary 9.19. Let A1, A0, B1, B0 P Cnˆn be symmetric matrices with det A1 ‰ 0,
det B1 ‰ 0. Then the following statements are equivalent:

(i) pA1, A0q and pB1, B0q are simultaneously congruent (by the same constant congru-
ence).

(ii) A1λ ` A0 and B1λ ` B0 are equivalent (as polynomial matrices).

(iii) A1λ ` A0 and B1λ ` B0 have the same Segre symbols.

The conditions from Proposition 9.13 are necessary conditions on the Segre symbol
of linear symmetric families, but are they also sufficient for symmetric matrices? Can all
such Segre symbols be generated by polynomial matrices of the form

A1λ ` A0

with A1, A0 P Cnˆn symmetric, det A1 ‰ 0?
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Lemma 9.20. Let ν P N, α P C, and

C1pνq :“

¨

˚

˚

˚

˝

1
. .

.

1
1

˛

‹

‹

‹

‚

, C0pα, νq :“

¨

˚

˚

˚

˚

˝

´α

. .
. 1

´α . .
.

´α 1

˛

‹

‹

‹

‹

‚

P Cνˆν

Then the polynomial matrix C1pνqλ ` C0pα, νq has only one elementary divisor:

pλ ´ αq
ν .

Proof. The last minor divisor (the determinant up to a constant) of

C1pνqλ ` C0pα, νq “

¨

˚

˚

˚

˚

˝

λ ´ α

. .
. 1

λ ´ α . .
.

λ ´ α 1

˛

‹

‹

‹

‹

‚

,

is given by
Dν “ pλ ´ αq

ν .

The pν ´ 1q ˆ pν ´ 1q minor, obtained by erasing the first row and column is equal to 1.
Thus,

Dν´1 “ ¨ ¨ ¨ “ D1 “ 1.

Theorem 9.21. Let λ1, . . . , λs P C and ν11, . . . , ν1h1 , . . . νs1, . . . , νshs P N satisfying con-
ditions (i) - (iv) from Proposition 9.13. Let

C1 :“

¨

˚

˚

˚

˚

˚

˝

C1pν11q

. . .
C1pν1h1 q

. . .
C1pνs1q

. . .
C1pνshs q

˛

‹

‹

‹

‹

‹

‚

and

C0 :“

¨

˚

˚

˚

˚

˚

˝

C0pλ1,ν11q

. . .
C0pλ1,ν1h1 q

. . .
C0pλs,νs1q

. . .
C0pλ1,νshs q

˛

‹

‹

‹

‹

‹

‚

Then the polynomial matrix C1λ ` C0 is symmetric with det C1 ‰ 0 and has Segre symbol

rpλ1 : ν11, . . . , ν1h1q, . . . , pλs : νs1, . . . , νshsqs .

Proof. By Lemma 9.20, each block C1pνijqλ ` C0pλi, νijq has Smith normal form
¨

˚

˚

˚

˝

1
. . .

1
pλ ´ λiq

νij

˛

‹

‹

‹

‚

.
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Thus, the matrix C1λ ` C0 is equivalent to
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
. . .

1
pλ´λ1qν11

. . .
pλ´λ1q

ν1h1

. . .
pλ´λsqνs1

. . .
pλ´λsq

νshs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

From there we read off the minor divisors as

Dn “ pλ ´ λ1q
ν11`¨¨¨`ν1h1 ¨ ¨ ¨ pλ ´ λsq

νs1`¨¨¨`νshs

Dn´1 “ pλ ´ λ1q
ν12`¨¨¨`ν1h1 ¨ ¨ ¨ pλ ´ λsq

νs2`¨¨¨`νshs

...

And thus, the elementary divisors of C1λ ` C0 are given by

pλ ´ λ1q
ν11 , . . . , pλ ´ λ1q

ν1h1 , . . . , pλ ´ λsq
νs1 , . . . , pλ ´ λsq

νshs .

9.2 Classification of pencils of quadrics in CPn

Definition 9.9. Let P Ă P SympCn`1q be a pencil of quadrics. Let Q1, Q0 be two
quadrics in P with representative matrices Q1, Q0 P SympCn`1q. Then we call Q1λ`Q0 P

Crλspn`1qˆpn`1q a characteristic matrix of P .

A characteristic matrix uniquely determines its pencil together with the two quadrics
spanning it. Vice versa, two characteristic matrices

Q1λ ` Q0, and Q̃1λ ` Q̃0,

describe the same pencil if and only if

Q̃1 “ aQ1 ` cQ0,

Q̃0 “ bQ1 ` dQ0,

with a, b, c, d P C, ad ´ bc ‰ 0. And thus, the corresponding values of λ are related by

λ “
aλ̃ ` b

cλ̃ ` d
.

Furthermore, a change of basis, or a projective transformation acts on the characteristic
matrix Q1λ ` Q0 as

F ⊺
pQ1λ ` Q0qF “ F ⊺Q1Fλ ` F ⊺Q0F.

Theorem 9.22. Let P , P̃ Ă P SympCn`1q be two regular pencils of quadrics in CPn.
Then the following statements are equivalent:

(i) P and P̃ are projectively equivalent.
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(ii) There exist characteristic matrices of that P and P̃ are equivalent.

(iii) There exist characteristic matrices of that P and P̃ that have the same Segre symbol.

Proof. Follows from Corollary 9.19.

If two characteristic matrices are equivalent, how are the Segre symbols of all the
other characteristic matrices of the same pencils related? This question is answered by
Proposition 9.14. We first use this statement to associate the entries from the Segre
symbol to the degenerate quadrics of the pencil, before we come back to a refinement of
the classification result.

If det Q1 ‰ 0, then the determinant of a characteristic matrix detpQ1λ`Q0q has degree
n ` 1 and finitely many roots λ1, . . . , λs P C, which correspond to the degenerate quadrics
Ppλ1q, . . . , Ppλsq of the pencil. Each root λi has an entry of characteristic numbers
pλi : νi1, . . . , νihi

q in the Segre symbol of the characteristic matrix Q1λ ` Q0.
Remark 9.3. One can drop the condition det Q1 ‰ 0 and allow 8 as a root of detpQ1λ `

Q0q. The associated characteristic numbers in the Segre symbol are the ones of the 0 as
a root of detpQ1 ` Q0λq.

By Proposition 9.14, the characteristic numbers in the Segre symbol, are independent
of the choice of quadrics to span the pencil. Furthermore, by Corollary 9.19 they are
invariant under a change of basis, or a projective transformation. Thus, the characteristic
numbers are well-defined attributes of the degenerate quadrics of the pencil

Definition 9.10. Let P Ă P SympCn`1q be a regular pencil of quadrics with characteristic
matrix Q1λ ` Q0. Then the characteristic numbers of each entry of the Segre symbol

pλi : νi1, . . . , ν1hi
q,

is called the characteristic numbers of the associated degenerate quadric with representa-
tive matrix Q1λi ` Q0.

Proposition 9.23. Let P Ă P SympCn`1q be a regular pencil of quadrics with character-
istic matrix Q1λ ` Q0. Let D be a degenerate quadric in P with representative matrix
Q1λi ` Q0 and characteristic numbers

pνi1, . . . , ν1hi
q.

Then the dimension of the projective subspace of singular points of D is given by

n ´ rkpQ1λi ` Q0q “ hi ´ 1.

Proof. Follows from Theorem 9.10.

We now come back to the classification of pencils of quadrics in CPn.

Theorem 9.24. Let P , P̃ Ă P SympCn`1q be two regular pencils of quadrics in CPn.
Then the following statements are equivalent:

(i) P and P̃ are projectively equivalent.

(ii) They have same number of degenerate quadrics Q1, . . . , Qs P P and Q̃1, . . . , Q̃s P P̃,
which as points on the line P and the line P̃ are related by a (one-dimensional)
projective transformation P Ñ P̃, and the characteristic numbers of corresponding
degenerate quadrics are equal.
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(iii) Any two characteristic matrices of P and P̃ have the same Segre symbols up to a
projective transformation of the roots.

Proof.
(ñ) Follows from Proposition 9.14 and Corollary 9.19.

(ð) If the points of the degenerate quadrics are related by a projective transformation,
we can choose quadrics Q1, Q′ P P and Q̃1, Q̃2 P P̃ to span the two pencils such that
the corresponding degenerate quadrics in P and P̃ correspond to the same roots λi.
The two correspoding characteristic matrices Q1λ`Q0 and Q̃1λ`Q0 therefore have
the same Segre symbol, and thus are equivelent. By Theorem 9.19 they are also
congruent, which yields the projective equivalence.

Thus, the equivalence classes of pencils of quadrics in CPn can be parametrized by the
complex roots λ1, . . . , λs P CYt8u up to projective transformation (s´3 parameters) and,
by Theorem 9.21, characteristic numbers satisfying the conditions in Proposition 9.13.

9.2.1 Pencils of conics in CP2

A pencil in CP2 has at most 3 degenerate quadrics. The corresponding roots can always
be mapped to, say 0, 1, 8. Thus, we obtain 5 different equivalence classes:

(i) r1, 1, 1s

(ii) rp1, 1q, 1s

(iii) r2, 1s

(iv) r3s

(v) rp2, 1qs

9.2.2 Pencils of quadrics in CP3

A pencil in CP3 has at most 4 degenerate quadrics. In case (i) where the pencil has 4
distinct degenerate quadrics, we can map only 3 of the corresponding roots to, say 0, 1, 8,
and are left with one further complex parameter, which describes a continues spectrum of
equivalence classes. The other cases, where the pencil has at most 3 degenerate quadrics,
describe only one single equivalence class:

(i) rp0 : 1q, p1 : 1q, p8 : 1q, pλ : 1qs with λ P Czt0, 1u.

(ii) rp1, 1q, 1, 1s

(iii) r2, 1, 1s

(iv) rp1, 1q, p1, 1qs

(v) r2, p1, 1qs

(vi) r2, 2s
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(vii) rp1, 1, 1q, 1s

(viii) rp2, 1q, 1s

(ix) r3, 1s

(x) rp2, 1, 1qs

(xi) rp2, 2qs

(xii) rp3, 1qs

(xiii) r4s

Figure 43. The 13 cases of pencils of quadrics in CP3 and their base curves.

98



A Pencils of conics
§ A conic in the real projective plane is a set

␣

rxs Ă RP2 ˇ

ˇ qpx, xq “ 0
(

where q is a symmetric bilinear form on R3.
In homogeneous coordinates w.r.t. a basis e1, e2, e3 P R3 the conic can be represented
by its Gram matrix

Qij “ qpei, ejq, i, j “ 1, 2, 3.

It is a symmetric matrix Q⊺ “ Q and
qpx, yq “ x⊺Qy.

§ The dual conic C‹ Ă pRP2q˚ of a conic C Ă RP2 is the set of all points in the dual
space pRP2q˚ that correspond to the tangent lines C. Its Gram matrix w.r.t. to the
dual basis is given by

Q‹
“ Q´1

§ The space of conics is a 5-dimensional real projective space for which the 6 non-
redundant entries of the Gram-matrix can be taken as homogeneous coordinates.

§ A pencil of conics is a family of conics corresponding to a line in the space of conics:
Cλ “

␣

rxs P RP2 ˇ

ˇ q1px, xq ` λq2px, xq “ 0
(

, λ P R Y t8u.

The base points of a pencil is the set of points that is contained in all conics of the
pencil. A pencil of conics has up to 4 base points.
A pencil of conics contains up to 3 degenerate conics given by

detpQ1 ` λQ2q “ 0.

§ A dual pencil of conics is a family of dual conics, which are dual to the conics of a
pencil of conics.

Figure 44. A pencil of conics with 4 real base points and the corresponding dual pencil.
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B Elliptic functions
Definition B.1. A meromorphic function f : C Ñ Ĉ “ C Y t8u is periodic with period
ω P C if

fpz ` ωq “ fpzq for all z P C.

Example B.1. The holomorphic sine and cosine functions have periods 2π:

cospz ` 2πq “ cospzq, sinpz ` 2πq “ sinpzq.

§ If ω P C is a period of f then so is nω for any n P Z.

§ By the uniqueness theorem for holomorphic fuctions the set of periods cannot have a
(finite) accumulation point in C.

§ Thus, along any line ωR gererated by a period ω we can choose the period ω1 closest
to 0, such that Zω1 is the set of all periods along that line.

§ A non-constant meromorphic function cannot have more than two R-linearly indepen-
dent periods, i.e., two periods ω1, ω2 P C with

Im ω2

ω1
‰ 0.

§ If ω1 and ω2 are chosen to be the periods closest to 0 along their lines, respectively,
then the set of periods of f is given by

Λ “ ω1Z ` ω2Z “ tn1ω1 ` n2ω2 | n1, n2 P Zu .

The lattice Λ is the free abelian group generated by ω1 and ω2.

Definition B.2. Let
Λ “ ω1Z ` ω2Z

be a lattice. Then a meromorphic function with

fpz ` ωq “ fpzq for all z P C and ω P Λ

is called an elliptic function with period lattice Λ. For z0 P C the set

Π “ tz0 ` λ1ω1 ` λ2ω2 | 0 ď λ1 ă 1, 0 ď λ2 ă 1u

is called a fundamental parallelogram of f .

§ The choice of generators for Λ is not unique. Two complex numbers ω̃1, ω̃2 P C,
Im ω̃2

ω̃1
ą 0 generate the same lattice Λ, if and only if

ω̃1 “ aω1 ` bω2

ω̃2 “ cω1 ` dω2
, with a, b, c, d P Z, ad ´ bc “ ˘1,

§ The quotient group CäΛ, can be thought as the domain of the elliptic function
f . It is topologically a torus, obtained by identifying opposite edges of fundamental
parallelogram.
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B.1 General properties of elliptic functions
The following theorems summarize the main general properties of elliptic functions.

Theorem B.1. A holomorphic elliptic function is constant.

Proof. Liouville’s theorem for bounded entire functions.

Theorem B.2. An elliptic function has finitely many poles in Π and the sum of its
residues is zero.

Proof. A meromorphic function can only have finitely many poles in the bounded funda-
mental parallelogram Π. We can always choose Π such that its boundary BΠ does not
contain any of the poles. Then due to the periodicity of f we obtain

1
2πi

ż

BΠ
fpzqdz “ 0.

Theorem B.3. A non-constant elliptic function takes on every value in Π the same
number of times (counting multiplicities). This number is equal to the number of poles in
Π (counting multiplicities).

Proof. For any c P C the number of points with fpzq “ c in minus the number of poles in
Π is given by

1
2πi

ż

BΠ

f 1pzq

fpzq ´ c
dz “ 0.

This integral is equal to zero since f 1pzq

fpzq´c
is an elliptic function.

Definition B.3. The number of times a non-constant elliptic function takes on every
value in Π is called its order.

Corollary B.4. The order of an elliptic function is at least 2.

Proof. An non-constant elliptic function must have at least one pole, but it cannot have
a single pole of order 1.

§ Non-constant elliptic functions may be viewed as holomorphic maps

f : CäΛ Ñ Ĉ “ C Y t8u

that take on every value as many times as their order.

Theorem B.5. Let f be an elliptic function of order m. Let c P C and z1, . . . , zm P Π be
all points in Π with fpzq “ c (appearing multiple times according to their multiplicity).
Let w1, . . . , wm P Π be all poles in Π (appearing multiple times according to their order).
Then

z1 ` ¨ ¨ ¨ ` zm “ w1 ` ¨ ¨ ¨ ` wm mod Λ

Proof. Consider the integral
1

2πi

ż

BΠ
z

f 1pzq

fpzq ´ c
dz
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Example B.2. The Weierstraß ℘-function for a given period lattice Λ is an elliptic
function given by

℘pzq “
1
z2 `

ÿ

ωPΛzt0u

ˆ

1
pz ´ ωq2 ´

1
ω2

˙

.

It is constructed to have exactly one double pole per fundamental parallelogram, and thus
it has order 2. Any two points z1, z2 P Π with ℘pz1q “ ℘pz2q satisfies

z1 ` z2 “ 0 mod Λ.

Theorem B.6. Let f , g be two elliptic functions with the same period lattice Λ. If f and
g have the same poles and zeros (with same multiplicities) then

f “ λg

with some constante λ P C.

Proof. The function f
g

is an elliptic function without poles and thus constant.

B.2 Jacobi elliptic functions
§ Denote by

Kpk2
q “

ż 1

0

dt
a

p1 ´ t2qp1 ´ k2t2q
, K1

pk2
q “ Kp1 ´ k2

q.

the elliptic integral of the first kind, and consider the parallelogram with corners

0, K, K ` iK1, iK1,

which is called the the auxiliary rectangle. Its corners are labeled by (in the same
order)

s, c, d, n .

If the elliptic modulus k satisfies 0 ă k2 ă 1 the two values Kpk2q, K1pk2q P R are real,
and the auxiliary rectangle is indeed a rectangle.

§ Jacobi elliptic functions are certain elliptic functions of order two (with two simple
poles and two simple zeros) constructed in the following way:

‚ The function
pqpz, kq with p, q P ts, c, n, du

has a simple zero at p and a simple pole at q.
‚ The pattern of zeros and poles is extended to C by reflection in the sides of the

auxiliary rectangle.14

‚ The periods are chosen as multiples of K and iK1 such that one obtains an elliptic
function of order 2. This leads to periods 2K or 4K in one direction and 2iK1 or
4iK1 in the other direction.

14Indeed the whole Jacobi elliptic function itself is continued across the auxiliary rectangle by the
Schwarz reflection principle.
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‚ The leading coefficient in the series expansion of the zero (or equivalently of the
pole) is chosen to be 1.

§ As the three basic Jacobi elliptic functions one usually takes cn, sn, dn. For these one
obtains

‚ cn is an even function with periods 4K, 2iK1, zeros at K, 3K, poles at iK1, 2K ` iK1,
and cnp0q “ 1.

‚ sn is an odd function with periods 4K, 2iK1, zeros at 0, 2K, poles at iK1, 2K ` iK1,
and snp0q “ 0, sn1p0q “ 0.

‚ dn is an even function with periods 2K, 4iK1, zeros at K ` iK1, K ` 3iK1, poles at
iK1, 3iK1, and dnp0q “ 1.

§ All other Jacobi elliptic functions can be constructed as products and quotients of
these three functions, e.g.,

cs “
cn
sn .

§ For 0 ă k2 ă 1 the values of all Jacobi elliptic functions on the real axis are real

§ The Jacobi elliptic functions can be considered as generalizations of trigonometric
functions. In the limit k2 Ñ 0, in which Kpk2q Ñ π

2 , one obtains
cn Ñ cos, sn Ñ sin, dn Ñ 1.

§ The main Jacobi elliptic functions satisfy the following two quadratic equations:
cn2

` sn2
“ 1, dn2

`k2 sn2
“ 1

Geometrically this means that the curves

t ÞÑ

ˆ

xptq

yptq

zptq

˙

“

ˆ

cnpt,kq

snpt,kq

˘ dnpt,kq

˙

lie on the (and indeed parametrize the entire) intersection curve of the two cylinders
x2

` y2
“ 1, z2

` k2y2
“ 1.

§ The derivatives of the main Jacobi elliptic functions are given by
sn1

“ cn dn, cn1
“ ´ sn dn, dn1

“ ´k2 sn cn .

§ They satisfy the following differential equations

‚ sn solves z2 ` p1 ` k2qz ´ 2k2z3 “ 0 and pz1q2 “ p1 ´ z2qp1 ´ k2z2q

‚ cn solves z2 ` p1 ´ 2k2qz ` 2k2z3 “ 0 and pz1q2 “ p1 ´ z2qp1 ´ k2 ` k2z2q

‚ dn solves z2 ´ p2 ´ k2qz ` 2z3 “ 0 and pz1q2 “ pz2 ´ 1qp1 ´ k2 ´ z2q

§ They satisfy the following addition laws

snpx ` yq “
snpxq cnpyq dnpyq ` snpyq cnpxq dnpxq

1 ´ k2 sn2pxq sn2pyq
,

cnpx ` yq “
cnpxq cnpyq ` snpxq snpyq dnpxq dnpyq

1 ´ k2 sn2pxq sn2pyq
,

dnpx ` yq “
dnpxq dnpyq ´ k2 snpxq snpyq cnpxq cnpyq

1 ´ k2 sn2pxq sn2pyq
.
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