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1

Orthogonal nets

We start with the definition of (regular) nets, which represent parametrizations of sub-
manifolds of RY, in particular,

» parametrized curves in the case M =1,

» parametrized surfaces in the case M = 2, and

» coordinate systems of (some region of) RY in the case M = N.

Definition 1.1.

(i)

(i)

(iii)

Let U < R™ be open and connected. Then a smooth map
x: RM >U - RY, ($1,---y8m) — (81, .., SM)
is called an M -dimensional (smooth) net.

A net  : RM 5 U — RY is called regular if the M tangent vectors
61.’13,...,(9M$ERN

are linearly independent at every point in U, where ¢; = % denotes the i-th partial
derivative.

Let x : RM o5 U — RY be a net and {iy,...,i,} = {1,..., M} some indices. Then
the map

(Siyy vy 8iy) > ®(S1,---58Mm)
for fixed s; with complementary indices is called an n-dimensional subnet of x.
In particular, 1-dimensional subnets are called coordinate lines and 2-dimensional
subnets are called coordinate surfaces.

Remark 1.1. Concerning the “smoothness” of a net, we follow the tradition of classical
differential geometry assuming that all required partial derivatives exist without explicitly
stating. Furthermore, we assume all appearing nets to be regular unless stated otherwise.

Our main object of interest are orthogonal nets.

Definition 1.2.
(i) Anet z:RM 5 U — RY is called orthogonal if

<8¢:c,(3j:c>=0, i,jzl,...,M, Z;éj (1)

(i) For an orthogonal net & : R > U — RY | the functions H; : U — R,

H12=<8l:c,51:1:>, Z=1,,M

are called its Lamé coefficients.

Remark 1.2.
(i) The notion of orthogonal nets is invariant under Mdébius transformations of the

codomain.



(ii) The metric of an orthogonal net, or its first fundamental form, is diagonal and
entirely determined by its Lamé coefficients,

[ =Hids? + ...+ H3ds3,.

Figure 1. Coordinate surfaces of triply orthogonal coordinate systems.

Definition 1.3. A net  : RM > U — R¥ is called conjugate if for every i,j = 1,..., i # j
the three vectors

are linearly dependent.

Remark 1.3.
(i) The condition of being a conjugate net is a condition on every two-dimensional
subnet, and invariant under projective transformations.

(ii) Conjugate nets are governed by partial differential equations of the form
@@w = ajié’ia: + aijﬁja:
with functions a;;,a; : U — R satisfying some consistency conditions if M > 3.

Theorem 1.1 (Dupin). For N > 3 every orthogonal coordinate system x : RY > U — RY
18 conjugate.

Proof. For three distinct 4, j,k = 1,..., N differentiating (1) with respect to s leads to
By permutation of the indices, these are three equations which sum up to



Dividing by 2 and subtracting one of the first three equations again leads to
(O, 0j0kx) = 0.

Thus, for j,k=1,...,N, j #k,

Oj0kx e spanf{ox | i =1,..., N, i # j, k‘}L = span{0d;x, Oy},
due to the regularity and orthogonality of . O]
Example 1.1 (Cylindrical coordinates). Consider the map

x : [0,:0) x [0,27) x (—00,0) — R?, (r,0,2) — (i‘éﬁ;i)
Its partial derivatives are given by

o= (s ), = (), = (

Thus, @ defines a coordinate system at all points with

0
0.
1

J— 1 O
det (0@, 0z, 0.x) = det (Zﬁ?:ﬁ roos o> — £ 0
0 0 1

The coordinate system is orthogonal since
(Orz,0px) = (Opx, 0, ) = {0, Oyx) = 0,
and its Lamé coefficients are given by
H, = |ox| =1, H,=|dz|=r H =]|d.z]|=1

By Theorem 1.1, all coordinate surfaces of @ are conjugate nets. Indeed, the second
partial derivatives are given by

1
0,0, = ;&wm, 0,0.x =0, 0.0, =0.



2 Discrete orthogonal nets

In discrete differential geometry, the classical notion of a net is replaced by that of a
discrete net, which is defined on the square lattice ZM.

Definition 2.1.
(i) A map
x: ZM - RY, n=(ny,...,ny)— x(n)

is called an M -dimensional discrete net.

(ii) Denote the forward and backward difference operators, or discrete tangent vectors,
by
Axz(n) =x(n +e;) —z(n), Aixz(n) = z(n) —x(n —e;)

for any n € ZM and i = 1,..., M, where e; € ZM is the unit vector in the i-th
coordinate direction. A discrete net = : ZM — RV is called regular if for any
n € ZM all choices of M discrete tangent vectors, arbitrarily chosen among A;x(n)
and A;z(n) for alli = 1,..., M, are linearly independent.

(iii) n-dimensional discrete subnets are defined as for smooth nets (see Definition 1.1).

Remark 2.1. Note that for now, we assume discrete nets to be defined on the whole lattice
ZM . In some sense, this replaces the openness condition on the domain assuring that,
e.g., for every point in the domain all necessary neighbors are contained in the domain
as well. Furthermore, as in the smooth case, we assume all appearing discrete nets to be
regular unless stated otherwise.

For the purpose of introducing a novel discrete orthogonality condition, instead of
using single lattices as our discrete domains, we consider pairs of dual lattices. For the

square lattice ZM we call (Z + %)M its dual square lattice (see Figure 2, left), and say
that any two edges

[n,n +e] cZM, [n+%a,n+%a+ej]c(Z+%)M

are dual edges, where n € ZM and o = (01,...,0n) € {+1}M with 0, = 1 and ¢; = —1.
Furthermore, for a point n € Z™, we call the 2 points n + to € (Z + %)M, oe {+1}M

its adjacent points from the dual lattice.

Definition 2.2.
(i) A map
w:ZMu(Z—i—%)M—HRN

is called a pair of dual discrete nets.

(ii) A pair of dual discrete nets is called regular if the two discrete subnets w‘zM and

w‘(m%

)M are regular.
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Figure 2. Left: Elementary cube of the square lattice Z3 and its dual edges from (Z + %)3
Right: Tts image in R? such that each pair of dual edges is orthogonal, e.g., the green and
its dual yellow edge are orthogonal. The two marked yellow edges contribute to a discrete

Lamé coeflicient, combinatorially located at the center of the small gray cube.

For the following, we consider pairs of dual discrete nets (not just each of their two
discrete subnets) as discrete analogs of smooth nets, and introduce the following discrete
orthogonality condition (see Figure 2).

Definition 2.3.
(i) A pair of dual discrete nets @ : Z™ U (Z + 1
pair of dual edges is orthogonal in RY, i.e.,

)M — RY is called orthogonal if every

(Aie(n), Ajz(n”)) = 0, (2)

for all distinct 7,57 = 1,...,.M and n € ZM, n* = n + %a € (Z—i— %)M, where
o= (o1,...,0n) € {1}M with 0, = 1 and 0; = —1.
(ii) For a pair of dual discrete nets @ : ZM U (Z + %)M — RY the discrete (squared)
Lamé coefficients
H:(Z+H)Y SR, i=1,....M

are defined by

Nz(n), Ax(n+10)), oi=1

Hin + 30) = {<Aiw(n),Aiax(n +30)), oi=-1

for all m € ZM and o = (01,...,00) € {1},

Remark 2.2. The discrete orthogonality condition is invariant under similarity transforma-
tions. Furthermore, it is invariant under individual translation of each of its two discrete
subnets in space.

The standard discretization of conjugate nets is given by discrete nets with planar
quadrilaterals.



Definition 2.4. A discrete net = : ZM — R¥ is called conjugate, or a Q-net, if for all
1,7 =1,..., M, i # j the three vectors

AAjx, Az, Ajx
are linearly dependent, or equivalently, if all elementary quadrilaterals
(x(n),z(n+e;),x(n+e; +e;),x(n+e)))
are coplanar (Exercise).

With this, we obtain the following discrete version of Theorem 1.1 (“discrete Dupin’s
theorem”).

Theorem 2.1. Let N > 3 and = : Z" U (Z + %)N — RY be an orthogonal pair of dual

discrete nets. Then its two discrete subnets ac!ZN and a:‘( )N are discrete conjugate

1
Z+2

nets.

Proof. The edge vectors of an elementary quadrilateral
(x(n),z(n+e;),x(n+e +e;),z(n+e;))
lie in the orthogonal complement of the N — 2 linearly independent vectors
Akw(n—i—%a), o=(1,...,1), k # 1,7,

which is of dimension 2. O
Remark 2.3. For a discrete conjugate net o : ZM — RN, M < N, there exists a second
conjugate net x* : (Z + %)M — R¥ such that & and z* together form an orthogonal pair
of dual discrete nets. Thus, from the point of view of a single discrete conjugate net, the
discrete orthogonality is not a constraint. Only if we consider pairs of dual discrete nets

as discretizations of one smooth net does the discrete orthogonality become an actual
further constraint.

2.1 Discrete Mobius invariance

The discrete orthogonality constraint is not invariant under mapping each point of an
orthogonal pair of dual discrete nets by a Mdébius transformation. Nevertheless, one can
replace the points of the pair of nets by orthogonal spheres to obtain a Mdbius invariant
description.

Definition 2.5. Let S be the space of (hyper)spheres in RY. We call a map

S ZM U (Z + %)M — S an orthogonal pair of sphere congruences if each two adjacent
spheres from the dual lattices S(n) and S(n + i0), n € Z, o € {+1}", are orthogonal
(see Figure 3).

Orthogonal pairs of sphere congruences are Mobius invariant. Furthermore, given a
pair of dual discrete nets x : Z™ U (Z + %)M — R we can construct orthogonal spheres
with centers at the points of 2: Choosing the radius for one sphere at n € ZM | the radii of

all spheres at adjacent vertices n* e (Z + %)M of the dual lattice are uniquely determined
by the orthogonality condition. Can this be propagated throughout the whole pair of dual

lattices ZM U (Z + %)M without contradiction?

8



Lemma 2.2. Two spheres in RN with centers x, x* and radii v, r*, respectively, are
orthogonal if and only if
(@, 3" = p + p,
where
1 . 1 ’2

Pzg(@’?—rz)a P :i(‘w* —(7"*)2)~

Proof. The orthogonality condition of the two spheres is equivalent to

lx— x> = r? + (r)? < 2z, z*) = x> —r® + |e*]* — (r*)2

<,
S

Figure 3. Two dual edges from an orthogonal pair of sphere congruences.

Proposition 2.3. Let x : ZM U (Z + %)M — RN be a pair of dual discrete nets. Then
there exists a one-parameter family of orthogonal pairs of sphere congruences with centers

in the points of x if and only if the pair of discrete nets x is orthogonal.
Moreover, let S : ZM U (Z + %)M — & be an orthogonal pair of sphere congruences.

Then the pair of dual discrete nets x : ZM U (Z + %)M
orthogonal.

— RY given by the centers of S is

Proof. Consider a pair of dual edges of the net x, and denote the involved vertices such
that Ayx(n) = z; — x and Ajz(n*) = xF — x* (see Figure 3). Assume that the radius r
at @ is given by p = 1 (|:13|2 —72). Then the two radii at * and x are given by

pr="Lx.x")—p,  pj={z.@])—p.
Now the radius at &; may be obtained in two ways
pi = {xi, ™y — p* = (@;, x*) — (&, x*) + p,
= () = = o) — o)+
Thus,
pi=pi = <~’L‘i—~’fl’3,$? —w*> =0,

which is the orthogonality of the two dual edges. O]



Now an orthogonal pair of dual discrete nets = : ZM U (ZM )* — RY may be trans-
formed in the following way:

» Choose an orthogonal pair of sphere congruences S : ZM y (ZM )* — S with centers
in .

» Transform S under a Mébius transformation to obtain S.

» Take the centers & of the transformed pair of sphere congruences S.

10



3 Curvature line parametrized surfaces

Let  : R? > U — R3 be a smooth regular parametrization of a surface in R3. We denote
its unit normal field by

01 X Oox (51.50) € U.

V(81782> = |§1ZB % a2m|7

The metric on x is described by the first fundamental form
[(v,w) = {(dz(v),dz(w)) = vT (deTdz)w =T (EL)w

for all v, w € R?, where

E = <81CL', 813}>,
F = <(91£C, (’/32.’E>,
G = <62$, (92$> .

Definition 3.1. Let  : R? > U — R3 be a parametrization.
(i) @ is called orthogonal if F' =0, i.e., the first fundamental form is diagonal.
(ii) @« is called conformal if « is orthogonal and E = G.

Remark 3.1. For an orthogonally parametrized surface, i.e., F' = 0, its Lamé coefficients
are given by H? = F and H3 = G.

The “shape” of @ is described by the second fundamental form

(v, w) = —{dx(v), dv(w)) = —vT (dx"dv) w
= —(dv(v),dz(w)) = —vT (dvTdx) w = VT (; g) w

for all v, w € R? where

e = <1/, 8fw> = —{(0v,01x),
f = <V, 81623}’> = — <61V, 82w> = — <(32V, 51.’13>,
g= <1/, 8§w> = —{(0a1, 02 .

The shape operator is the self-adjoint linear map!
S = (dz) 'dv : R* - R?.
It relates the first and second fundamental form in the following way
(v, w) = (v, Sw) = I(Sv,w).
Definition 3.2. A parametrization x : R? > U — R? is called conjugate if
det(01x, Oax, 01 09) = 0.

Proposition 3.1. A parametrization = : R? > U — R? is conjugate if f = 0, i.e., the
second fundamental form is diagonal.

Tt describes the derivative of the normal field v in the domain (or “in coordinates”).

11



Proof. In R3, the condition (v, 0,0,x) = 0 is equivalent to 0,0 € span{d,x, drx}. O
The normal curvature at a point (sy,s) € U in direction v € U is given by

_ (v, v)

~(v) I(v,v)

Thus, there exists an ortho-normal basis e, es € R? of eigenvectors of S:
1(61, 61) = 1(62, 62) = 1, 1(61, 62) = O,
and
Se; = Kieq, Sey = Kaea,

with some k1, ko € R. The two directions e, e5 € R?, or dz(e1),dx(es) € R3 are called
the principal directions of @ at (s1, s2). The normal curvatures in the principal directions
are called the principal curvatures of x at (s1, s2), and are given by

11(617 61) 11(62, 62)
Klea) = I(eg,e1) " wlez) = I(eg,e5) 2
For an arbitrary direction vy = cosfle; + sin fes the normal curvature is given by
IT
k(vg) = M = Ky cos? 0 + kysin’ 6.
I(UG7 U@)

A point at which the principal curvatures coincide k1 = kg is called an umbilic point. At
an umbilic point all normal curvatures coincide. Away from umbilic points the principal
curvatures are the unique and distinct extrema of the normal curvatures.

Definition 3.3.
(i) A curvature line is curve on a surface along principal directions.

(ii) A parametrization is called a curvature line parametrization if its coordinate lines
are curvature lines.

Proposition 3.2. A parametrization ¢ : R> > U — R? is a curvature line parametriza-
tion if and only if one of the following equivalent conditions is satisfied:

(i) x is orthogonal and conjugate.
(ii) The first and second fundamental form are diagonal.
(iii) F = f = 0.

Remark 3.2.
(i) Locally, and away from umbilic points, every surface in R? has a unique curvature
line parametrization.

(ii) The property of being a curvature line parametrization is Mobius invariant.

(iii) A parametrized surface is a two-parameter family of points in R3. Alternatively,
it can be described as the envelope of a two-parameter family of (oriented) planes,
namely its tangent planes. For a regular non-developable surface these two descrip-
tions are equivalent. Yet the characterization of a curvature line parametrization in
terms of its tangent planes is invariant under Laguerre transformations.

12



Definition 3.4.
(i) A parametrization  : R? > U — R3 is called isothermic if it is a conformal
curvature line parametrization.

(ii) A surface is called isothermic if it admits an isothermic parametrization.

Exercise 3.1. Show that a surface is isothermic if and only if its (locally unique, see
Remark 3.2) curvature line parametrization satisfies

with two functions aq, as.

3.1 Triply orthogonal systems and curvature lines

An orthogonal coordinate system @ : R3 > U — R3 in R? is also called a triply orthogonal
system.
From Dupin’s Theorem 1.1 and Proposition 3.2 we obtain:

Theorem 3.3. In a triply orthogonal system = : R® > U — R? the coordinate surfaces
intersect in a curvature line.

Remark 3.3. More generally, two surfaces in R? that intersect orthogonally, intersect each
other in a curvature line.

For i # j we denote by «;; the family of two-dimensional subnets of @ in ij-direction,
i.e., its coordinate surfaces. The first fundamental forms of the coordinate surfaces are
given by

Ej=H},  F;=0, Gi=H.

Let us assume that det(di, Oy, O3x) > 0. Then the normal field of x;; is given by

v, = & _ O
Yo || Hi

with (ijk) cyclic permutation of (123). From this, we obtain

(05, Oxij) = — <Vij, (91-2wij> = _['}k <6ka;, 63a:>
1 1
= Fk <818kaz, (3Za:> = Tf‘fkak <(92w, (?zm)
- Op(H?) _ H;0LH,;
- 2H,  H,

Thus, the second fundamental forms of the coordinate surfaces are given by

 HioH,

H;o,H,
67/] —_— Hk 5 - T .

Hy,

fij =0, 9ij =

13



3.2 Focal nets

Another characterization of a curvature line parametrization is given in the following
proposition:

Proposition 3.4. Let £ : R2 > U — R? be a conjugate net. Then x is orthogonal, i.e.,
a curvature line parametrization, if and only if

det(v,v,01x) =0 and det(v, 0w, 0sx) = 0. (3)

In particular, in a curvature line parametrization the tangent vectors d;x and 0;v are
linearly dependent:
&11/ = —/{16133

621/ = —5252:1:.

The normal direction v defines a line
A — x(s1,82) + Av(sq, s2), AeER

at every point (s1,$2) € U, together constituting the normal congruence of the net x.
Condition (3) means that the two families of ruled surfaces contained in the normal
congruence along the coordinate lines of x

(Si, )\) = 33(81, 82) + )\I/(Sl, 82), 1= 172, (4)

are developable. Or more intuitively, that infinitesimally close normal lines along the
principal directions intersect. Along a curvature line the points of intersection are given
by the centers of the osculating circles, or curvature spheres, which have radii n%-’ 1=1,2.
Together they form the curve of striction of the developable surface (4).

Figure 4. A curvature line parametrized surface (white) and its two focal nets (red and
blue). [Image by Ag2gaeh, CC BY-SA 4.0]

14
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Definition 3.5. Let  : R? > U — R? be a curvature line parametrization. Then its two
focal nets are given by (see Figure 4),

1

U — R3, , x(s1,89) +
y - (81 S2)H (Sl 82) Hi(sl,sz

)V(81’32)7 1 =1,2.

Proposition 3.5. The focal net f; is reqular at each point (s1, s9) € U with d;k;(s1, $2) #
0, and the normal lines of x are the tangent lines of f; in direction i. Furthermore,

6’,1@-(31,52) = O S @fi(sl,sQ) = 0
Proposition 3.6. The two focal nets f; are semi-geodesic conjugate nets.

Remark 3.4. The envelope of a one-parameter family of spheres in R? is called a channel
surface. The curvature lines in one direction of a channel surface are circles, and thus one
of its focal nets degenerates to a curve, i.e., d;f; = 0 for one i = 1,2 (cf. Remark 3.5). In
fact, this property characterizes channel surfaces. A Dupin cyclide is a channel surface in
both directions, i.e., the envelope of two distinct one-parameter families of spheres, and
therefore characterized by the condition that both of its focal nets degenerate to curves.

3.3 Parallel nets

A parallel surface is a surface of constant offset in normal direction to a given surface. A
net  : R?2 > U — R? can be extended to a three-dimensional net by a family of parallel
nets, given by

Z:UxI—R3, (81, 82, 83) — x(s1, 82) + p(s3)v(sy, s2), (5)
with some smooth function p: I — R on an open interval I < R.

Proposition 3.7. Let ¢ : R? > U — R? be a curvature line parametrization. Away
from the focal points (p = %) and points with p' = 0 the three-dimensional net of parallel
surfaces  is reqular.

By Theorem 1.1 a two-dimensional net can be a subnet of a three-dimensional orthog-
onal net, i.e., a triply orthogonal system, only if it is a curvature line parametrization.
Yet every curvature line parametrization can be extended to a triply orthogonal system
by its parallel nets.

Proposition 3.8. Let ¢ : R? > U — R? be a curvature line parametrization. Then the
three-dimensional net of parallel surfaces & given by (5) is orthogonal with the third Lamé
coefficient given by H? = (p’)z, which only depends on ss.

Remark 3.5. In particular, by Dupin’s Theorem 3.3, all parallel surfaces in (5) are curva-
ture line parametrizations. Furthermore, Proposition 3.8 implies that, generally, curvature
line parametrizations are Mobius invariant (cf. Remark 3.2). Indeed, by Proposition 3.8,
a curvature line parametrization x : R? > U — R? can be extended to a triply orthogonal
systems ®. Application of a Mobius transformation maps & to another triply orthogonal
system, and thus, by Theorem 3.3, it maps « to a curvature line parametrization.

15



4 Discrete curvature line parametrized surfaces

Two well-established discretizations of curvature line parametrizations are given by cir-
cular nets and conical nets.

Definition 4.1. Let x : Z?> — R3 be a discrete conjugate net.

(i) The net x is called a circular net if all its elementary quadrilaterals are circular,
i.e., each four points (z(n),z(n +e;),x(n + e; + e;),z(n + €;)) lie on a circle.

(ii) The net « is called a conical net if all four planes corresponding to any elementary
quadrilateral containing a common vertex touch a common cone.

Remark 4.1.
(i) The notion of circular nets is invariant under Mébius transformations.

(ii) Conical nets are more naturally described as maps from the dual lattice into the
set of (oriented) planes of R3. Thus, they correspond to the description of a net
in terms of its tangent planes (cf. Remark 3.2 (iii)). The notion of conical nets is
invariant under Laguerre transformations.

Circular nets and conical nets are intimately related.

Figure 5. Generating a conical net from a circular net.

Given a circular net there exists a canonical three-parameter family of corresponding
conical nets:

» Let « : Z? — R? be a circular net.

» Associate to each edge [n,n + ;] of Z* the length bisecting plane of the segment
[x(n), z(n + €;)].

» Choose a plane at some n € Z? and reflect it in all bisecting planes.

16



This process is well-defined on Z? in the sense that it closes along every cycle. Every four
planes associated to an elementary quadrilateral of Z? intersect in a point, constituting
an associated conical net x* : (Z + 3)? — R3 on the dual lattice.

Vice versa, given a conical net there exists a canonical three-parameter family of
corresponding circular nets:

» Let x : (Z2 + %)2 — R? be a conical net.

» Associate to each edge [n*, n* + e;] of (Z + %)2 the angle bisecting plane of the two
adjacent face planes.

» Choose a point at some n € Z? and reflect it in all bisecting planes.

This process is well-defined on Z? and constitutes an associated circular net x : Z? — R3
on the dual lattice.

We call two nets @ : Z? — R* and «* : (Z + 1)*> — R® obtained by cither of the
previously described procedures a pair of associated circular and conical nets.

Proposition 4.1. A pair of associated circular and conical nets constitutes an orthogonal
pair of dual discrete nets (in the sense of Definition 2.3).

Proof. Consider one of the bisecting planes II. A plane and its reflection in II intersect
in II. On the other hand, the line through a point and its reflection in II is orthogonal to
I1. ]

Thus, orthogonal pairs of dual discrete conjugate nets are generalizations of pairs
of associated circular and conical nets, and we view them as discrete curvature line
parametrizations.

Remark 4.2. While circular nets are invariant under Mobius transformations and conical
nets are invariant under Laguerre transformations, the associated pairs of such nets are
invariant under the intersection of these transformation groups, i.e., similarity transfor-
mations (on the other hand cf. Section 2.1).

4.1 Discrete focal nets

For a pair of dual discrete conjugate nets x : Z2 U (Z + %)2 — R3 we associate to every

vertex n € Z% U (Z + %)2 the unit normal vector of the corresponding dual face plane,
ie.,

v(n) = Arx(n*) x Aqz(n*)
|A1x(n*) x Ayx(n*)|’

where n* =n — (%, %) The corresponding normal lines
ln): X —x(n)+ \v(n), AeR.

together constitute the discrete normal congruence of the pair of discrete nets @, for which
we immediately obtain a discrete version of Proposition 3.4.

Proposition 4.2. Let x : Z? U (Z + %)2 — R3 be a pair of dual discrete conjugate nets.
Then x is orthogonal, i.e., a discrete curvature line parametrization, if and only if one of
the following two equivalent conditions is satisfied:
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(i) det(v, Ajv, Ayx) = 0 and det(v, Aqv, Agzx) =0
(ii) Any two adjacent normals £(n) and {(n + e;), i = 1,2, intersect (see Figure 6).

Proof. Let n € Z* u (Z + %)2 and n* = n + (3,—1) so that Ayz(n) and Az(n*) are
dual edges and therefore
v(n),v(n+e) L Asx(n™).

Thus, under the assumption v(n) # v(n + e;), we obtain
det (v, Ayv, A1) (n) =det (v(n),v(n+e1),Ax(n)) =0 < Ax(n) L Ayx(n™).
0

Figure 6. Patch of an orthogonal pair of dual discrete conjugate nets, its normal congru-
ence, and one quadrilateral of one of its two focal nets.

Remark 4.3. Condition (ii) of Proposition 4.2 may be interpreted in the sense that the
two families of “discrete ruled surfaces” contained in the discrete normal congruence along
the coordinate lines of @ are “discrete developable surfaces”.

Definition 4.2. For an orthogonal pair of dual discrete conjugate nets x : Z* U (Z + %)2 — R?
we define their discrete focal nets f;, i = 1,2, by the points of intersection of neighboring
normal lines (see Figure 6)

fi:n—L(n)nlin+e;). (6)

Proposition 4.3. The two discrete focal nets (6) are discrete conjugate nets.
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Proof. The two points f;(n) and f;(n + €;) lie on the line ¢(n + e;), while the two points
filn+e;) and f;(n+ e; + e;) lie on the line {(n + e; + e;). By Proposition 4.2 these two
lines intersect. ]

Remark 4.4. Comparing with Remark 3.4, we obtain natural definitions for discrete chan-
nel surfaces and discrete Dupin cyclides.

4.2 Discrete parallel nets

Figure 7. Patch of an orthogonal pair of dual discrete conjugate nets, and one layer of a
discrete parallel pair of nets.

For an orthogonal pair of dual discrete conjugate nets x : Z% U (Z + %)2 — R3, a one-
parameter family of discrete parallel surfaces is defined by (see Figure 7)

z:7% 0 (Z + %)3 — R3, (n1,n9,n3) — x(ny,ng) + p(ni, ne,n3)v(ny, ng), (7)

where p : Z? U (Z + %)3 — R is chosen such that for i = 1,2 the edges A;x(ny,ng, ng)
are parallel for all values of ng. This is always possible due to the fact that neighboring
normal lines of @ intersect. Thus, the function p may only be chosen at one point for each
layer n3 = const., and each two coordinate surfaces &(ni,ns,ng = const.) are discrete
conjugate nets with parallel faces.

Similar to the smooth case,  can be extended to a discrete triply orthogonal system
by its parallel surfaces.

Proposition 4.4. Let « : 72 U (Z + %)2 — R? be an orthogonal pair of dual discrete
conjugate nets. Then the pair of discrete three-dimensional nets of parallel surfaces &
given by (7) is orthogonal with the third discrete Lamé coefficient Hz only depending on
ns.
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Proof. The orthogonality of two dual edges A1&(n) and Ay&(n*) follows from parallelity
to the corresponding edges of . An edge Asz&(n) is always parallel to the discrete normal
vector v(ny, ng), which in turn is orthogonal to any dual edge AjZ(n*) and Az (n*).

Let ne Z3 U (Z + %)3, o= (-1,1,1),00=(1,1,1), nf =n + %al, ny =mn+ %0'2,
and consider the two corresponding adjacent values of Hz. Then

Hi(n+ 10y) — Hi(n + 101) = (Azz(n), Asz(nd)) — (Asz(n), Ayz(n}))
= (A3(n), A Asz(nt))

- <A3(n) Az (n1)>
= (Az(n), Ay (n])) — (Az(n), Ai(n] —e3)) = 0.
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5 Confocal conics

Let Iy, F, € R? be two points in the Euclidean plane.

» An ellipse with foci Fi, F5 is a set of points in the plane, such that for every of its
points X € R? the sum of distances to F} and F, is constant:

d(X, Fy) + d(X, Fy) = const. (8)

» A hyperbola with foci Fy, F5 is a set of points in the plane, such that for every of its
points X € R? the absolute value of the difference of distances to F; and F} is constant:

|d(X, 1) — d(X, Fy)| = const.

\fb\y

Figure 8. Ellipse, hyperbola, and their foci.

Ellipses and hyperbolas are conics and thus can be described by quadratic equations:

Proposition 5.1. Leta,be R, a >0, b # 0, and a > b. Let
22 2
—+==1
a b }

Fy = (—f,0), Fy = (f,0), where f == +a —b.
» If b> 0, then C is an ellipse with foci Fy and F.

C = {(x,y) e R?

and

» If b <0, then C is a hyperbola with foci Fy and F.

Vice versa, every ellipse or hyperbola can be brought into this form by a Fuclidean trans-
formation.

Proof. Exercise. O

Definition 5.1. Two conics (two ellipses, two hyperbolas, or an ellipse and a hyperbola)
are called confocal if they have the same foci.
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Consider an ellipse or hyperbola in normal form
2 2
x
— + yo_ 1, a>b.
a b
Then its two foci lie symmetrically on the x-axis, and therefore, any confocal ellipse or
hyperbola must necessarily also be in normal form

2 2 ~
+%=1, > b.

= 8

In particular this means that confocal conics have common principal axes. Now these two
conics in normal form are confocal, if and only if

a—b=a-—b,
and we arrive at the following algebraic description of families of confocal conics:

Theorem 5.2. Let a > b. The family of confocal conics with foci
Fy = (—f,0), Fy = (f,0), where f = +/a —b.

s given by

2 2
* Y 1}, AeR.

- R2 =
Cx {(x’y)e at N bt

Remark 5.1. Note that the family Cy (up to a shift of the parameter \) only depends on
the difference a — b (and not independently on a, b).

Figure 9. Confocal ellipses and hyperbolas.

The family consists of ellipses and hyperbolas, each of these two subfamilies filling the
entire Euclidean plane, respectively.

» C, is empty (or “purely imaginary”) for A < —a.
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» C, is a hyperbola for —a < A < —b.
» C, is an ellipse for A > —b.
The cases A = —a, —b, can be considered as limiting cases:
» C)__, as the line on the y-axis (“degenerate hyperbola”).

» Cy__p as the line on the z-axis. Or the line segment between the two foci (“degenerate
ellipse”) if A \, —b, and the two rays outside the two foci (“degenerate hyperbola”) if

A/ —b.
Note that for A " +00 the ellipses become infinitely large.

Theorem 5.3. Through every point (z,y) € R? not on the coordinate azes (x -y # 0),
there passes exactly one ellipse and one hyperbola from the confocal family Cy.

Proof. Given the point (z,y), and clearing the denominators, the confocal conic equation

2 2
G S
At A bt A

is a quadratic equation in A. Its two roots uy, us are real and lie in the intervals
—a < u; < —b < uo,

which becomes immediately evident from the qualitative behavior of the function

2 2
Xz
LY

A o Ty

]

Remark 5.2. The claim remains true for points on the coordinate axes if we include the
“degenerate ellipses” and “degenerate hyperbolas”.

Theorem 5.4. A confocal ellipse and hyperbola intersect in exactly 4 points, which lie
mirror symmetric with respect to the common principal azes.

Proof. Let —a < u; < —b < ug. Then

2 2
GENRN A
a+u;  b+u 9
P )
+ J—

a+u b+ uy

is an inhomogeneous linear system of two equations in the variables (22,4?). Its solution
is given by

2 (@ + uy)(a + ug)

a—1>b ’

o (b4 ur)(b+ uy)
B b—a

(10)
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Since the right-hand side of both equations is positive, this yields 4 solutions for (z,y):

Va +ui/a + uy

=+
T Ve
y =+ *(b+U1)\/b+U2

Vva—b

Each solution is contained in one quadrant of R?, mirror symmetric with respect to the
coordinate axes. O

Exercise 5.1. How to obtain the solution to the linear system (9)?

(i) The linear system (9) may be written as
22 1 11
A = ith A= [ “f "

() =) o= (25

_ 1 _ 1 _ (ur—uz)(a—b)
det A = (atu1)(b+uz)  (atuz)(b+ur) — (a+u1)(alu5(b+ul)(b+u2)v

Then we compute

Al 1 (b+1u2 b+il) _ 1 ( (atur)(atusz) (b+ur) —(a+u1)(a+ug)(b+u2)>

T detA a;; a+1u1 (u1—u2)(a—b) \ —(atwur)(b+u1)(b+uz) (atuz)(b+u1)(b+usz)

and thus
x? . Afl 1 . 1 (atu1)(atu2)((b+ur)—(b+uz)) \ _ 1 ([ (atui)(atuz)
y2 o 1/ = (ui—u2)(a—b) \ (b+u1)(bt+uz)((atui)—(a+u1)) ) = a—b \ —(b+ur)(b+u2) |~

(ii) Alternatively, define
2 2

z y
= — 1.
9N = St

Then g(u1) = g(uz) = 0 and g(A)(a + A)(b+ ) is a polynomial in A of degree 2 of
which the highest order coefficient is -1. Thus,

g N @+ N)(b+ ) =—=(N—up)(A—uy),
or equivalently,

z? Y (A —u1)(A — us)

SR .
P S CESNESY

g(A) =

Evaluating the residues of g at —a and —b, we obtain

(a+ up)(a + us)

7% = resy—_og(\) =

a—0>b ’
b+ u)b+u
y® = resy=pg(N) = ( bl)_< a 2)-

Theorem 5.5. A confocal ellipse and hyperbola intersect orthogonally.
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Proof. Confocal conics are given by level sets of the function

$2 y2
L .

Iz, y) =

The gradient of f, is given by

2x 2y
gradf,\(x,y) = (a+ )\’b+)\) .

Now let —a < u; < —b < uy, and (z,y) € R? one of the 4 points of intersection of the
corresponding hyperbola and ellipse, i.e. satisfying (9). Then

(grad fy,, (z,y), grad fu,(z,y)) = << 2 2y > ’ ( 2z 2y )>

a+u b+ a+us b+ uy

5.1 Confocal conics as dual pencils

By embedding R? < RP2?, we now look at a description of confocal conics in terms of
projective geometry (cf. Appendix A).
Homogenizing the equation for confocal conics

2 2
GERRINE S
atA bt A

by introducing homogeneous coordinates (x1, x9, x3) with o = i—;, Yy = ﬁ—i we obtain

2 2
Ly )

at X b+

2 _
x3 = 0.

Theorem 5.6. The family of confocal conics is a dual pencil of conics.

Proof. The Gram matrices of a confocal family of conics is given by

1
a+
(QA:: ( g%x )7
—1

and thus, the family of dual conics is given by

_1 a+A
Qy = b )

which and corresponds to the family of equations

(a+ N7+ (b+N)75— 75 =0
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Figure 10. A pencil of conics that dualizes to a confocal family of conics.

We now determine the three degenerate conics in this pencil of conics, and dually, in

the confocal family: The three corresponding roots of

detQy' = —(a+A)(b+A) =0

are given by A = —a, —b, o0.

» A = —a: The equation of the degenerate conic is given by
(a—b)72 + 335 = 0.

Since a — b > 0 these are two complex conjugate imaginary lines 3 = tiv/a — b 25, or
dually, two complex conjugate imaginary points,

which lie on the y-axis, which is the minor principal axis of the confocal family.
A = —b: The equation of the degenerate conic is given by
(a —b)i] — 73 = 0.

These are two real lines x3 = £+/a — bz, or dually the two real points
F, = [J_r\/élfb]

1

They are the two foci of the confocal family, and lie on the z-axis, which is the major
principal axis.

A = o: The equation of the degenerate conic is given by
i+ 5 = 0.

These are two complex conjugate imaginary lines xy = +ix, or dually two imaginary
points at infinity
Zy = |:-|}'L]
+ —0 :

These two points are also called the circle points of similarity geometry.
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Note that the degenerate dual conic consisting of the pair of circle points is independent
of the confocal family, and can be used to characterize confocal conics in the space of dual
pencils: Let

Z=7/,07_

denote the degenerate dual conic consisting of the two circle points.

Theorem 5.7. A dual pencil of conics is a family of confocal conics (including confocal
parabolas and concentric circles) if and only if it contains the circle points Z (as a dual
degenerate conic).

As a final note, we sketch how to obtain the orthogonality of two intersecting confocal
conics (already proven in Theorem 5.5) in this projective setup:

Proposition 5.8. Two Euclidean lines {1 and {5 are orthogonal if and only if its two dual
points {7 and {} are conjugate with respect to the degenerate conic Z*.

Thus, the orthogonality of confocal conics is closely related to the corresponding dual
pencil containg the degenerate conic Z by dualizing the following statement:

Lemma 5.9. Let Cy be a pencil of conics. Let £ be a common tangent line of two distinct
conics Cy, and Cy, from the pencil touching them in the points X1 and X, respectively.
and let ¢ be a line tangent to two conics and in the points X, and X5. Then X; and Xo
are conjugate with respect to every conic in the pencil.

Proof. Exercise. O]
Theorem 5.10. Two intersecting confocal conics intersect orthogonally.

Proof. The two tangents at a point of intersection dually correspond to the two touching
points of a common tangent. By Lemma 5.9, these two points are conjugate with respect
to every conic in the pencil, in particular, to the degenerate conic corresponding to the two
circle points Z. Thus, by Proposition 5.8, the two tangent lines intersect orthogonally. [

5.2 Confocal coordinates

In Theorem 5.3 we have seen that every point (z,y) € R? with x -y # 0 is the intersection
of two confocal conics:

2 2
A ; y_o_q,
x Y

_|_

a+us b+ uy -

which are given by (uq,us) € U, where
U:le XIQ = {(Ul,U2>ER2’—a<'u,1<—b<UQ}.
In Theorem 5.4 we have seen that (11) is equivalent to

2 (@ + uy)(a+ ug)

a—0b ’
, (bt u)(b+ u) (12)
N b—a '
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and thus, vice versa, for each (uj,us) € U there are exactly 4 solutions (z,y) € R?
one in each quadrant of R%. This means, that one obtains a coordinate system in (or a
parametrization of) the first quadrant R2 = {(z,y) e R? | 2 > 0,y > 0} by

_Yatuya+uy

) | x(uy, ug) = N

_, R2 , ((#(u, uz)
Z/l R+7 (u17 Uz) (y(u17 UQ)

(15) Y

A\ 4

Uy

Figure 11. Confocal coordinate system in one quadrant using a “square root parametriza-
tion”.

More generally, any coordinate system, whose coordinate lines are contained in con-
focal conics is called a confocal coordinate system.

Definition 5.2. A coordinate system x : U — R? is called a confocal coordinate system
if its coordinate lines x(s; = const, s3) and x(sq, $o = const) are contained in confocal
conics.

Theorem 5.11. Confocal coordinate systems are orthogonal coordinate systems:
<61£ll, 6258> = 0.
Proof. Follows from Theorem 5.5. m

Exercise 5.2. Show that the Lamé coefficients of (13) are given by

U1 — Ug
4(uy + a)(ug +b)’

U2 — U7
4(ug + a)(ug + b)’

H} = || = H; = |0y |* =

and thus, in particular,

HY  ao(up)
Fg = _al(ul)v CV1<u1) = (ul + a)(ul + b), Oéz(Uz) = (Ug + a)(UQ + b)
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At least locally we can assume that
U= ]1 X ]2

with two intervals I;, [s € R. Then «x is a confocal coordinate system if there exist two

smooth functions
U - Il —>Il, S1 — Ul(Sl), (14)
U9 Ig — IQ, S9 UQ(SQ)
such that (11), or equivalently, (12) is satisfied with (z,y) = @(s1, s2) and u; = u1(s1), uz = us(ss).
Thus, all confocal coordinates are essentially reparametrizations of the “square root
parametrization” (13) along the coordinate lines.
Note that the operation of reparametrization does not have a simple counterpart in
the discrete context. The following reformulation turns out to be more convenient for
finding certain confocal coordinates, and plays an important role in the discretization.

Exercise 5.3. How do the Lamé coefficients change under reparametrization? Derive

gggz;g = 1. Compare the result

differential equations for the functions wu;(s;) such that
with Exercise 5.4.

Theorem 5.12. Let

x:R2o 1 x I, > R?  x(sqy,s0) = z(51,52)

% osa) = (o0

be a coordinate system. Then x is a confocal coordinate system if and only if there exist
functions

fiugi L =R, fo,00: 1, >R

" A1)+ gi(s1)? =a—b,
fo(52)” — ga(s2)® =a—b (15)

such that o Rl
’ a—b "

y(s1,89) = 91(529_2(;2)

Proof. Let x be a confocal coordinate system. Then there exist functions uy,us as in
(14), and we can define the functions fi, f2, g1, g2 by

fils1) = va+ui(si),  fa(s2)
9i1(s1) = V= (b+ui(s1), ga(s2)

Then (15) and (16) are satisfied.
Now assume there exist functions f, fa, g1, go satisfying (15) and (16). Equations (15)
are the compatibility conditions for the system

ui(s1) = fi(s1)® —a, ua(s2) = fa(s2)® —a,
ui(s1) = —g1(s1)* = b, ua(s2) = ga(s2)® — b,

A a + us(ss),
A/ b + UQ(SQ).

(17)

Thus, u1,us can be consistently defined satisfying (17). Then (11), or equivalently, (12)
is satisfied. O
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Thus, finding confocal coordinates reduces to solving the two equation (15). A distin-
guished solution is given by

f1<81) =va— bCOSSl7 f2(82) =va— bCOSh827
g1(s1) = Va —bsinsy, ga(s2) = vVa — bsinh sy,

leading to the confocal coordinate system

{x(sl, S9) = va — b cos s1 cosh sy

18
y(s1,82) = Va — b sin sq sinh s9 (18)

which is naturally periodic in s; and covers the entire plane R2.
Exercise 5.4. Show that the Lamé coefficients of (18) are equal.

Remark 5.3. Essentially the same confocal coordinate system is obtained by considering
the coordinate lines of the holomorphic functions C — C, z — cos z, or z + sin 2.

Figure 12. Confocal coordinate system using a ”trigonometric functions parametrization”.

Some more confocal coordinate systems are shown in Figures 13, 14, 15.
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Figure 13. Confocal coordinate system, diagonally related to two families of straight lines
tangent to an ellipse.

Figure 14. Confocal coordinate system, diagonally related to two families of concentric
circles.
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Y

Figure 15. Confocal coordinate system, diagonally related to vertical lines and a hyper-
bolic pencil of circles.

In (16) we see that each component of a confocal coordinate system factorizes into the
product of functions that each only depends on one of the variable.? Geometrically this
means, that any two coordinate lines of the same family are related by an affine scaling
along the coordinate axes. It turns out, that this property together with the orthogonality
characterizes confocal coordinate systems.

Theorem 5.13. Let

:RQ ST x I, — R2, _ x(‘slaSQ)
v ! ? 2(51,52) (y(51,82)

be a coordinate system that satisfies the following two conditions:

(i) x factorizes:

{x<sl,52> = fi(s1) fals2)

y(31732) = 91(51)92(52)

with some smooth functions fi,g1: 11 — R, fs, 92 : I — R that do not vanish?

fi(s1) #0,91(s1) #0 forany s el

19
fa(s2) # 0,92(s2) # 0 for any sy € I (19)

and whose derivatives do not constantly vanish:*
fi#0, g1#0, [;#0, g3 #0 (20)

2This can also be expressed by 010z logx = 0.

3By this, we consider the coordinate system away from the axes.

4By this, we exclude the case of coordinate lines that are parallel to the axes, which only leads to
square grid parametrizations.
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(ii) x is orthogonal:
<61€C, (9258> = 0. (21)

Then x is a confocal coordinate system, or, as a degenerate case, a polar coordinate
system.

Remark 5.4. Note that the functions fi, f2, 91,92 are only equal to the ones in Theo-
rem 5.12 up to a factor each.

For the proof it is be more convenient to consider the squares of all involved functions.
To this end, we introduce

Fi(s1) = fi(s1)®,  Gils1) = gi1(s1)%,  Fa(s2) = fa(s2)?,  Ga(s2) = gals2)®.
With this we have

ZL‘2 = FlFQ
y2 = GlGQ.

The conditions (19) and (20) become

Fi(s1) #0,G1(s1) #0 forany s;€l;
FZ(SQ) a O,GQ(SQ) # 0 for any So € IQ

and
Fl#0, Gy #0, Fy#0, G,#0

For the orthogonality condition (21) we obtain

<01:L', 02w> =0

< fifafifs + 91929195 =0
= F{FQI + GllGIQ = 0. (22)

To show that x is a confocal coordinate system we need to show the existence of
functions u; and wuy such that (11) holds, or equivalently,

RF, GGy

_12 TR,
a1(81> b1(81>
' Fy GGy

as(s2) 52(32) o

(23)

with functions a,, IN)l, as, 52 such that
ELl—Bl :ELQ—BQICOHSt?&O.
Proof.

» The orthogonality condition as orthogonality of two curves
The orthogonality condition (22) says that the tangent vectors of two planar curves

Fi(s Fs(s
’71(51) : (Gll((sll))> ’ ,72(‘52) : (G?(s?))
are always orthogonal:

(Y1(51),75(s2)y =0 for all sy €lq,s5€ L.
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Since 77 and 74 have no constantly vanishing components, this implies that both curves
~v1 and 7, must lie on straight lines:

Y1(51) = ai(si)vr +wi,  7Y2(s2) = aa(s2)va + wo,
1 1 1 1
with some constant vectors v; = (Z%) LWy = (Z%) , Vg = (1%) , Wy = (gg) e R? with

<U1,U2>:0, 'U%,’U%,U;,U; # 0
(in particular vy # 0, v9 # 0) and two functions aq, .

The case of polar coordinates
We now have

QZ2 + y2 = F1G1 + F2G2

= (m(s1),72(s2)) (24)
= a1(s1) (1, we) + az(82) {ve, wy) + {wy, ws).

If (v, wyy = 0, this implies that the coordinate lines s, = const are circles, and
therefore, the coordinate lines s; = const must be lines through the origin. In this
case, we obtain polar coordinates. Similarly for (vy, w;) = 0.

Thus, let (vy,we) # 0 and (vy, w;) # 0. In particular, this means that wy # 0, wy # 0.

The conic equations
Aiming for (23) we attempt to construct a quadratic equation from

(v1,72(82)) = V1, aa(82)v2 + w2) = {v1,ws)
Using Fi(s1) # 0 and G1(s1) # 0 we obtain
<U1, WQ> = ’U%FQ + U%GQ

1 2
— LRF+ GG,

F Gy
1 2
v v
L RF+ GG,
1 1 2 2 )
vy + wy 1v7 + wi

or equivalently (using {(vy,wsy),v;,vi # 0)

BF, GG,

ai(s1) 51(31) -

with

ai(s1) = (vy, ws) (al(sl) + ﬁ)  bi(s1) = (v, wy) (041(81) + 7“52%) :

1

One similarly obtains

i G1Go
= + =
a2(32) 62(82)

with
Gs(s2) = (U2, w1) (042(32) + Z}f) , ba(s9) = (g, wi) (@2(32) + :ﬁ) :
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» The confocality
The differences

v v

&1(51) - 51(51) = <1)1,w2> v%v%

. (w% w%) vy, wy) det(wy, vy)

and

o (53) — Ba(s3) = (va, 1) (w% _ w%) _ (v, wp) det(ws, v5)

v 03 V303

are constant (do not depend on s; and s3).

To see that @, — by = ds — be, choose (w.lo.g.) vy, vg, wy,wsy such that
|oi]| = lvall = 1, w1 = Mvg, wa = Aoy (25)
with some A, Ay # 0 and use

L1202
(v1,v9) = vyvy + vivy = 0.

Furthermore, a; — by # 0 since (v, wey # 0 and det(wy,v;) # 0, and similarly
as — by # 0.
]

Exercise 5.5. Show that the choice (25) is indeed possible, and use this to show a; — by =
ay — bs.

Remark 5.5. The orthogonality condition (22) may be written as
0102 (2% + y?) = 0105 (F1Fy + G1G2) = 0,
which is equivalent to (cf. (24))
22+ y? = Ai(s1) + Ag(sy)

with some functions Ay, As. In the “square root parametrization” (13), or more generally
using the functions u; and wus defined in (14), one obtains

¥+ y° = ui(s1) + ua(se) + a + b.

Thus, the curves
u1(s1) + ug(s2) = const

are circles (see Figure 16).

Exercise 5.6. Prove all claims in Remark 5.5.

35



Figure 16. The confocal coordinate system with “square root parametrization” is diago-
nally related to concentric circles with center in the origin.
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6 Confocal quadrics

We now consider confocal quadrics in R3.

Proposition 6.1. Any ellipsoid, one-sheeted hyperboloid, or two-sheeted hyperboloid in
R3 (which we collectively call non-parabolic non-degenerate quadric) can be brought into
the following form by a Fuclidean transformation:

> .2 L2
Q—{(ac,y,z)eR3 x+y+z_1}
a b c

with some a >0, b,c #0, a > b > c.
» If a,b,c > 0, then Q is an ellipsoid.
» If a,b >0, ¢c <0, then Q is a one-sheeted hyperboloid.
» Ifa >0, b,c <0, then Q is a two-sheeted hyperboloid.

Definition 6.1. Two quadrics (non-degenerate and non-parabolic) are called confocal if
they have the same principal planes, and the two conic sections in each of these principal
planes are confocal.

Consider a non-parabolic non-degenerate quadric in normal form

.ZC2 2 2,2

—+y—+—:1, a>b>c.
a b c

Then any confocal quadric must necessarily also be in normal form

22 -
+ — =1, a>b>c.
C

and therefore, also

Theorem 6.2. By a Fuclidean transformation, any family of confocal quadrics can be
brought into the form:

.1‘2 y2 22

P WL A WL W

QAz{@ﬂh@eR3 1}, AeR. (26)

with some a > b > c.

Remark 6.1. Note that the family Q, (up to a shift of the parameter A) only depends on
two of the differences, say a — b and a — ¢ (and not independently on a, b and ¢).
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Figure 17. A confocal ellipsoid, one-sheeted hyperboloid, and two-sheeted hyperboloid.
The family consists of ellipsoids, one-sheeted hyperboloids, and two-sheeted hyper-
boloids each of these three subfamilies filling the entire Euclidean space, respectively.
» Q) is empty (or “purely imaginary”) for A < —a.
» O, is a two-sheeted hyperboloid for —a < A < —b.
» @, is a one-sheeted hyperboloid for —b < A < —c.
» Q, is an ellipsoid for A > —c.

The cases A = —a, —b, —c can be considered as limiting cases, which we study in more
detail in the projective description of the family as a dual pencil of quadrics.

Theorem 6.3. Through every point (x,vy, z) € R not on the coordinate planes (x -y -z #0),
there passes exactly one ellipsoid, one one-sheeted hyperboloid, and one two-sheeted hy-
perboloid from the confocal family Q.

Proof. Exercise (similar to Theorem 5.3). O

Theorem 6.4. A confocal ellipsoid, one-sheeted hyperboloid, and two-sheeted hyperboloid
intersect in exactly 8 points, which lie mirror symmetric with respect to the common
principal planes.

Proof. Exercise (similar to Theorem 5.4). O
Theorem 6.5. If two confocal quadrics intersect, they intersect orthogonally.

Proof. Exercise (similar to Theorem 5.5). O

6.1 Confocal quadrics as dual pencils
By embedding R® < RP?3, we look at the projective description of confocal quadrics.
Homogenizing the equation for confocal quadrics
72 y? 2
+ + ~1
a+A b+ c+A
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. N . : _ 1 — X2 — Z3
by introducing homogeneous coordinates (xy, xa, x3,x4) with z = Ty =3z =3 we
obtain ) ) )

27 Lo T3 2 _

+
a+AX b+ A c+ A
Thus, the corresponding Gram matrix and its inverse are given by

1

atXx L a+A
— [y -1 _ b+
Q)\ = bFA 1 ) Q)\ - ( c+A ) )
-1

c+A
—1

and it holds again:
Theorem 6.6. The family of confocal quadrics is a dual pencil of quadrics.

We now determine the four degenerate quadrics in this pencil of quadrics, and dually,
in the confocal family: The four corresponding roots of

det Q' = —(a+A)(b+N(c+X) =0
are given by A\ = —a, —b, —c, 0.
» A\ = —a: The equation of the degenerate quadric is given by
(a—b)73 + (a — )33 + 27 = 0.

Since @ — b > 0 and a — ¢ > 0 this is a imaginary cone with real vertex [1,0,0, 0], or
dually (and in affine coordinates), an imaginary conic in the principal plane x = 0:
2 2

Yy
+
a—b a-—c

+1=0, x=0.

» A = —b: The equation of the degenerate quadric is given by
(a—b)3? — (b—c)is — 22 = 0.

This is a cone with vertex [0, 1,0, 0], or dually (and in affine coordinates), a hyperbola
in the principal plane y = 0:

y = 0. (27)

» A = —c: The equation of the degenerate quadric is given by

(a— )@ + (b—c)i5 — a7 = 0.

This is a cone with vertex [0,0, 1,0], or dually (and in affine coordinates), an ellipse
in the principal plane z = 0:

to— =1, 2=0. (28)
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» A = o0: The equation of the degenerate quadric is given by
i1+ 35+ 35 = 0.

This is an imaginary cone with real vertex [0, 0,0, 1], or dually, an imaginary conic in
the plane at infinity:
v+ 15 +a5=0, x4=0,

This is also called the absolute conic Z of similarity geometry, which does not depend
on the confocal family.

Theorem 6.7. A dual pencil of quadric is a family of confocal quadrics (including limiting
cases such as concentric spheres) if and only if it contains the absolute conic Z (as a dual
degenerate quadric).

Remark 6.2. The projective description of confocal quadrics can be used exactly as in
the two-dimensional case (Theorem 5.10) to show that two confocal quadrics intersect
orthogonally (Theorem 6.5).

6.2 Focal conics

In the projective description of confocal conics, the common foci, which are located on
the major axis, appeared as a degenerate conic in the dual pencil of conics. Thus, by
comparison, we can say that in the three-dimensional case, the role of the foci is taken by
the two real conics (28) and (27), which are located in two of the principal planes.

Remark 6.3. In the two-dimensional case the other pair of imaginary points on the minor
axis may be understood as a second pair of foci, while in the three-dimensional case the
imaginary conic in the remaining principal plane may be understood as a third focal conic.

A closer look reveals, that that two conics (28) and (27) are located in orthogonal
planes while containing each others foci, respectively.

Definition 6.2. Two (planar) conics C; and Cy in R? are called focal conics if the two
planes which contain them are orthogonal, the foci of C; lie on Cs, and the foci of Cy lie
on Cy.

Figure 18. Two focal conics.
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Theorem 6.8. Two conics

=1, a>b

> b

I
\.)—\
™

in normal form in the xy-plane and xz-plane are focal conics if and only if
a=a—Db, b= —b.
Proof. Exercise. O

Proposition 6.9. Let C1,Cs be a pair of focal conics in R3. Then Cy consists of all vertices
of right circular cones (cones of revolution) that contain Cy, and vice versa, Cy consists of
all vertices of right circular cones that contain Cs.

Remark 6.4.
(i) This means that from a point on Cy the conic C; looks like a circle.

(ii) Moreover, it holds that the axis of the cone is the tangent of the focal conic in its
vertex.

For the proof we recall the definition of Dandelin spheres. All ellipses and hyperbolas
arise as planar sections of right circular cones. Let R be a right circular cone and P a
plane that is not parallel to a tangent plane of R and does not contain the vertex of R.
Then the intersection C :== R n P is an ellipse or hyperbola, The two spheres that touch
R in a circle and P in a point are called Dandelin spheres.

Figure 19. Dandelin spheres of an ellipse cut from a right circular cone.

Proposition 6.10. The two Dandelin spheres touch the conic in its two foci.

Proof. We consider the case where C is an ellipse. Let F; and F, be the two touching
points of the Dandelin spheres, and C and Cs the two touching circles of the cone R.
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Consider a point X € C and the (straight line) generator ¢ of the cone passing through X.
Let X1 = ¢ n Cy and Xy = £ n C5 be the intersection points with the touching circles.
Since all touching segments to a sphere from a point have equal lengths, we obtain
that
d(X, 1) +d(X, Fp) = d(X, X1) + d(X, X2) = d(X1, X>)

is constant for all points on C. Thus C is an ellipse with foci I} and F5. O

Exercise 6.1. Prove the case where C is a hyperbola.

Figure 20. Right circular cone containing an ellipse. Its vertex is located on the focal
conic.

Partial proof of Proposition 6.9. Let C; be an ellipse with points A, B on the principal
axis and foci E, F' (see Figure 20). Let R be a right circular cone with vertex S that
contains C;. We only show that S is contained in the focal conic C,.

For symmetry reasons S must lie in the plane that contains Cy. Consider the Dandelin
sphere that touches the plane that contains C; in the point F. Let Ay, B; be the two
touching points of the Dandelin sphere with the cone R in the plane that contains Cs.

Then d(A,S) = d(A, Ay) + d(As, S) = d(A, F) + d(By, S)

d(Bv‘S’) = d(B7B1) + d(Bla S) = d(B7F) + d(Bla 5)7
and therefore
d(A,S)—d(B,S) =d(A,F)—d(B,F) =d(E, F) = const,
which describes a hyperbola with foci A, B which contains the points F, F. ]

Exercise 6.2. Complete the proof in the reverse direction, and for the case where the
circular cones contain the hyperbola.

Definition 6.3. Let Q be a (non-degenerate non-parabolic) quadric in R®. Then the pair
of focal conics in the family of confocal quadrics of Q is called the focal conics of Q.

Proposition 6.11. A tangent cone from any point of a focal conic to its quadric is a
right circular cone (if it exists).

42



Idea of the proof. The family of tangent cones from a fixed point to a dual pencil of
quadrics is a (degenerate) dual pencil of quadrics. It contains one of the focal conics (and
thus a right circular cone) and the absolute conic Z at infinity. Thus, the entire family
consists of (coaxial) right circular cones. ]

Remark 6.5. By also considering imaginary (right circular) tangent cones, the focal conics
of a quadric consist of exactly all vertices of right circular tangent cones to the quadric.

Remark 6.6. The focal conics allow for a “string construction” of ellipsoids, generalizing
the property (8) of ellipses (see Figure 21).

Figure 21. String construction of an ellipsoid from a pair of focal conics.

6.3 Confocal coordinates

In Theorem 6.3 we have seen that every point (z,y,z) € R® with z -y -2 # 0 is the
intersection of three confocal quadrics:

132 yQ 22

+ +
a+u b+u b+ u
2 2 2
x z
+ L
a+uy b+uy b+ ug
22 2 2

- +
a+uy b+us b+ ug

?

—1, (29)

which are given by (uq, us, u3) € U, where
U =T, xIy x Iy := {(ul,u2,u3)eR3 ‘ —a<u < -b<uy< —c<u3}.

In Theorem 6.4, we have seen that, vice versa, for each (uy,us,u3) € U there are exactly
8 solutions (z,y, z) € R, one in each octant of R3, and mirror symmetric with respect to
the coordinate planes. This, is evident from the fact that the solution of the linear system
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(11) is given by
2 (@ + uy)(a+ u2)(a + ug)
(a—0b)(a—rc) ’
2 _ (b+u1)(b+u2)(b+u3) (30)
Y b—a)b—c
o (c+u)(c+us)(c+ us)
(¢c—a)(c—0b)
This means, that one obtains a coordinate system in (or a parametrization of) the first
octant R3 = {(z,y,2) e R® | 2 >0,y > 0,z > 0} by

Uu— Ri, (U1,U27U3) — 1Y
z

_Va+uy/a+ ugn/a + ug
Va—bya—c (31)
Lytunu - \/—(b—i—ul)\/b—i—uz\/b—i—ug
yluy, uz, ug) = Ja—bvb—c
_ v/ —(c+ up)/—(c + uz)/c + ug
\ Ja—cvb—c

Figure 22. Three quadrics and some parameter lines from a confocal coordinate system
in one octant using a “square root parametrization”, and then reflected to all octants.

Definition 6.4. A coordinate system x : U — R? is called a confocal coordinate system if
its coordinate planes x(s; = const, 9, S3), ®(s1, s2 = const, s3), and x(s1, s9, 3 = const)
are contained in confocal quadrics.

Theorem 6.12. Confocal coordinate systems are orthogonal coordinate systems:
(O, 0;x)y =0 forall i=1,2,3, i+ }j.
Proof. Exercise (follows from Theorem 6.5). O
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Remark 6.7. By Theorem 1.1, confocal quadrics intersect each other in curvature lines.
Thus, every confocal coordinate system also yields curvature line parametrizations of the
quadrics it contains as coordinate surfaces.

Exercise 6.3. Show that (31) satisfies the Euler-Poisson-Darboux system

@@m = (ﬁjm — &m) .

Q(UZ — U]’)
Start by showing that the partial derivatives of the x (and similarly y and z) satisfy

T

T e

Exercise 6.4. Show that the Lamé coefficients of (31) are given by

2 _ (ur — ug)(uy — us) 2 _ (uz — ug)(uz — uq)
V4w Fa)(ug +0)(uy +¢)) 2 A(ug + a)(ug + b)(ug +¢)’
2 _ (us — u1)(us — us)

5 4(us + a)(us + b)(us + ¢)’

and thus, in particular,

(w; + a)(u; + b)(w + )

(ur — )

H;? vk (uy, ug)
= O, (Ug, Uy ) =
HJQ aik(ui,uk) ) lm( Iy m)

Conclude that quadrics are isothermic surfaces (see Defintion 3.4 and Exercise 3.1).

Exercise 6.5. Show that the coefficients of the second fundamental forms of the coordi-
nate surfaces (see Section 3.1) of (31), are given by

1 Ui — Uy 1 Uj — Uy
€ij = 75 ) i 71 )
7 Hp4(us + a)(us + b)(u; + c) Jij Hy 4(u; + a)(u; + b)(u; + ¢)

and thus, in particular,

eij _ Biluy)
— = — : Bi(u;) = (u; + a)(u; + b)(u; + ¢).
Gij ﬁz(uz)
The principal curvatures of the coordinate surfaces are given by ;—J, (g;—J Show that the
(%] %]

principal curvatures coincide if and only if u; = u;, and conclude that the umbilic points
of quadrics are the intersection points with its focal conics.

At least locally we can assume that
U= ]1 X ]2 X [3

with three intervals I, I3, I3 € R. Then @ is a confocal coordinate system if there exist

three smooth functions
w =TIy, 51— u(s1),

)
ug : Iy = Ty, S9 > us(S2),
ug s Iy — I3, s3> us(ss),
such that (29), or equivalently, (30) is satisfied with (z,y, 2) = ®(s1, $2, s3) and u; = uy(s1),
Uy = us(S2), ug = uz(ss).
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Exercise 6.6. How do the coefficients of the second fundamental form change under
reparametrization along the coordinate lines? Derive differential equations for the func-
tions u;(s;) such that

2 g B g, B,
gi12 913 923
Theorem 6.13. Let
x<81782753)
z:R¥o x I, x I — R, x(s1,82,83) = | y(s1, s2,53)
2(81)82783>

be a coordinate system. Then x is a confocal coordinate system if and only if there exist
functions
Jiguhi it hh >Ry fo,g0,he i b > R, f3,03,hs 1 I3 > R

with
f1(81)2 + 91(51)2 =a —b, f1(31)2 + h1(81)2 =a—¢,
fa(52)” = ga(52)* = a = b, fa(s2)” + ha(s2)* = a — ¢, (32)
f3(s3)” — gs(s3)® = a—b, fs(s3)® — hs(s3)” =a—c,
such that )
oo, 50, 50) = 2000l
{10, 55) = 205 (33
(S . ) hl(Sl)hz(SQ)hs(Ss)
b Va—cvb—c
Proof. Exercise (similar to Theorem 5.12). Note the fundamental relations
uy(s1) = fi(s ) - a, Uy (82) = f2(32)2 —a, us(s3z) = f3(33)2 - a,
uy(s1) = —91(81)2 —b, uy(sy) = 92(82)2 —b, us(s3) = 93(53)2 — b,
(51) —h1(81)2 — C, u2(52> = h2(52>2 — C, U3(83) = hg 83)2 —C
O

Thus, finding confocal coordinates reduces to solving the three pairs of quadratic

equations (32). A distinguished solution is given in terms of Jacboi elliptic functions (see
Appendix B.2):

fils1) = Va—bsn(su, k), f2<52>=m®(2’k2) falss) = msnui ka)

dn(ss, k
g1(s1) = Va—ben(si, k1), ga(s2) = Vb —cen(sy, k2),  gs(s3) =+ Sn((s3 kr3))

3, 3

dn(sq, k cn s3, k
mals1) = va— TR0 R ) = VB con(ss, k), hass) = va = coniin )
kl Sn(537k3)

(34)
with moduli 0 < k; < 1,7 =1,2,3:
a—>b b—c
k2 = — k3=1-k = — ks = ki,



The associated confocal coordinate system

Figure 23. Three quadrics and some parameter lines from a confocal coordinate system
using a “Jacobi elliptic functions parametrization”.

Theorem 6.14. Let

.’1’}(81,82,33)
T : ]RS ) Il X IQ X Ig — R3, ZE(Sl,SQ,Sg) = y(81,82,83)
z(s1, 52, 83)

be a coordinate system that satisfies the following two conditions:

(i) x factorizes:
(81, 82, 83) = fi(s1)f2(s2) f3(s3)
y(s1,52,53) = g1(51)g2(52)g3(s3)
2(s1, S2, 83) = hi(s1)ha(s2)hs(s3)

with some smooth functions f;,g;,h; - I; — R,i = 1,2, 3 that do not vanish?
filsi) =0, gi(s:) # 0, hi(s;)) #0 forall siel;, i=1,2,3 (35)
and whose derivatives do not constantly vanish:S

fi#0, ¢:#0, h;#0, foral i=1,2,3 (36)

(ii) x is orthogonal:

(O, d;2)y =0 forall i,j=1,2,3 i#j (37)

5By this, we consider the coordinate system away from the coordinate planes.
6By this, we exclude the case of coordinate surfaces that are contained in planes, which leads to square
grid and cylindrical coordinates.
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Then x is a confocal coordinate system (including degenerate cases in which two or three
of the semi-azes coincide).

Again for the proof, we introduce the squares
Fi=f} Gi=g? Hj=h for i=12,3.

With this we have

2 = FyF,F,
y2 = (1G2G3
22 = HlHQHg

The conditions (35) and (36) become
Fi(s;)) #0, Gi(s;) #0, Hi(s;)#0 forall s;el;, i=1,2,3

and
F/#0, G,#0, H#0 foralli=1,2,3.
For the orthogonality conditions (37) we obtain
FIFFy + GGGy + H|H,H; = 0,
FLF,F, + GyGYGYy + HyHH, = 0, (38)
FIFyFy + G1GoGYy + H{HyHy = 0.

To show that « is a confocal coordinate system we show that three equations

F1F2F3 G1G2G3 H1H2H3

=1, for i=1,2,3 (39)

hold with some functions aj, lN)i, ¢;, which satisfy

fori,j =1,2,3, 1 # j.
Proof.

» The orthogonality condition as orthogonality of curves and surfaces
Introducing the three curves

Fi(ss) ]
vi(s;) = Gi(ss) |, for i=1,2,3
H;(s;)

and the three surfaces

Fj(s5)Fr(sk) N ) )
Li(sj,8K) == | Gils))Gx(sk) |, for (ijk) cyclic permutation of (123)
Hj(s;)Hp(sk)

the orthogonality conditions (38) can be written as

<’yz,7 aJFZ> =0 for Za] = 17273; 1 # ]
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By Lemma 6.15 the two tangent vectors 0;I';, diI'; of the surface I'; are linearly inde-
pendent, and thus, 7; must lie on a line (while I'; must lie in a plane):

’)/Z(SZ) = Oéi(Si)UZ' + w;

1 1
U’L wi
with some constant vectors v; = (v?) ,W; = (w?) e R3 with
v w3
1.2 3
v;,v;,v; # 0
and non-constant functions «; : I; — R.

By Lemma 6.16 (40), the vectors v;, w; satisfy the following additional conditions:”

(v1,v2,v3) = (U1, V2, ws) = {V1, Wa, v3) = (W, V2, v3) =0,

where (-, -, -) denotes the trilinear form
ol v} o3 111 2,2 2 3,33
Cou I IS S I = V1UyV3 + V]U5V5 + VjU,V5.
3 3 3
1 Vg U3

The degenerate cases

As the reader may verify during the following of the proof, the cases in which one
or two of the constants (v;, w;, wy) vanish lead to the degenerate cases of confocal
coordinates in which two or three of the semi-axis coincide. We exclude these cases
from our investigation and only focus on the non-degenerate cases. Thus, we assume

on R3.

<U17w27w3> # 07 <'LU1,'U2,U)3> # 07 <U)1,'LU2,U3> # O

The quadric equations
Aiming for (39) we attempt to construct a quadratic equation from

(U1, T1) = (o1, 72,73) = V1, Qs + wa, azvs + w3) = {v1, Wa, w3)
Using Fi(s1) # 0, Gi(s1) # 0, Hi(s1) # 0 we obtain

(vy, Wy, w3y = ’U%FQFg + v%Gng + v:ngHg

vl vi it
= —HMEKF;+ —GGyGs + —=—H{HH.
|, et o GiGeGy 4 - HiH Hy
vi vi v}
=——— —F i+ ———5G1GyGs + ——— H 1 HyHj.
avt +wl TP T a2 w2 T 3 T

Treating (v, I's) = {wy, v, w3) and (v, ') = {wy, vy, w3) in a similar way, we obtain
altogether (using (v;, w;, wyy, v, vZ, v3 # 0)

L A A e A

F1F2F3 G1G2G3 n H1H2H3 1

EL1<SZ) bZ<SZ) 6z(sz> 7

i=1,2,3

"These generalize the orthogonality condition (v, ve) = 0 from the two-dimensional case.
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with

w?
s(s:) = Cvi, g, ) (%<5¢> * > ’
- w?
bi(si) = {vi, wj, wi) | as(s;) + 22 )
i w}
Ci(si) = (vi,wj, wi) | a5(s;) + )
where 7, 7,k = 1,2, 3 distinct.
» The confocality
The differences . )
- w; W
~z' i_bi i) = Vi, Wy, — 5
) = Bls) = Gy (4 21
and 1 3
- - w; w;
ai(si) - Ci(si> = <Uz'7 wy, wk> (vl - vs)

are constant.

Furthermore, by Lemma 6.16 (41), we find that
ai—bi=a;—bj#0, a—&G=a;—¢&#0
fori, 7 =1,2,3,1 # j,
[l

Lemma 6.15. Fori = 1,2,3 the two tangent vectors 0;1;, 0xI'; in the proof of Theorem
6.14 are linearly independent.

Proof. We show this for ¢ = 1. The cases i = 2,3 follow analogously. The two tangent
vectors under consideration are given by

F}Fy F,F}
Oy = | G4Gs |, O3 = | GGy ).
H}Hs HyH},

Multiplying these by the non-singular matrix

1/, Fy
1/G» G
1/H, Hy
Fy/R, i/f2 Fy/Fy F3/fs
G;/Gz == 2 gg/gz , G.{;/Gs == 2 92/93 ;
H;/H2 9;/92 H;/H:«x 91/3/93

Now multiplying by the non-singular matrix

we obtain

1 <f1fzf3 )
919293
2 hihahs
we obtain
f1fsfs fifafs
919593 = 5233, 919295 = &3:1:,
h1hbhs h1hahl,
which are linearly independent since x is a coordinate system. O]
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Lemma 6.16. The vectors v;, w;, i = 1,2,3 in the proof of Theorem 6.14 satisfy
<7117 V2, U3> = <v1,v2,w3> = <Ul7w2, U3> = <w1, V2, U3> =0, (40)

and consequently

v v v

wl w™m wlA w™
(i, wy, wi) (; - &) = (vj, w;, W) (vl] - fn) # 0 (41)
J J
fori, 3,k =1,2,3 distinct and [,m = 1,2, 3.
Proof. The orthogonality conditions (38) can also be written as
aiaj<717727’73>20 for 4,7=1,2,3 1#

which is equivalent to

(1,72, 73) = Ai(s1) + Aa(s2) + Az(s3)

with three functions A, As, A3. Substituting v;(s;) = «;(s;)v; + w; into {y1,72,73) we
obtain
<CY1U1 + Wy, Qg + Wo, 3V3 + ”LU3> =

araza (U1, V9, U3) + arag (U1, Vg, W3) + asas {Wy, V2, V3) + azay {V1, Wa, V3)

+ay (v, wa, w3) + g {wy, v2, w3) + g {wy, Wa, V3) + (Wy, Wa, W3) .

Since a; are non-constant functions, the right-hand side is a sum of functions each de-
pending only on one variable, if and only if (40).
Thus, we have

{ovy + wy, avy + Wa, Az3V3 + W3)

= ay (U1, Wa, W3) + g (W1, Vg, w3) + az (W, w2, vs) + {wy, wa, w3) .

Since «; is a non-constant function, this identity holds for two different values of «;, and
therefore, by linearity, for a; being replaced by any real number, i.e.,

</\1’U1 + w1, /\2’02 + Wy, /\3’03 + w3>

= A1 (1, wa, w3) + A9 {wy, Vo, w3) + Az {wy, wa, v3) + (Wy, Wa, W3) .

for any Ay, Ao, A3 € R. In particular, for

w w w
AN = ——1, Ag=——2, =1
1 ol 2 o 1 o
with [, m,n = 1,2, 3 distinct, which leads to
l m n

w w w
0= v—ll<v1,w2,w3> + UTQn {wy, v, w3) + v—g<w1,w2,z}3> — (w1, wa, w3) .
1 5 3

Taking the differences of any pair of these equations leads to the qualities in (41).

Now assume that . )
w: W
<Ui7wj?wk> (i o ;> =0

U; U;
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for one and therefore all i = 1,2,3. Then, by the assumptions (v;, w;, wyy # 0 and

v}, v} # 0, this is equivalent to

ol w!
det <v§ w;) = 0.

Since
— ol 1 N 2
F; = av; +w;, G; = av; + w;,

this implies that F; and G; are proportional for all i = 1,2, 3, and therefore,

T
— = const,
Y

which contradicts @ being a coordinate system. Similarly, if any of the other terms

m

wl w: .
(v, Wy, Wy <TZ — & | vanishes. O
T 2

6.4 Generalization to RY

A normal form for confocal quadrics in RY is given by

N 1'2
L =1 AeR
Zai-i-/\ }7 ©

=1

Q)\ = {(I17"'7x]\7) ERN

with some a; > ay > -+ > ay. With this, all claims about confocal quadrics from this
section (including their proofs) easily generalize to arbitrary dimension.

Theorem 6.17. The family of confocal quadrics is a dual pencil of quadrics.

Theorem 6.18. If two confocal quadrics intersect, they intersect orthogonally.

For a point (z1,...,zy) € RY not on the coordinate hyperplanes (z;-...- 2y # 0),
the equation
N 2
Dy = !
) a; + A
has N real roots uq,...,uy lying in the intervals
— <U <A <U<..., < —any <UN.

These N roots correspond to N confocal quadrics (of different type) of the family Q,:

N N 2
xi .
X1,...,TN)E w = =1, 1=1,...,N
(17 7N) QQZ ;ak_i_ui
N
o 2= Hin(uita)
Hi#k(ak —a;)
Theorem 6.19. Through every point (x1,...,xx) € RY not on the coordinate hyperplanes
(x1-...-xy #0), there passes exactly one quadric of each type from the confocal family

%

Theorem 6.20. N quadrics of different type from a confocal family Q, intersect in exactly
2N points, which lie mirror symmetric with respect to the common principal hyperplanes.
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Definition 6.5. A coordinate system  : RN o U — R¥ is called a confocal coordinate
system if its coordinate hyperplanes x(s; = const), i = 1,..., N, are contained in confocal
quadrics.

Theorem 6.21. Let
.T1<81, ey 8N>
x:RY oI x...xIy—>RYN, x(sq,...,8y) =
TN (81,5 8N)
be a coordinate system. Then x is a confocal coordinate system if and only if there exist

functions
fFonL - R, ik=1,...,N,

with
f¢1(3i>2 - ff(Si)Q =a; —ag, k<1,
S+ fE(s)? = a1 —a, k>4,
such that N o
H'—1 fz (Sz)
Tp(s1, 00, 8N) = St
Hi#k<ak — a;)
Theorem 6.22. Let
.Tl(Sl, ey 8N>
x:RY oI x...xIy—>RYN, x(sq,...,5y) =
fL’N(Sl, ey SN>

be a coordinate system that satisfies the following two conditions:
(i) x factorizes:

f»k(Si), kzl,,N

1

1=

Tp(S1,...,8N) =
i=1

with some smooth functions fF:I; —» R,i=1,..., N that do not vanish:?
f¥(si) #0,forall s;el;, i=1,...,N
and whose derivatives do not constantly vanish:®

(fFY #0, forall i=1,...,N

(ii) x is orthogonal:

(O, 0y =0 forall i,j=1,....N i#j]

Then x is a confocal coordinate system (including degenerate cases in which some of the
semi-azes coincide).

8By this, we consider the coordinate system away from the coordinate hyperplanes.
9By this, we exclude the case of subnets that are contained in affine subspaces, which leads to square
grids and generalized cylindrical coordinates.
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7 Discrete confocal quadrics

To obtain a discretization of confocal quadrics we apply the characterizing properties from
Theorem 6.22 for (smooth) confocal coordinates to Definition 2.3 of discrete orthogonal
nets.

Thus, consider applying the factorizability condition

ze(n) = ff(n1) fi(n2) - fy(ny), k=1,...,N,

to an orthogonal pair of dual discrete nets « : ZV U (Z + %)N — RY defined on the dual
pair of square lattices Z" and (Z + %)N Then the functions f¥ must each be defined
on %Z, and thus, the net & can be extended to all of (%Z)N. The two dual lattices Z™

and (Z + %)M are just one pair of dual sublattices of (%Z)M. More generally we call two

lattices
M+ 16, ZM+

a pair of dual sublattices of (%Z)M, where

0= (0,....00) {0, 3™  §=(1—-06p,...,1—6y)e{0,1}M

The stepsize % square lattice (%Z)M has 2~ such pairs of dual sublattices.

Definition 7.1.
(i) A map

z: (32)" - RY

M
)

is called a stepsize % discrete net.
(ii) A stepsize 1 discrete net is called regular if all of its 2 (stepsize 1) discrete subnets

are regular.

2M71

(iii) A stepsize % discrete net is called orthogonal if all of its pairs of dual discrete

subnets are orthogonal.

Remark 7.1.

(i) For a general stepsize % discrete net, the discrete orthogonality constraint (2) only
correlates the two nets from each pair of dual discrete subnets. The 2M~1 different
pairs of dual discrete subnets are not mutually correlated by this condition unless
an additional constraint, like the factorizability, is introduced.

(ii) Each of the 2"~ different pairs of dual discrete subnets leads to a different definition

of discrete Lamé coefficients on the lattice (%Z + i)M. In general these do not
coincide.

Theorem 7.1. Let

z1(n)
T . (%Z)NDUZLX--.XIN—’RNa x(sla---vSN):

zn(m)

be a discrete coordinate system that satisfies the following two conditions:
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(i) x factorizes:

N
zr(n) = Hff(ni), k=1,...,N

=1
with some smooth functions fF:1I; > R,i=1,...,N that do not vanish:
f¥ni) #0, forall nyel;, i=1,...,N (42)

and whose differences do not constantly vanish:

A(fFy#0, forall i=1,...,N (43)

(ii) x is orthogonal, in the sense of Definition 7.1.

Then there exist aq,...,ay € R and sequences u; : (%Z + i) — R, such that

N 1

_I_ =
Z zr(n)zp(n + 50) =1, w;=u(n + igi)’ i=1,...,N (44)
k=1

ap + Uu;

for anym e U and o € {£1} (apart from degenerate cases which arise as limits in which
two or more of the values a, coincide).

As the most instructive example, we will proof the Theorem for N = 3. Thus, we
denote

fi=fl gi=fh =, for =123

and introduce the “discrete squares”
Fi(nﬂri) = fi(ni)fi(ni"‘%)a Gi(ni"‘i) = gi(ni)gz‘(nﬂr%), Hz‘(nﬂri) = hi(ni)hi(nﬂr%),
for n; € I; and ¢ = 1,2,3. With this we have, e.g.,

x(n)x(n + %0’) = xl(n)xl(n + %0’) = F1F2F3

y(n)y(n + 30) = ry(n)ry(n + 50) = G1GLG;

z(n)z(n + 30) = z3(n)zs(n + 30) = HiHyHy
with o = (1,1,1). The conditions (42) and (43) become

Fi(n;) #0, Gi(n;)) #0, H;(n;) #0 forall n;el;, i=1,23

and
APF £0, A”G;#0, ATH;#0 forall i=1,2,3,

where
A"F(n) = F(n+ 1) - F(n).

For the orthogonality conditions (21) we obtain
(AVE)(APF)Fy + (AG) (A Ge)Gs + (A H; ) (A Hy) Hy = 0,
Fi(AE)(AYVES) + GL(AGy)(AGs) + Hy (A Hy) (A Hy) = 0, (45)
(A F)Fy(APFy) 4+ (ARG Go(AGs) + (A2 Hy)Hy (A Hs) = 0.
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For (44) we show:

F1F2F3 G1G2G3 I H1H2H3 _1

+ for i=1,2,3
ai(n;) bi(n;) ¢i(nq) ot

hold with some functions aj, lN)i, ¢;, which satisfy

for 7,7 =1,2,3, 7 # j. This now looks identical to the smooth case

Proof for N = 3.

» The orthogonality condition as orthogonality of discrete curves and surfaces
Introducing the three discrete curves

Fi(n;) )
vi(ng) = Gi(n) |, for ¢=1,2,3
and the three discrete surfaces
Fj(nj) Fr(nk) N ) '
Li(nj,ng) == | Gi(ny)Gr(ny) |, for (ijk) cyclic permutation of (123)
Hj(nj)Hg(nk)

the orthogonality conditions (45) can be written as
(A AT ) =0 for i,j=1,23, i#],

By Lemma 7.2 the two discrete tangent vectors A;-/ Ty, A,lffi of the discrete surface I';

are linearly independent, and thus, +; must lie on a line (while I'; must lie in a plane):
%(nz) = ozl-(nz-)vi + w;

with some non-constant functions «; : I; — R. and constant vectors v;w; € R?® with

v}, vZ, v? # 0, which satisfy some further conditions according to Lemma 7.3.

77 1)

» The degenerate cases, quadric equations, and confocality
The remainder of the proof (deriving the quadratic equations and showing that they
belong to a confocal family) is identical to the proof of the smooth case (Theorem 6.14).

]

Lemma 7.2. Fori = 1,2,3 the two difference vectors A;/ZFZ-,AZZFZ- in the proof of The-
orem 7.1 are linearly independent.

Proof. Same as Lemma 6.15 upon replacing F/ by A72F; and f! by Af; etc. n
Lemma 7.3. The vectors v;,w;, 1 = 1,2,3 in the proof of Theorem 7.1 satisfy

(v1, 09, v3) = {v1, V9, w3y = (V1,Ws, v3) = (w1, vz, v3) = 0,
and consequently

l m l m
w; W w w”
7 7 J J
(vi, wj, wi) (l — m> = (vj, Wy, W) <vl — m) #0
{ J

v v; V3

fori, 5,k =1,2,3 distinct and [,m = 1,2, 3.
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Proof. Same as Lemma 6.16 upon replacing 0;0; (71,72, 73) = 0 by A;A; (v, 792, 7v3) = 0.
]

Theorem 7.1 motivates the following definition for discrete confocal quadrics:

Definition 7.2. A discrete coordinate system @ : (%Z)N > U — RY is called a discrete

confocal coordinate system if there exist a1, ...,ay € R, and sequences u; : (%Z + i) — R,
¢t =1,..., N such that

N 1

4+ =
Z xk(n)xk(n 20) = 1, U; =ul(nz+%al), 7 = 1,...,N (46)
k=1

ap + U;

for any n € U and o € {£1}V, or equivalently,

Hj'vzl(uj + ay)

Hj;ék(ak - aj) 7

for any n € U and o € {£1}".

zp(n)zp(n + 30) = uj = uj(n; + 30;), k=1,...,N.

Remark 7.2.
(i) Different choices for the discrete functions u; lead to different “discrete reparametriza-
tions” of the system of confocal coordinates.

(ii) By relabeling, we can assume a; > ... > ay. A reasonable additional condition on
discrete confocal quadrics is to require the sequences u; to lie in the intervals

—0 <U <A <U<...<—any < UpN.

Discrete confocal coordinates admit the following geometric interpretation via polarity
with respect to sequences of classical confocal quadrics.

Theorem 7.4. Letn € U and o € {+1}. Then the two adjacent points x(n),z(n + 30)
of a discrete confocal coordinate system are related by polarity with respect to the N con-
focal quadrics

N l’2
Z k =1, uizui(ni—kiai), ZZ]_,,N
=1 Ok + u;
Proof. Equation (46) describes exactly the stated polarity relation. O

This yields a geometric construction for one pair of discrete dual nets from a system
of discrete confocal coordinates:

» Choose a family of classical confocal quadrics Q, (choice of ay,...,ay € R).
1

» Sample each subfamily arbitrarily (choice of sequences u;(3n; + 1)).

» Choose one point (per pair of dual subnets) and propagate by polarity with respect
to the quadrics Q,,
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Figure 24. Geometric construction of the point &* in the case N = 2 as the intersection
of the polar lines II; and II; of & with respect to Q; and Qs.

Exercise 7.1. Show that this geometric construction always closes (is independent of the
path).

Exercise 7.2. Show that for a discrete confocal coordinate system the discrete Lamé
coefficients defined by the different pairs of dual discrete subnets coincide on (%Z + i)N,

i.e, at each n € (%Z)N and for 7 = 1, ..., N the 2¥~! scalar products

(Nz(n+368),Ax(n+ 1o+ %5)>

are equal for all & = (6y,...,6x) € {0,1}M and é = (1—6,,...,1—0y) and o = (1,...,1).
They are given by
Hj;éi (ui(ni) — u;(ny))

[Tizy (ua(n) — ax)

This resembles the property derived in Exercise 6.4 which describes that quadrics are
isothermic.

If we rescale the functions fF we obtain:

Theorem 7.5. Let aq,...,ay € R and u; : (%Z + i) —R,2=1,..., N some sequences
Let fF: %Z — R be solutions of the difference equations

ui(n; + i) + ag, k<u,

— (ui(ns + 1) +ar), k> (47)

ff(”i)fik(”i + %) = {

Then, x defined by
T2 va = a T vVar —a

1s a discrete confocal coordinate system.

z(n)

Remark 7.3. If u; are chosen such that
—a < U < —ay < Uy < ...< —ay < uy,
all discrete squares of f¥ and therefore of z; are positive:
fEna) ff(ni + 5) > 0.
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By eliminating the sequences u; from (47), we obtain a characterization of discrete
confocal coordinates similar to Theorem 6.13:

Theorem 7.6. Let

le(nz)le(nz + %) - fzk(nl)fzk(nl + %) =a; —ay, k<1,
le(nz)le(nz + %) + fzk(nl)fzk(nl + %) =a; —ag, k>1i.
Then, x defined by
_ Hf\il fz‘k(”i)
IS Va = ac T var —a

s a discrete confocal coordinate system.

z(m)

7.1 Discrete confocal coordinates in terms of I'-functions

The parametrization of smooth confocal coordinates in terms of square roots (31) was
characterized by taking the quantities u; as coordinates with further reparametrization,
i.e., choosing the function u;(s;) = s;. To derive a discrete version of this parametrization

we set

uz(nl+i)=nz—|—ez, izl,...,N,

where ¢; € R are some fixed shifts. With this choice, equations (47) turn into

n; + ag + €;, k<1,

fEna) i+ 3) = (48)

—(ni + ag +5i); k > 1.

These equations can be solved in terms of I'-functions.
The I'-function is given by

Q0
[(z) = f t" e tdt.

It solves the functional equation
I(z+1)=a2l'(2)

with initial value I'(1) = 1, and can be taken as an analytic continuation of the factorial

function:
I'(n)=(n—-1)!, for neN.

We use the gamma function to define a “discrete square root” by!®
() T(u+3)
)y, = ———,
s T(w)
which satisfies the identities

(u)1/2(u + %)1/2 =1, (_u)l/z(_u - %)1/2 = —u-—- %

10The Pochhammer symbol is more generally defined by (u) 5= F%’Zf ),
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With this we can write solutions of (48) as

(n; + ap + ai)l/Q for >k,

(—ni —ap —& + %)1/2 for i<k
One can impose boundary conditions

Tilnpe—a, =0  for k=1,...,N,
Tklny_j=—a, =0 for k=2,... N,

on the integer lattice Z" for certain integers a; > --- > ay, which imitate the corre-
sponding property of the continuous confocal coordinates. These boundary conditions
are satisfied provided that

1
ar — o+, =0, ap—oap +ep = 2,

2
for which the shifts €, should satisfy ,_1 — g5, = % Choosing ¢, = —g and a;, = oy, + g,
we finally arrive at the solutions
k—i 4
) = (n; + ag + 7)1/2 for >k, (19)
' (—ni—ak—%—ké)w for i<k.

Figure 25. Three discrete confocal quadrics as part of a (stepsize 1) subnet of a discrete
confocal coordinate system (49) in R3 given in terms of I'-functions.
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7.2 Discrete confocal conics in terms of trigonometric functions

Figure 26. Two-dimensional discrete confocal coordinate system on (%Z)Q in terms of

trigonometric functions.
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Figure 27. Pairs of dual orthogonal sublattices. (top) Sublattice on Z? in blue and on
(z + %)2 in red. (bottom) Sublattice on Z x (Z + 3) in blue and on (Z + 1) x Z in pink.
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Figure 28. Polarity relation for discrete confocal conics. Gray points show discrete
1

confocal coordinates on (52)2. The corresponding classical confocal conics which give rise
to the polarity relation between gray points are shown in orange (for the values u (m + %))
and green (for the values v (ny + 1)). (left) Symmetric case with ¢; = ¢ = 0. All orange
conics are hyperbolas and all green conics are ellipses. Note that near the coordinate axes
those conics become degenerate and the polarity relation is not injective anymore. (right)
Asymmetric case with ¢; = 0.1, ¢co = 0.3. Moving along the no-direction, the polarity across
the y-axis is established by a conic with value u (m + %) < —a, which is purely imaginary,
while the polarity across the z-axis is estabﬁiléhed by a conic with value u (n1 + i) > —b,

which is an ellipse.
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7.3 Discrete confocal coordinates in terms of Jacobi elliptic func-
tions

Figure 29. Three discrete confocal quadrics as part of a (stepsize 1) subnet of a discrete
confocal coordinate system in R? in terms of Jacobi elliptic functions.

Figure 30. Part of an orthogonal pair of dual (stepsize 1) subnets of a discrete confocal
coordinate system in R? in terms of Jacobi elliptic functions
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8 Diagonally related nets on surfaces

For the purposes of this chapter we adopt a slightly more general notion of nets (on
surfaces):

Definition 8.1. A net N on a surface X is a collection of two (one-parameter) families
of curves on Y, such that for every point on ¥ there exists exactly one curve from each
of the two families through that point.

Let
N = (<a51>sle[1 s (632)32612)

be a net on a surface . Then curves from different families intersect in a unique point

Psl,sz = Qg N 652'

We call (s1, s2) the coordinates of the point Pj, ,. Note that the coordinates of a point are
not uniquely defined by the net, but only a net together with a specific parametrization
of the two families of curves.

Let ay,, ag,, Bs,, B3, be two pairs of curves from the two families of N. They form a
quadrilateral with vertices Py, s,, Ps, 55, Py 55 Psy .50, Where (Ps, s, Ps, 5,) and (Ps, sy, Py, 5,)
are pairs of opposite vertices.

Definition 8.2. Let N7, M be two nets on a surface Y. Then N5 is called diagonal to Ny
if the following condition is satisfied for any quadrilateral formed by four curves of N;:
If one pair of opposite vertices is connected by a curve from N5, then the other pair of
opposite vertices is connected by a curve from Nj.

/Ye,

Figure 31. Diagonal relation between two nets, and equivalent characterization by
Lemma 8.1

Exercise 8.1. Let

Nl = (<a81)slell ) (ﬁ82)32e12) ) N2 = ((’ytl)tleJl ) (5t2)t2€J2)

be two nets on a surface 3. Show that the following four conditions are equivalent:
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(i) For any quadrilateral formed by four curves of N;:
If one pair of opposite vertices is connected by a curve =, then the other pair of
opposite vertices is connected by a curve d,.

(ii) For any quadrilateral formed by four curves of Nj:
If one pair of opposite vertices is connected by a curve d;, then the other pair of
opposite vertices is connected by a curve 7y, .

In terms of using coordinates for the two nets we may reformulate the statement as the
equivalence of the following two conditions:

(i) For any two points with coordinates (s1, $2), (51, 82) € I1 x I3:
If (s1,82) and (31, $2) have the same ¢;-coordinate then (31, $2) and (s1, §5) have the
same to-coordinate.

(ii) For any two points with coordinates (s1, $2), (51, 82) € I1 x Is:
If (s1,$2) and (81, S2) have the same to-coordinate then (8, s2) and (s1, §2) have the
same t;-coordinate.

Lemma 8.1. Let

Nl = ((0481)31611 ) (552)52612) ) N2 = ((P)/tl)tlejl ) (6t2)t2€J2)

be two nets on a surface X2. Then Ny is diagonal to Ny if and only if the following holds:
For any three curves as,, Bs,, Bs, let v, be the curve through Py, s, and 0., be the curve
through P Then the two points

1,82
Py, s, = Bsy N Oy, P§/1,§2 = B35 0y

lie on the common curve ag,, i.e., § = §

Proof. Exercise. O

It turns out that the notion of diagonally related nets is symmetric:

Theorem 8.2. Let Ni, Ny be two nets on a surface . Then Ny is diagonal to N if and
only if N1 is diagonal to N>.

Figure 32. Symmetry of the diagonal relation.
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Proof. Let N3 is diagonal to N;. Consider three curves 7,73, 0, from Ns. Let oy, be
the curve through P, ;, and 3, be the curve through F; By Lemma 8.1, we need to
show that the two points

1,02

Ptl,fg = fytl N /8827 Pfl,fé = 77?1 M asl

lie on the common curve d;,, i.e., to = 5.

Let
Bs, be the curve through P, 4,

fs, be the curve through Pz,
ag, be the curve through P

1,027

ag, be the curve through P, ;,.

Let O := a;, N s, and
Y, 03, be the two curves through O.
Since N, is diagonal to N}

74, is the diagonal of the quadrilateral ay,, oy, Bs,, Bs,,
03, is the diagonal of the quadrilateral as,, as1, Bs,, Bs,,

d;, is the diagonal of the quadrilateral ay,, o, Bs,, Bs,,

Thus,
d;, is the diagonal of the big quadrilateral oy, , as,, Bz, Bs, .-

Since N is diagonal to N}
74, is the diagonal of the big quadrilateral as,, as,, Bz, Bs,-

Thus,
74, is the diagonal of the quadrilateral ay,, as,, Bs,, Bs,-

Finally, again since N is diagonal to N, the two points P, ;,, Py, 7, must lie on the same
curve 0y, . m

Figure 33. Proof of Theorem 8.2.
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8.1 Dual pencils and tangent lines
As an example of diagonally related nets in the plane we will show the following theorem:

Theorem 8.3. Let Ny be a net formed formed by conics from a dual pencil P of conics
in RP2, and let Ny be a net formed by the tangent lines of one of the conics of P. Then
N1 and Ny are diagonally related.

Proof. Follows from Lemma 8.4. m

Lemma 8.4. Let ay, as, az, ay be four tangent lines of a conic Q in RP?, and let (Ly, Ls)
and (M, My) be two opposite pairs of vertices of the quadrilateral formed by these lines.
Let Q1 be a conic containing the two points L1, Lo. Then there exists a conic Qo in the
dual pencil of conics spanned by Q and Qi that contains the two points My, M.

Moreover, in this case, the two tangent lines of Q1 in L1, Lo and the two tangent lines
of Qo in My, My intersect in a common point.

Proof. We prove the (projective) dual statement, which is Lemma 8.5. O

Figure 34. Lemma 8.4 and the proof of the dual statement, Lemma 8.5

Lemma 8.5. Let Ay, Ag, Az, Ay be four points on a conic Q in RP?, and let (¢1,05) and
(mq, mg) be two opposite pairs of edges of the quadrangle formed by these four points. Let
Q1 be a conic tangent to the two lines {1,l5. Then there exists a conic Qo in the pencil
of conics spanned by Q and Q; that is tangent to the two lines my, mo.

Moreover, in this case, the two touching points of Q1 and Ly, Ly and the two touching
points of Qs and My, My are collinear.

Proof. Let Py be the pencil of conics spanned by Q and Q;. Then P; defines a line in the
space conics, which is a 5-dimensional projective space. Let Py be the pencil of all conics
through the four points Ay, As, A3, Ay. Then P, is another line in the space of conics,
that intersects the line P;. Consider the two pairs of lines D; = 1 Uy and Dy = mq Ums
as two degenerate conics in the pencil P,;. The two lines ¢; and ¢y are tagent lines of
Q7. Thus, by Lemma 8.6, the pencil spanned by D; and Q; contains a double line £. In
the space of conics, the point corresponding to £ lies in the plane spanned by the two
concurrent lines corresponding to P; and P,. Thus, the pencil spanned by Dy and L
contains a conic Qs which is also contained in P;. By Lemma 8.6 the conic Q, is tangent
to the lines m; and ms. O
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Lemma 8.6. Let (1,0y be two lines in RP3 and X, € {1, X5 € {5 a point on each line.
Then the family of all conics tangent to {1 in Xy and to {5 in X5 is a pencil of conics
containing the degenerate conic consisting of the two lines {1,y and the degenerate conic
consisting of the double line joining X, and X,

Proof. Exercise. O

Figure 35. Confocal conics constitute a dual pencil of conics. Thus, by Theorem 8.3,
the net of confocal ellipses and hyperbolas is diagonally related to the net formed by the
tangent lines of one conic of the confocal family.

Figure 36. By Graves-Chasles Theorem the quadrilaterals in Figure 35 possess incircles.
Furthermore the centers of these incircles constitute a special case of a discrete confocal
coordinate system.
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8.2 Diagonally related parametrizations
Ifx:R2>U =1, x I, - RY is a parametrization of a surface then its coordinate lines
N = <(:c(31,52 =59)),.cr, (®(51 = 57, 52))32€I2> for some s € I, s) € I

define a net on the surface (U). Note that a reparametrization along the coordinate
lines x(p1(s1), Ya2(s2)) does not change the net it defines.
We now introduce the new variables

t1 = $1 + So, to = S1 — Sg,

which generate the parametrization

ty +t 1 — 1t
y(t1,t2)=1’(1 2 11 2)‘

2 72

Lemma 8.7. The nets corresponding to the parametrizations & and y are diagonally
related.

Proof. Let (s1,$2) and (31, $2) be two points with the same ¢;-coordinate:
t1 = 81 + So = 51 + So.
Then (31, s2) and (s1, §3) have the same t5-coordinate:
ty = 81 — S = S1 — S9.
]

The following theorem, which we give without proof, states that up to reparametriza-
tion along the coordinate lines, this change of variables generates all diagonal nets for a
given parametrization

Theorem 8.8. Let x(s1,s2) and y(ti,t3) be two parametrizations of the same surface.
Then the corresponding nets are diagonally related if and only there exist two smooth
functions ©1 and py such that

Y(ti,ta) = x (p1(ts + t2), pa(ts — t2)) -

8.3 Diagonally related nets on quadrics

We now look at some examples of nets that diagonal to the net of curvature lines on
quadrics, which we have derived as side product of our studies of confocal coordinate
systems in Section 6.

Theorem 8.9. The net of curvature lines on a one-sheeted hyperboloid and the net of
asymptotic lines (generators of the hyperboloid) are diagonal. Furthermore, the deforma-
tion of this hyperboloid along its confocal family:

» preserves the curvature lines, the asymptotic lines, and their diagonal relation,

» preserves the distance between any two points on an asymptotic line (“isometric along
asymptotic lines”),
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» in the planar limits becomes a net of confocal conics (confocal to one of the focal conics)
and a net of tangent lines of the focal conic (see Section 8.1).

Idea of the proof. This can be derived from the parametrization (34) of confocal quadrics
in terms of Jacobi elliptic functions. In particular, for any s, € (0, K(k2))

(81753) — w(81,82,$3)

is a curvature line parametrization of a one-sheeted hyperboloid. In this parametrization
its asymptotic lines are given by s; + s3 = const and s; — s3 = const. The deformation is
described by change of the parameter ss. O

;"é&vmvs

Figure 37. Diagonally related nets of curvature lines and asymptotic lines on a one-
sheeted hyperboloid and its deformation along confocal quadrics.

Figure 38. “Isometrically” deformable model of a one-sheeted hyperboloid at TU Wien.
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On ellipsoids and two-sheeted hyperboloids have no asymptotic lines (since they have
positive Gaussian curvature). Instead (conjugate) characteristic lines can be viewed as an
analogous net of lines on positively curved surfaces. Characteristic lines are characterized
by the two properties of being conjugate and bisected by the curvature lines. Analogous to
the diagonal relation of curvature lines and asymptotic lines on one-sheeted hyperboloids,
the parametrization (34) of confocal quadrics in terms of Jacobi elliptic functions yields
the diagonal relation of curvature lines and conjugate characteristic lines.

Figure 39. Diagonally related nets of curvature lines and characteristic lines on an ellipsoid
and a two-sheeted hyperboloid.

As opposed to the asymptotic lines on a one-sheeted hyperboloid the characteristic
lines on ellipsoids and two-sheeted hyperboloid do not give rise to an “isometric” defor-
mation of the quadrics. Yet for ellipsoids a different net of lines, which are also diagonally
related to curvature lines does.

8.3.1 Circular cross sections of quadrics

To find circles on quadrics we use the following projective characterization:

Proposition 8.10. Consider the embedding of Fuclidean space into projective space
R3 < RP3 < CP3, together with the absolute (imaginary) conic at infinity:

Ziai+as+a5=0, z4=0.
Then a quadric @ < RP3 is a sphere if and only if it (its complezification) contains Z.

Proof. Exercise. O

Considering circles as the intersection of spheres, this implies that a conic C < II in
some plane II < RP? is a circle if and only if it intersects the absolute conic Z in two
points.

Thus, to find the circular sections of a quadric @, one should consider the restriction
of Q to the plane at infinity x4 = 0. The resulting conic generically intersects Z in four
points, which are pairs of complex conjugate points. Each pair of these complex conjugate
points spans a real line at infinity, and each plane through one of those two lines intersects
the quadric Q in a circle (if the intersection is not empty). Thus, generically a quadric in
R? has two famalies of circular sections.
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Figure 40. Circular cross sections of an ellipsoid and a one-sheeted hypreboloid.

We specify this claim for the case of ellipsoids:

Theorem 8.11. Leta >b>c> 0 and Q = R? the ellipsoid

22

2 2
T
a b c

Then the circular sections of Q are given by the two families of parallel planes

P S V= [—\/g ﬁ] . (50)

Proof. We introduce homogeneous coordinates x = ﬁ—i, Yy = :—i, z = %4‘1 and the constants

=1 3:=3 =1 which satisfy 0 < & < # <. Then the ellipsoid Q is given by

H+()\+) . —-x*t -

=
Q=

oI
=

azi + Bry +yrs — a7 = 0.
Its four intersection points with Z are given by

VTP
PO‘,T = Ti/ﬁ’y_;aa ) o,T € {+7_}7
0

and come in two complex conjugate pairs
PP, P,=P .
Thus they span two real lines at infinity
£

ly =Py v Py _ =span ,
+ T+ +, P VB—a
0

O O = O

The two one-parameter families of planes that contain ¢,, respectively, are given by

Hi()\i)2’\/6—06561$'\/’7—5563—)\i$4:0
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for Ayt € R u {oo}. The planes from each family II. intersect in a line at infinity and
therefore are parallel planes. Furthermore, by construction, their intersection with Q (if
not empty) gives all circles contained in Q.

It remains to show for which values of A4 the intersection I (A4+) N Q is not empty.
Let

Q = diag(a7 Ba s _1)
be the Gram matrix of Q, and
q(z) = 27Qu

the corresponding quadratic form. With

the poles of 14 (\4) have homogeneous coordinates Q~'p4(Ay). Thus, @ N I14 (A4 ) is not
empty if and only if

0<0(Q pO0s)) = pe(Q ps () = T+ T ot (; . i) ey

]

Exercise 8.2. Show that the poles of the two families of planes II; lie (on the outside
segments) of the lines that intersect opposite umbilic points of the ellipsoid Q. Thus, in
particular, the planes IT; (A4 ) are parallel to the tangent planes of Q in its umbilic points.

The two families of circular sections of an ellipsoid constitute a net on the ellipsoid.

Theorem 8.12. On any ellipsoid, the net of curvature lines and the net of circular
sections are diagonally related.

Proof. Let a > b > ¢ > 0. We consider the ellipsoid as part of the confocal family (26)
with A = 0. Then the corresponding confocal coordinates (33) yield a curvature line
parametrization of the ellipsoid for

U3(53) = 07

or equivalently,
fa(s3)? = a, gs(ss)? = b, hs(ss)? =c.

Thus, this parametrization is given by

x(s1, 82) = \/(a—b)(a—c) fi(s1) fa(s2)

q yls1,82) = /(a_b)b(b_C)gl(Sl)QZ(52> (51)

Z(Sl, SQ)

\ “N-ab-o
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with ) ) ) )
fils1)" +gi(s1)" =a—0b, fi(s1)" + h(s1)" =a—c,

f2(82)2 - 92(82)2 =a—0b, f2(32)2 + h2(52)2 =a—g¢,

We show that there exist solutions fi, fa, 91, g2, h1, ho such that the diagonal net given by
the curves
Sy = 81 £ S9 = const

are the circular cross sections of the ellipsoid. Substituting the parametrization (51) into
the planes I14(A4) given by (50) we obtain

Fi(51) fa(s2) £ ha(51)ha(s2) = 4/b(a — ¢) Az (52)

For the diagonal lines s = const to lie in these planes, the parameters A\, and A_ must
be functions only depending on s, and s_, respectively. Thus, the functions fi, fo, hi, ho
must be solutions of the equations

fi(s1)? +hi(s1)? =a—c
f2(52)% + ha(s2)? = a —c,

fi(s1)fa(s2) £ ha(s1)ha(s2) = 4/b(a — ¢) As(s1 £ s9),

which are readily solved by trigonometric functions

The last two equations due to the addition law
sin(sy) cos(sz) + cos(sy)sin(sg) = sin(s; + s9),

and thus the functions Ay are given by

The functions g; and g, are then obtained from

gi(s1)* =a—b— (a— c)sin®(sy),

53
g2(52)? = (a — ¢) cos®(s1) — a + b. (53)
The right-hand sides are positive as long as
. a—>b 9 a—>b
< >
sin”(sq) — cos”(ss) —
which have open intervals as solutions since
—b
0< ¢ < 1.
a—c
O
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Remark 8.1. Since ¢g; and go are determined by the square roots of (53), we obtain two
separate parametrizations of the ellipsoid, one for y > 0 and one for y < 0. Geometrically,
this reflects the fact that the net of circular sections becomes degenerate for y = 0 in the
sense that the two families of circles become tangent in these points and furthermore
tangent one of the families o curvature lines.

Similar to the asymptotic lines on one-sheeted hyperboloids, the circular sections of
ellipsoids admit an “isometric” deformation:

Theorem 8.13. The deformation of an ellipsoid given by its confocal family scaled to
have the same second semi-axis:

» preserve the curvature lines, the circular sections, and their diagonal relation

» preserves the distance between any two points on a circular section (“isometric along
circular sections”),

» in the planar limits becomes a net of confocal conics and a net of circles touching a
conic.

i

Vi
]

i

A\

Figure 41. Diagonally related nets of curvature lines and circular sections on an ellipsoid
and its “isometric” deformation along the circular sections.

76



8.3.2 Discrete ellipsoid with circular cross sections

Let a > b > ¢ > 0. Similar to (51) we obtain a discrete curvature line parametrized
ellipsoid by taking two layers from a 3-dimensional discrete confocal coordinate system:

(4(n,m2) = W_b)(a_) fuln) fane)
ol m) = [ () (54
z(n1,ng) = = cc(b — hi(n1)he(n2)

with

fi(n) fi(ng + %) + g1(n1)gi(n1 + %) =a—0b, fi(m)fi(ni+ %) + hi(ng)hi(ng + %) =a—¢,
fa(n2) fa(na + 3) — g2(n2)ga(ng + 3) = a = b, fa(ng) fa(na + §) + ha(ng)ha(ng + 3) = a — ¢,

for (nl, n2) eZ?u (Z + %)2
Proposition 8.14. The discrete net € (ny,ng) on (54) is a discrete curvature line parametriza-

tion of an ellipsoid in the following sense:

1 1

(i) Any two points x(ny,n2) and x(ny + 5,12 £ 5) are polar points with respect to the

ellipsoid
o: 4+ 4 E (55)
a c

(ii) All quadrilaterals (ny,ny), x(nq + 1,n9), x(ny + 1,n9 + 1), x(ny,ne + 1) are planer.

(iii) All edges Aya(ny, no) and Asx(ny + 5,ns — 3) are orthogonal.

The discrete diagonal nets of  are given by introducing the coordinates (n,,n_) € Z*:

nling
2

ny =
This yields four diagonal sublattices of stepsize 1
ZxZ, Z+YHYxZ+Y), @Z+Yxz, Zx(Z+1d),

which come as two dual pairs.

The discrete ellipsoid (54) is closely related to the smooth ellipsoid (55). Thus, we may
try to find a parametrization such that the coordinate polygons of the discrete diagonal
nets lie in the planes II; (A\4) given in (50). Substituting (54) into (50) we find, in the
same way as (52):

fi(n1) fa(ne) £+ hi(ny)ha(ng) = bla — ) A+.
To have the diagonal polygons n4 = const to lie in these planes, the functions fi, fo, hi, ho
must satisfy the equations
fi(ny) fi(ny + %) + hi(ni)hi(ng + %) =a-—c,
fa(n2) fa(na + 5) + ha(na)ha(ng + 3) = a —
J1(n1) fa(n2) £ ha(na)ha(nz) = v/b(a — ¢)Ax(ny + na),
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which are again solved by trigonometric functions

with some constant 0 < § < 7 and

€= s
y/cos 2
Ai(ny) = g%y ¢ ; ¢ sin(26n4.).

The functions g; and g, are then obtained by the recurrence relations

i+ ) = ST -

and

fg(nz)fg(ng + %) —a+b
92(n2) '

The following proposition further establishes why the diagonal polygons ni = const
may be thought of as discrete circles:

0

Proposition 8.15. Along a diagonal polygon n_ = n® = const a point x(n,,n_ = n’)
0

and the line through x(n, — %,n, =n’), ¢(n, + %,n, = n%) are polar in the plane
I_(A_(n%)) are polar with respect to the circle Q@ n TL;(A_(n%)). Similarly, along the

diagonals n, = const.

Proof. By Proposition 8.14 (i), the line through @(n, —3,n- =n%), (n, +3,n_ =n?)
lies in the polar plane of the point &(n,,n_ = n®) with respect to the ellipsoid Q Since the
three points lie in the plane IT_(A_(n_)) the polarity can be restricted to the intersection

of @ with this plane, which is a circle. O

Remark 8.2. Note that by the same reasoning we obtain discrete tangent cones to the
discrete circles: The planes of the planar quadrilaterals of  along any diagonal n4 = const
intersect in a common point.

The discrete circles allow for an “isometric” deformation similar to Theorem 8.13.
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Figure 42. (top) Two dual sublattices of a discrete curvature line parametrization of an
ellipsoid. (bottom) The diagonally related discrete circles in two stages of the “isometric”
deformation.
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9 Classification of pencils of quadrics

9.1 Polynomial matrices

Definition 9.1. Let F = R (or F = C) be the field of real (or complex) numbers, and let
F[A] be the ring of polynomials over F in one variable (denoted by ).

(i) A matrix

AeF[A\]™" = {(aij)i'—l ..... m

;5 € IF[)\]}
with polynomial entries is called a polynomial matriz.

mXxXn

(ii) The degree of a polynomial matrix A € F[\] is given by
deg A = max {dega;; |i=1,...,m, j=1,...,n}.
A polynomial matrix A € F[A]™*" is called constant if deg A = 0.

mXxXn

(iii) The rank of a polynomial matrix A € F[A] is given by

rk A = max {k | non-zero k x k minor of A}."

nxn

A square polynomial matrix A € F[\] is called reqular if rk A = n, or equivalent,

if det A # 0.

(iv) A square polynomial matrix A € F[A]"*" is called invertible if it has an inverse in
F[A]"*"™, i.e., if there exists a matrix A~ € F[A]"*" such that

ATA=AA =1,

For constant square matrices A € F™*" one has
A invertible < A regular.

The same holds for matrices A € F(\)"*" with entries in the field of rational functions
F()\). For polynomial square matrices A € F[A]"*™ one only has

A invertible = A regular.

Example 9.1. Consider the polynomial matrix

_ /\ 0 2X2
A= (/\2 )\+1) e F[A]*~.
It has deg A = 2 and rk A = 2, and thus is regular. Its determinant is given by
det A= AA+1)#0,

Thus, viewed as a rational matrix, A is invertible in F(\)?*? with

_ 1 A+1 0 1 0
Al = —— — )
detA(—)\Q A) (—AAH Alﬂ)

But since A™! ¢ F[A]?>*2, as a polynomial matrix, A is not invertible.

1A k x k minor is the determinant of a k x k submatrix of A.
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Proposition 9.1. Let A € F[A]"*™ be a square polynomial matriz. Then A is invertible
if and only if its determinant is a non-zero constant, i.e.,

det A € F\{0}.

Proof.

(<) If det A € F\{0}, then A is invertible in F(\)"*". In particular, the entries of the
inverse A~! are given by the cofactors'? of A (which are polynomials) divided by the
determinant. Since the determinant is constant, the entries of A=! are polynomials.

(=) If A has a polynomial inverse A~! € F[A]"*", then det A and det A~! are polynomi-

als, and
(det A)(det A1) = det(AA™!) = 1.

This implies det A # 0 and degdet A = 0.

9.1.1 Multiplication and division of polynomial matrices
For two polynomials a, b € F[A] one has
deg(ab) = dega + degb.
For two polynomial matrices A, B € F[A]"*" this does not necessarily hold: We can write

A= As)\s + As_l)\s_l + -+ AQ,

B =B\ +B_ N+ + By,
where A; are the constant matrices containing the coefficients of degree i of A. In par-
ticular, deg A = s and A, # 0. Similarly, degB = t and B; # 0. We call A, and B;

the leading coefficient matrices of A and B, respectively. Then the (possibly) leading
coefficient of the product is given by A,B;:

AB = A BN +O(s+t—1).
In general A;B; can be zero.

Exercise 9.1.
(i) Show that if either A; or B, are invertible, then

deg(AB) = deg A + deg B.

(i) Compute the degree of A? from Exercise 9.1.

We now turn to the division with remainder of polynomial matrices:

Proposition 9.2. Let A, B € F[A]"™" be two square polynomial matrices, where the
leading coefficient matriz of B is invertible. Then A can be divided with remainder by B
(from the left and from the right) in the following sense:
There exist two unique polynomial matrices Q, R € F[A\]"*" (quotient and remain-
der) such that
A=QB+ R and deg R < deg B.

Similarly, for the division from the right.

12The cofactors of A are the signed minors.

81



Proof.
Existence: We write

A=AN + A N4 4 A,
B = Bt)\t + Btfl)\til + -+ Bo,

where s = deg A and ¢t = deg B. Thus, A, # 0 and B, is invertible.
Ift > s, we can take Q = 0, R = M. Thus, assume s > t. With

Q= AB7INT
R:=A-QB
we have
QB = AB;'BXNT = AN + AB7 B N T -+ ABT BoA T

and furthermore, 3 )
A=QB+R
where deg R < s. Applying the same procedure recursively to R, we can lower deg R
below deg B (induction in s — t).
Uniqueness: Exercise. O

9.1.2 Equivalence of polynomial matrices

Definition 9.2. Let A € F[A]"*" be a square polynomial matrix. Then the following two
operations on A are called elementary operations:

(i) Multiplying a row (or column) by a number a € F\{0}. Equivalently multiplying A
from the left (or right) by the elementary matrix

1

(ii) Adding a row (or column) multiplied by a € F[A] to another row (or column).
Equivalently multiplying A from the left (or right) by the elementary matrix

1

ij(a) = e
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Two polynomial matrices A, B € F[A]"*" are called equivalent if they are related by a
sequence of elementary transformations, or equivalently, if there exist elementary matrices
P,....,P.,Q1,...,Q such that

B=P - PAQ, Q.. (56)

Lemma 9.3.
(i) The inverse operations of elementary operations are elementary operations. Equiv-
alently, all elementary matrices E;(a), Fjj(a) are intevertible and its inverses given
by elementary matrices.

(ii) The equivalence of polynomial matrices is an equivalence relation.

(iii) Interchanging two rows (or columns) is a sequence of elementary operations.

Proof. Exercise. O

We now define invariants of polynomial matrices under elementary operations. Up to a
constant the determinant of a polynomial matrix is invariant under elementary operations,
and so is the greatest common divisor of all entries of the matrix. This generalizes to the
following set of invariants:

Definition 9.3. Let A € F[A]"*" be a square polynomial matrix of rank ¢ = rk A. Then
for k = 1,...,¢ the monic'® greatest common divisor D}, of all k x k minors of A is called
the k-th minor divisor of A. We also define D := 1.

Lemma 9.4.
(i) The minor divisors are invariant under elementary operations.

(ii) Dy divides Dy y for k=0,...,0—1.

Proof.
(i) Elementary operations turn a minor m into

m— am, «¢€ F\{0},

or m~—m+am, aclF[}\]
where m is another minor of the same size.

(ii) By Laplace expansion of determinants.

]

Since each minor divisor divides the next, we can define further polynomial invariants
by their quotients:

Definition 9.4. Let A € F[A]"*" be a square polynomial matrix of rank ¢ = rk A. Then

fork=1,...,0
Dy,

Dy

I,

is called the k-th invariant factor of A.

BMonic polynomials are polynomials with leading coefficient equal to 1.
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Thus, the invariant factors can be obtained from the minor divisors, and vice versa,
Dp=1,---1I, k=0,...,¢

By elementary operations a polynomial matrix can be diagonalized in such a way that
its minor divisors and the invariant factors can be easily read off.

Theorem 9.5 (Smith normal form).
(i) Any square polynomial matriz A € F[A]

I

"X s equivalent to a diagonal matrix

where Iy, ..., I}, € F[A] are monic polynomials, such that I; divides I; 11,1 =1,... k—1.

(ii) The diagonal matriz in (i) is unique and called the Smith normal form of A. Its
entries I, ..., I}, are the invariant factors of A.

Proof.
(i) Denote by
d(A) := min {deg a;; | a;; # 0}

the minimal degree of the non-zero entries of A. The decrease of this value is taken
as an indicator of progress during the following algorithm, which uses elementary
operations to reach the desired form of the matrix.

(a) Choose an entry a;; with dega;; = d(A).
Make it monic.
Bring it to position ai;.

(b) Decrease degree along the 1st column (using polynomial division by a;;).
If 6(A) decreased: Go to (a).
aip Qi2 -+ Qin
0
Else: A = _
: A
0
(c) Decrease degrees along the 1st row (using polynomial division by aj;).
If §(A) decreased: Go to (a).
ay; 0 - 0

0
Else: A =

: A

0

(d) If there exists an entry in A not divisible by a1;: Decrease degree of this entry
(using polynomial division by a11) and go to (a).
Else-if A= () or A =0: Terminate.
Else: Continue with A at (a).
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In section (b) and (c) the value of 6(A) can only strictly decrease finitely many
times. Similarly, in the if clause of section (d), the value of 6(A) is decreased
strictly. Thus, in all sections, the else clause must be reached after finitely many
steps. Once the else clause of section (d) is reached, the algorithm continues with a
matrix of smaller dimension. Since again, this can only happen finitely many times,
the algorithm eventually terminates.

(ii) Because I divides I, the minor divisors are given by
Dpy=1,---1, k=0,...,¢

and thus, I, ..., I, are the invariant factors. Since the invariant factors are uniquely
determined by A, the diagonal matrix in (i) is unique.

]
Corollary 9.6. The invariant factor I, divides the invariant factor Iy 1.

Exercise 9.2. Compute the invariant factors of the polynomial matrix

0 0 A -1
A+ AT = 0
A2 0 0

by deriving its Smith normal form.

Theorem 9.7. Two polynomial matrices A, B € F[A\]"*"™ are equivalent, if and only if
there exist two invertible polynomial matrices P, Q) € F[A]"*™ such that

B = PAQ.

Proof.
(=) By (56) and Lemma 9.3 (i).

(«) We show that every invertible matrix is a product of elementary matrices. Let
P e F[A]"*" be an invertible matrix. Then det P € F\{0}. Thus, the n-th minor
divisor is equal to 1, and therefore, all invariant factors are equal to 1. Then its
Smith normal form is given by the identity matrix I, and therefore,

P=P..-PIP,...P,=P,---P,P,--.. P,
where Py, ..., P., P|,..., P; are elementary matrices.

]

We summarize the different characterization of equivalence of polynomial matrices in
the following theorem:

Theorem 9.8. For A, B € F[A\|"*™ the following statements are equivalent:

(i) A and B are equivalent (related by elementary operations).
(ii) B = PAQ for some invertible P, () € F[\]"*".
(iii) A and B have the same minor divisiors

(iv) A and B have the same invariant factors.

(v) A and B have the same Smith normal form.
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9.1.3 Elementary divisors and Segre symbols

We introduce yet another way to encode the invariant factors of a polynomial matrix.

Let A € F[A]"*™ be a polynomial matrix with invariant factors Iy,...,I,. Since I}
divides I the irreducible factors of I also appear in [ ,; with greater or equal multi-
plicity. Let eq,...,es (s < {) be the irreducible factors of I,, then

_ pH11 1
Iy = et ool

Iy = ef*t - els,
where y;; € N U {0} with
0 < pin <+ < pye, i >0
fori=1,...,s.

Definition 9.5. For a polynomial matrix A € F[A]"*", the unordered list

M1l

el Hie

Hs1 Hse
s e et el

where entries with j;; = 0 are dropped, is called the list of elementary divisors of A, while
each entry e/ is called an elementary divisor or A.

Theorem 9.9. Two polynomial matrices A, B € F[A|"*" are equivalent, if and only if
they have the same rank and the same list of elementary divisors.

Proof. Exercise. O

Exercise 9.3. Determine the list of elementary divisors for the polynomial matrix from
Exercise 9.2.

Let A € C[A]™™™ be a complex polynomial matrix. Then all irreducible factors are
linear
61‘:)\—)\1', ’i=1,...78

and can be identified with the corresponding roots Aq,... s € C.

Remark 9.1. For a real polynomial matrix A € R[A]"*" the irreducible factors can be of
degree 1 or 2. While the invariant factors do not depend on whether A is taken as a real
or complex matrix, the list of elementary divisors may differ.

If we interpret A as a one-parameter family of matrices, then for A € C the constant
matrix A(\) has rank ¢ except for the A = \;. Thus, the roots Ay, ..., As correspond to
the matrices A(\1),..., A(\;) in the family of lower rank. More generally:

Theorem 9.10. Let A € C[A]"*™ be a complex polynomial matriz of rank rk A = ¢, and

L= (A =AMt (A= AP,
L= (A= M) (A= A,
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its invariant factors. Then for i,k =1,...,¢ the value
flik = fa1 + o F Pk

is the least of the multiplicities of \; as a root of the k x k minors of A (if fig. = 0 , then
Ai is not a common root of the k x k minors at all). In particular, the rank of the constant
matrices A(\1), ..., A(Ns) is given by

rk A(\;) = max {k | g = 0} = max {k | pu = 0}.
If A is reqular (. = n), then Ay, ..., \s are the roots of the determinant
det A~ 1Ty I, = (A= X))o o (X — N\ )Fen,

with multiplicities fi1n, . . ., flsn- In particular, the constant matrices A(A\1), ..., A(Xs) are
exactly the non-reqular matrices in the family A(N\), and furthermore,

Z flin, = Z Z i = deg(det A).
i=1 i=1 k=1

Proof. Follows from D, = I---1I;, and in particular, if A is regular, det A ~ D,, =
Iy 1,. O

Exercise 9.4. Interpret the polynomial matrix from Exercise 9.2 as a one-parameter
family of matrices. What are the degenerate matrices in this family and what are their
ranks?

If we drop all trivial elementary divisors, we can write the list of elementary divisors
as

A=) A=) (A= X)L (A= ) ehs
where Vip = -+ = Vih; = O, hz > 1.
Definition 9.6. The symbol
[()\1 V1., V1h1)7 ey ()\5 S Vsly ey Vshs)]
(

is called the characteristic or Segre symbol of A. The numbers (v11,...,v1,,) are called
the characteristic numbers of ;. Given the list of roots Aq,..., A\ the Segre symbol is
sometimes abbreviated to the characteristic numbers only:

[<V117 o 7y1h1)7 sty (1/31, o 7yshs)]
Exercise 9.5. Determine the Segre symbol for the polynomial matrix from Exercise 9.2.

We summarize the conditions the Segre symbol of a complex polynomial matrix must
satisfy in the following:

Proposition 9.11. Let A € C[A]"*" a regular complezx polynomial matriz. Then its Segre
symbol
[(A1 a1, Vang )y e oy (As 2 Vst ooy Vsnl )]
satisfies
(i) 1 < s < deg(det A).
(Z’L) )\1,...,)\SEC, )\Z 7’5)\] fOTZ 7‘4—]
(iii) viy = - = vip, >0, h; = 1.

(iv) D3y 2?1:1 vij = deg(det A).
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9.1.4 Equivalence of polynomial matrices of degree one

For two polynomial matrices of degree 1, the invertible matrices from Theorem 9.7 can
be taken as constant matrices:

Theorem 9.12. Let A, B € F[A]"*"™ be two polynomial matrices of degree 1 with invertible
leading coefficient matrices. Then A and B are equivalent if and only if there exist two
invertible constant matrices S, T € F™*", such that

B = SAT.

Proof.
(<) Follows directly from Theorem 9.7.

(=) Let A and B be equivalent, and S, T € F[A]"*" invertible such that
B = SAT.
or equivalently
S™'B = AT. (57)

Divide S~! from the left by A and T from the right by B (the leading coefficient
matrix of B is regular):

S~ = AQ + R,

T =QB+R.
with deg R < deg A = 1 and deg R < deg B = 1. Thus, R and R are constant
matrices and we obtain

(AQ + R)B = A(QB + R),

or equivalently,

A(Q —Q)B = AR — RB.

Assume Q) # (). Then, the left-hand side has degree at least 2 (since the leading
coefficient matrices of A and B are regular), and the right-hand side has at most
degree 1. Thus, () = @, and therefore

AR = RB.

It remains to show that R and R are invertible. Divide S from the left by B (the
leading coefficient matrix of B is regular):

S=BO+R
with deg R < deg B = 1, and thus, R is a constant matrix. Using (57) we obtain
I=87"'S
— S"YBQ + R)
— ATQ + S7'R
— ATQ + (AQ + R)R
= A(TQ + QR) + RR
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Assume T@+QR # 0. Then, the right-hand side would bave at least degree 1 (since
the leading coefficient matrix of A is regular). Thus, 7Q) + QR = 0 and therefore

I = RR.
Hence, R is invertible, and so is R by symmetry.

]

Remark 9.2. The equivalence of two polynomial matrices A, B € F[A]"*" with constant
matrices S, T € F™*" is the same as the simultaneous equivalence of the coefficient matrices
of A and B. In particular, in the case of degree 1, let Ay, Ay, B1, By € F™*™ be the
coefficient matrices of A and B:

A=A N+ A, B=DB\+DB,.

Then
Bid+ By = S(AXN+ Ag)T = SA TN+ SAT

is equivalent to
Bl = SAlT and BO = SA()T

Thus, the two pairs (A;, Ag) and (B, By) of constant coefficient matrices are equivalent.

For complex polynomial matrices of degree 1 we can narrow down the conditions on
the Segre symbol from Proposition 9.11:

Proposition 9.13. Let A € C[A\]"*" a complex polynomial matriz of degree 1 with in-
vertible leading coefficient matriz. Then its Segre symbol

[(A1 a1, Vang )y e oy (As 2 Vst ooy Vil )]

satisfies

(i) 1 <s<n.

(11) M,..., A €C, N\; #\; fori #j.

(iii) viy = - = vy, >0, hy = 1.

(iv) Y5y 2y vij = n.
Furthermore, if A = Aj\ + Ay with Ay # oAy for some a € C\{0}, then additionally

(v) s> 1 orhy <n.
Proof. A = A1\ + Ay with det A; # 0 ensures that

det A = det A;\" + O(n—1)

has degree n. Thus, conditions (i) - (iv) follow from Proposition 9.11.
Regarding condition (v), assume s = 1 and hy > n. Then, hy = n because of condition
(iv). Thus, the list of elementary divisors is

(>‘_)‘1)7"'7<>‘_)‘1)‘
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and therefore all invariant factors are equal to (A — A;). This implies that
AN+A=(A—\)P
for some matrix P, and thus
Ay = —AP = —)\A,,
which contradicts A; # aAy. O

The Segre symbol of degree 1 polynomial matrix is invariant under the following change

of variable: B
_aA+b
cA+d
Proposition 9.14. Let A € C[A]"*" be a polynomial matriz of degree 1 with regular
leading coefficient matrixz, and let

[(A1 a1, ang )y e oy (As t Vsty ooy Vsn, )]

be the Segre symbol of A. o
Let A = Al/\ + AO with Al, AO € Cnxn} det Al # O, and Al, A() e C™™™ with
1211 = &Al + CAO
Ay = bA; + dA

with a,b,c,d € C, ad — be # 0 such that det A; # 0. Then

[(5\1 . Vll,...,ljlhl) 7-~-;()\s . 1/517...,I/Shs):|
is the Segre symbol of A = A\ + Ay, where

CLS\Z'-i-b .
i = = , 1=1,...,s.
C)\i—i-d

Proof. We find o 3
A= A1>\ + Ay = (aA1 + CAU)/\ + bA; + dAp

= Aj(aX +b) + Ag(ch + d)

aX +b
—(C)\"i‘d) (Alc/\+d+A0>

Thus, the polynomial entries a;; of A and a;; of A are related by

- aX+0b
aij()\) = (C)\ + d)aij (C)\—|—d) .

Therefore, a k-minor d(\) of A and a k-minor d()\) of A involving the same entries are

related by
d\) = (ch + d)*d <“A ha b) .

cA+d
For i =1,...,s consider the the matrix A;)\; + Ao, and let \; such that

Al)\i + Ao ~ 12115\1 + Ao = Al(aS\i + b) + Ao(CS\i + d)
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This is possible, since det A; # 0. Furthermore ¢\; + d # 0, and thus,

CLS\Z'-i-b

l_CS\i-{—d'

Assume \; is a root of d(\) with multiplicity v, i.e.,
d(A) = (A= Xi)"g(A)
with g(\;) # 0. Then

- A+b  ah+b\~ [a\+b
d\) = (e +d)F (& _ A
) =(er+d) <c)\+d c)\i+d) g(c)\+d>

(ad — be)” . s [aA+D

" (eh Jrcl)”(C)\er)lc A=2"9\ 55a
Since v < k, eh; +d # 0, and ¢ (%) # 0, this implies that ); is a root of d(\) with
multiplicity v. O]

9.1.5 Similarity of constant matrices

If a constant matrix A € F™*" is interpreted as the representative matrix of a linear
endomorphism with respect to a given basis, then the representative matrices of the same
linear map with respect to other bases are given by similar matrices.

Definition 9.7. Two constant matrices A, B € F"*™ are called similar (or conjugate) if
there exists a constant invertible matrix S € F"*" such that

B =SAS™".

Theorem 9.15. Two constant matrices A, B € F"*" are similar, if and only if their
characteristic matrices \I — A and A\l — B are equivalent (as polynomial matrices).

Proof.
(=) Let A and B be similar, i.e., B = SAS™! with some constant invertible matrix
S € F*™, Then the characteristic matrix of B

M —B=MX—-SAS™' =S\ - A)S™*
is equivalent to A.

(<) Let AI — A and AI — B be equivalent. Then, by Theorem 9.12, there exist constant
invertible matrixes S,7T € F"*", such that

M — B =S\ — AT,

As in Remark 9.2, this is the simultaneous equivalence of the two pairs of constant
coefficient matrices (I, A) and (I, B), i.e.,

I =ST, and B = SAT.

In particular, T = S~!.
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9.1.6 Congruence of pairs of constant matrices

If a constant matrix A € F"*™ is interpreted as the Gram matrix of a bilinear form with
respect to a given basis, then the Gram matrices of the same bilinear form with respect
to other bases are given by congruent matrices.

Definition 9.8. Two constant matrices A, B € F™*™ are called congruent if there exists
a constant invertible matrix S € F**" such that

B = SAST.

Now, similar to Remark 9.2, the congruence of two polynomial matrices A, B € F[A]"*"
with constant matrix S € F"*" is the same as the simultaneous congruence of the coeffi-
cient matrices of A and B. In particular, in the case of degree 1, let Ay, Ay, By, By € F™"*"
be the coefficient matrices of A and B:

A=A+ A, B = Bi\+ By.
Then
BiA+ By = S(A1A+ Ag)ST = SA;STA + SAST
is equivalent to
Bl = SAlST and B() = SA()ST.

Thus, the two pairs (A;, Ag) and (B, By) of constant coefficient matrices are congruent.

The Gram matrix of a symmetric bilinear form is a symmetric matrix. For the con-
gruence of complex symmetric matrices of degree 1 we obtain the following relation to
equivalence of polynomial matrices.

Theorem 9.16. Let A, B € C[\]"*™ be two complex symmetric matrices of degree 1 with
invertible leading coefficient matrices. Then A and B are equivalent if and only if they
are congruent (by a constant congruence matriz), i.e., there exists an invertible constant
matriz S € C™*™ such that

B =SAST.

Proof.
(<) Follows directly from Theorem 9.7.

(=) Let A and B be equivalent. By Theorem 9.12, there exist two constant matrices
S, T e C™" such that
B = SAT.

In particular SAT is symmetric. By Lemma 9.17, this implies that
UA=AUT, with U:=T7T8S.

By Lemma 9.18, there exists a polynomial square root R € C"*™ of U, i.e.,

RziakUk

k=0

such that
U= R2,
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Since R is a polynomial expression in U it also satisfies
RA = ART,
and we obtain
B =SAT =TT TSAT = TTUAT = TTR*AT = TTRAR'T

Thus, with S := TTR, we have o
B =S5TAS.

]

Lemma 9.17. Let S, T € F™™ be two invertible constant matrices, and A € F[A]"*™ a
symmetric polynomial matriz. Then the following three statements are equivalent:

(i) SAT is symmetric.
(ii) T-TSA is symmetric.
(iii) UA = AUT with U :==T7T7S.
Proof. Exercise. n

Lemma 9.18. Let U € C™*™ be an complex invertible constant matriz. Then there exist
reN, and aq,...,a, € C such that

R=> aU*
k=0
s a square root of U, i.e.,
U= R
No proof. O

Corollary 9.19. Let Ay, Ay, B1, By € C"™ be symmetric matrices with det A; # 0,
det By # 0. Then the following statements are equivalent:

(i) (A1, Ag) and (B, By) are simultaneously congruent (by the same constant congru-
ence).

(i) Ay\ + Ao and B1A + By are equivalent (as polynomial matrices).
(iii) A1\ + Ao and BiA + By have the same Segre symbols.

The conditions from Proposition 9.13 are necessary conditions on the Segre symbol
of linear symmetric families, but are they also sufficient for symmetric matrices? Can all
such Segre symbols be generated by polynomial matrices of the form

A+ A

with A, Ag € C"*™ symmetric, det A; # 07
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Lemma 9.20. Let v e N, a € C, and
1 —Q
Ci(v) = , Co(a,v) = : e C"¥

-«
—a 1

Then the polynomial matriz Cy(v)\ + Co(a, v) has only one elementary divisor:

(A —a)”.
Proof. The last minor divisor (the determinant up to a constant) of
A=«
o 1
01(1/))\ + C()(Oé, l/) = y
A—a
A—a 1
is given by
D,=(\—a)".

The (v — 1) x (v — 1) minor, obtained by erasing the first row and column is equal to 1.
Thus,
D, =--=D =1

]

Theorem 9.21. Let \y,..., s € C and v11,...,v1py, ... Vs1,...,Vsh, € N satisfying con-
ditions (i) - (iv) from Proposition 9.13. Let
C1(v11)
A C1(v1ny)
Ol = .
C1(vs1)
- Cl(”shs)

and
Co(A1,v11)

Co(A1,v1h)
OQ .

CO()\Svl/Sl)

) Co(A1,Vshs)
Then the polynomial matrix C1\ + Cy is symmetric with det Cy # 0 and has Segre symbol

[()\1 N SITEEEE V1h1)7 ey ()\S Vst .. 7V3hs)] .
Proof. By Lemma 9.20, each block C(v;;)A + Cy(N;, ;) has Smith normal form
1

(A — X;)
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Thus, the matrix Ci A + (Y is equivalent to

1

1
(A=Ap)"11

(A=X1)"1h1

(A=As)¥s1

(A—Ag)Vshs
From there we read off the minor divisors as

D, = ()\ _ )\1)V11+~..+V1h1 C ()\ _ )\S)V81+"'+Vshs
D, = ()\ — /\1>u12+...+u1h1 .. <>\ _ )\S)V52+"'+Vshs

And thus, the elementary divisors of C1 A + Cy are given by

A=A A= A" (A=) (N = Ag) ke

9.2 Classification of pencils of quadrics in CP"

Definition 9.9. Let P < P Sym(C"*!) be a pencil of quadrics. Let Qi, Qg be two
quadrics in P with representative matrices Q1, Qo € Sym(C"*1). Then we call QA+ Qo €
C[AN|+Dx(+D) o characteristic matriz of P.

A characteristic matrix uniquely determines its pencil together with the two quadrics
spanning it. Vice versa, two characteristic matrices

Ql)\ + QO; and Ql/\ + QOu

describe the same pencil if and only if

Q1 = aQ1 + cQo,
Qo = bQ1 + dQo,
with a,b,c,d € C, ad — be # 0. And thus, the corresponding values of A are related by
B aX+b
cA+d

Furthermore, a change of basis, or a projective transformation acts on the characteristic
matrix Q1A + Qo as
FT(Q1 AN+ Qo)F = FTQ1FA + FTQoF.

Theorem 9.22. Let P,P < PSym(C"*') be two regqular pencils of quadrics in CP™.
Then the following statements are equivalent:

(i) P and P are projectively equivalent.
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(ii) There exist characteristic matrices of that P and P are equivalent.

(iii) There exist characteristic matrices of that P and P that have the same Segre symbol.
Proof. Follows from Corollary 9.19. [

If two characteristic matrices are equivalent, how are the Segre symbols of all the
other characteristic matrices of the same pencils related? This question is answered by
Proposition 9.14. We first use this statement to associate the entries from the Segre
symbol to the degenerate quadrics of the pencil, before we come back to a refinement of
the classification result.

If det @1 # 0, then the determinant of a characteristic matrix det(Q; A+ Qo) has degree
n+ 1 and finitely many roots Ay, ..., A\; € C, which correspond to the degenerate quadrics
P(AM1),...,P(Xs) of the pencil. Each root A; has an entry of characteristic numbers
(X\i : Vi1, ..., Vip,) in the Segre symbol of the characteristic matrix Q1A + Q.

Remark 9.3. One can drop the condition det )7 # 0 and allow 0 as a root of det(GQ\ +
(o). The associated characteristic numbers in the Segre symbol are the ones of the 0 as
a root of det(Q1 + Qo).

By Proposition 9.14, the characteristic numbers in the Segre symbol, are independent
of the choice of quadrics to span the pencil. Furthermore, by Corollary 9.19 they are
invariant under a change of basis, or a projective transformation. Thus, the characteristic
numbers are well-defined attributes of the degenerate quadrics of the pencil

Definition 9.10. Let P < P Sym(C"™!) be a regular pencil of quadrics with characteristic
matrix Q1A + QQo. Then the characteristic numbers of each entry of the Segre symbol

(>\7, Vity e, Vlhi)a

is called the characteristic numbers of the associated degenerate quadric with representa-
tive matrix Ql)\z + QQ.

Proposition 9.23. Let P < P Sym(C"™) be a regular pencil of quadrics with character-
istic matric Q1A + Qo. Let D be a degenerate quadric in P with representative matrix
Q1A + Qo and characteristic numbers

(Vity« -+, Vin,)-
Then the dimension of the projective subspace of singular points of D is given by
n —rk(Q1\; + Qo) = h; — 1.
Proof. Follows from Theorem 9.10. O

We now come back to the classification of pencils of quadrics in CP™.

Theorem 9.24. Let P,P < PSym(C™?) be two regular pencils of quadrics in CP".
Then the following statements are equivalent:

(i) P and P are projectively equivalent.

(ii) They have same number of degenerate quadrics Qy, ..., Qs € P and Q1,...,0,€P,
which as points on the line P and the line P are related by a (one-dimensional)
projective transformation P — P, and the characteristic numbers of corresponding
degenerate quadrics are equal.
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(iii) Any two characteristic matrices of P and P have the same Segre symbols up to a
projective transformation of the roots.

Proof.
(=) Follows from Proposition 9.14 and Corollary 9.19.

(<) If the points of the degenerate quadrics are related by a projective transformation,
we can choose quadrics Qp, Q, € P and 9, @, € P to span the two pencils such that
the corresponding degenerate quadrics in P and P correspond to the same roots \;.
The two correspoding characteristic matrices Q1A+ Qo and Q1A+ Qo therefore have
the same Segre symbol, and thus are equivelent. By Theorem 9.19 they are also
congruent, which yields the projective equivalence.

O

Thus, the equivalence classes of pencils of quadrics in CP™ can be parametrized by the
complex roots Ay, ..., A; € Cu{oo} up to projective transformation (s—3 parameters) and,
by Theorem 9.21, characteristic numbers satisfying the conditions in Proposition 9.13.

9.2.1 Pencils of conics in CP?

A pencil in CP? has at most 3 degenerate quadrics. The corresponding roots can always
be mapped to, say 0,1,00. Thus, we obtain 5 different equivalence classes:

9.2.2 Pencils of quadrics in CP?

A pencil in CP? has at most 4 degenerate quadrics. In case (i) where the pencil has 4
distinct degenerate quadrics, we can map only 3 of the corresponding roots to, say 0, 1, oo,
and are left with one further complex parameter, which describes a continues spectrum of
equivalence classes. The other cases, where the pencil has at most 3 degenerate quadrics,
describe only one single equivalence class:

(i) [(0:1),(1:1),(00:1),(A:1)] with A e C\{0,1}.
(i) [(1,1),1,1]

(iii) [2,1,1]

(iv) [(1,1), (1, 1]

(v) [2, (1, 1]

(vi) [2,2]
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) (L1,
(viii) [(2,1),1]
(ix) [3,1]
(x) [(2,1,1)]
(xi) [(2,2)]
(xii) [(3,1)]
(xiii) [4]

Figure 43. The 13 cases of pencils of quadrics in CP? and their base curves.

98



A Pencils of conics

» A conic in the real projective plane is a set
{[z] = RP?| q(z,z) = 0}
where ¢ is a symmetric bilinear form on R3.

In homogeneous coordinates w.r.t. a basis e, es, e3 € R? the conic can be represented
by its Gram matriz

Qij = q(e,;,ej), Z,j = 1,2,3.
It is a symmetric matrix Q7 = @ and

q(z,y) = 27Qy.

» The dual conic C* = (RP?)* of a conic C = RP? is the set of all points in the dual
space (RP?)* that correspond to the tangent lines C. Its Gram matrix w.r.t. to the
dual basis is given by

Q* _ Q—l
» The space of conics is a 5-dimensional real projective space for which the 6 non-
redundant entries of the Gram-matrix can be taken as homogeneous coordinates.

» A pencil of conics is a family of conics corresponding to a line in the space of conics:
Cr = {[z] e RP? | qu(w,2) + Ago(z,2) =0}, AeRu {oo}.

The base points of a pencil is the set of points that is contained in all conics of the
pencil. A pencil of conics has up to 4 base points.

A pencil of conics contains up to 3 degenerate conics given by
det(Q1 + )\Qg) = 0.

» A dual pencil of conics is a family of dual conics, which are dual to the conics of a

o)

Figure 44. A pencil of conics with 4 real base points and the corresponding dual pencil.

CRD >
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B Elliptic functions

Definition B.1. A meromorphic function f : C — C=Cu {oo} is periodic with period
weCif
flz+w)=f(z) forall zeC.

Example B.1. The holomorphic sine and cosine functions have periods 27:

cos(z + 2m) = cos(z), sin(z + 27) = sin(z).

v

If w e C is a period of f then so is nw for any n € Z.

v

By the uniqueness theorem for holomorphic fuctions the set of periods cannot have a
(finite) accumulation point in C.

v

Thus, along any line wR gererated by a period w we can choose the period w; closest
to 0, such that Zw; is the set of all periods along that line.

» A non-constant meromorphic function cannot have more than two R-linearly indepen-
dent periods, i.e., two periods wy,ws € C with

Im 22 %0,
w1

v

If w; and wy are chosen to be the periods closest to 0 along their lines, respectively,
then the set of periods of f is given by

A= wlz + LUQZ = {n1w1 + NoWs ’ niy,Ng € Z} .
The lattice A is the free abelian group generated by w; and ws.

Definition B.2. Let
A= UJ1Z + LL)QZ

be a lattice. Then a meromorphic function with
f(z+w)=f(z) forall zeC and weA
is called an elliptic function with period lattice A. For zy € C the set
M= {20+ Mwi + Maws | 0< A <1,0< Ny < 1}
is called a fundamental parallelogram of f.

» The choice of generators for A is not unique. Two complex numbers w1,y € C,
Im Z—j > ( generate the same lattice A, if and only if

(I)l = awi + ba}g .
. , with a,b,c,deZ, ad—bc= =1,
Wy = cwi + dws

» The quotient group C /A, can be thought as the domain of the elliptic function
f. Tt is topologically a torus, obtained by identifying opposite edges of fundamental
parallelogram.
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B.1 General properties of elliptic functions

The following theorems summarize the main general properties of elliptic functions.
Theorem B.1. A holomorphic elliptic function is constant.

Proof. Liouville’s theorem for bounded entire functions. O]

Theorem B.2. An elliptic function has finitely many poles in 11 and the sum of its
residues 1s zero.

Proof. A meromorphic function can only have finitely many poles in the bounded funda-
mental parallelogram II. We can always choose II such that its boundary JII does not
contain any of the poles. Then due to the periodicity of f we obtain

1

- dz = 0.
o anf(z) i

]

Theorem B.3. A non-constant elliptic function takes on every wvalue in II the same
number of times (counting multiplicities). This number is equal to the number of poles in
IT (counting multiplicities).

Proof. For any ¢ € C the number of points with f(z) = ¢ in minus the number of poles in
IT is given by

1 /
2mi Jon f(2) — ¢
This integral is equal to zero since % is an elliptic function. O]

Definition B.3. The number of times a non-constant elliptic function takes on every
value in II is called its order.

Corollary B.4. The order of an elliptic function is at least 2.

Proof. An non-constant elliptic function must have at least one pole, but it cannot have
a single pole of order 1. O

» Non-constant elliptic functions may be viewed as holomorphic maps
. C C=cC
fi2/A— v {0}
that take on every value as many times as their order.

Theorem B.5. Let f be an elliptic function of order m. Let c € C and 2y, ..., 2z, € 11 be
all points in 11 with f(z) = ¢ (appearing multiple times according to their multiplicity).
Let wy, ..., wy, € I be all poles in 11 (appearing multiple times according to their order).
Then

2+ +zp=w+ - +w,, modA

Proof. Consider the integral
O

2mi aHZf(Z)_C
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Example B.2. The Weierstrall go-function for a given period lattice A is an elliptic

function given by
(z) = 1 + Z L
L= (z—w)? w?)’

weA\{0}

It is constructed to have exactly one double pole per fundamental parallelogram, and thus
it has order 2. Any two points 21, 2o € II with p(2;) = @(22) satisfies

21+ 29 =0 mod A.

Theorem B.6. Let f, g be two elliptic functions with the same period lattice A. If f and
g have the same poles and zeros (with same multiplicities) then

=X
with some constante \ € C.

Proof. The function § is an elliptic function without poles and thus constant. O

B.2 Jacobi elliptic functions

» Denote by

2\ _ ' dt 1.2\ _ 72
K(k;)_Lwl_tz)(l_k%z), K'(k?) = K(1 — k2).

the elliptic integral of the first kind, and consider the parallelogram with corners
0, K, K+iK, K,

which is called the the auxiliary rectangle. Its corners are labeled by (in the same
order)
s, ¢, d, n.

If the elliptic modulus k satisfies 0 < k? < 1 the two values K(k?), K'(k?) € R are real,

and the auxiliary rectangle is indeed a rectangle.

» Jacobi elliptic functions are certain elliptic functions of order two (with two simple
poles and two simple zeros) constructed in the following way:

e The function
pq(z, k) with p,qe{s c,n,d}
has a simple zero at p and a simple pole at q.

e The pattern of zeros and poles is extended to C by reflection in the sides of the
auxiliary rectangle.!4

e The periods are chosen as multiples of K and iK’ such that one obtains an elliptic
function of order 2. This leads to periods 2K or 4K in one direction and 2iK’ or
4iK’" in the other direction.

14Indeed the whole Jacobi elliptic function itself is continued across the auxiliary rectangle by the
Schwarz reflection principle.
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e The leading coefficient in the series expansion of the zero (or equivalently of the
pole) is chosen to be 1.

» As the three basic Jacobi elliptic functions one usually takes cn,sn, dn. For these one
obtains

e cn is an even function with periods 4K, 2iK’, zeros at K, 3K, poles at 1K', 2K + iK',
and cn(0) = 1.

e sn is an odd function with periods 4K, 2:K’, zeros at 0, 2K, poles at iK', 2K + iK’,
and sn(0) = 0, sn’(0) = 0.

e dn is an even function with periods 2K, 4iK’, zeros at K + iK', K + 3iK’, poles at
iK', 3iK’, and dn(0) = 1.

» All other Jacobi elliptic functions can be constructed as products and quotients of

these three functions, e.g.,
cn
cs = —.
sn
» For 0 < k? < 1 the values of all Jacobi elliptic functions on the real axis are real
» The Jacobi elliptic functions can be considered as generalizations of trigonometric
functions. In the limit &* — 0, in which K(k?) — %, one obtains

cn — cos, sn — sin, dn — 1.
» The main Jacobi elliptic functions satisfy the following two quadratic equations:
en?+sn? =1, dn®+k%sn®=1

Geometrically this means that the curves

z(t) cn(t,k)
t— [ y) ) = stk
2(t) + dn(t,k)
lie on the (and indeed parametrize the entire) intersection curve of the two cylinders
2?4y =1, 22+k% =1

» The derivatives of the main Jacobi elliptic functions are given by

sn’ = cndn, cn’ = —sndn, dn’ = —k%*sncn.

» They satisfy the following differential equations
e sn solves 2" + (1 + k*)z — 2k?23 = 0 and (2')? = (1 — 22)(1 — k*2?)
e cn solves 2" + (1 — 2k?)z + 2k?23 = 0 and (/)2 = (1 — 2%)(1 — k? + k%2?)
e dn solves 2 — (2 — k*)z 4+ 223 = 0 and (2/)? = (2% — 1)(1 — k* — 2?%)

» They satisfy the following addition laws

sn(z) en(y) dn(y) + sn(y) en(x) dn(z)

sn(z +y) = 1 — k2 sn?(z)sn?(y) 7
cn(z) en(y) + sn(z) sn(y) dn(z) dn(y)

en(z +y) = 1 — k2 sn?(z) sn2(y) ’

dno 4 ) — D) dny) — K sn(2) sn(y) en(z) en(y)

1 — k2sn?(x)sn?(y
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