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1 INTRODUCTION 5

1 Introduction
Aim
DDG aims to develop discrete equivalents of the geometric notions and methods

of classical differential geometry. The latter appears then as a limit of refinement
of the the discretization.

smooth surface simplicial surface quad-surface

Figure 1.1. Different kinds of surfaces.

One might suggest many different reasonable discretizations (with the same
smooth limit). Among these, which one is the best? DDG initially arose from
the observation that when a notion from smooth geometry (such as the notion of
a minimal surface) is discretized “properly”, the discrete objects are not merely
approximations of the smooth ones, but have special properties of their own,
which make them form a coherent entity by themselves.

DDG versus Differential Geometry

In general

» DDG is more fundamental: The smooth theory can always be recovered as a
limit of the discrete theory, while it is a nontrivial problem to find out which
discretization has the desired properties.

» DDG is richer: The discrete theory uses some structures (such as combina-
torics of the mesh) which are missing in the smooth theory.

» DDG is clarifying: Often a discretization clarifies the structures of the
smooth theory (for example unifies surfaces and their transformations, cp.
Fig. 1.2).

Figure 1.2. From the discrete master theory to the classical theory: surfaces
and their transformations appear by refining two of three net directions.



1 INTRODUCTION 6

» DDG is simpler: It uses difference equations and elementary geometry in-
stead of calculus and analysis.

» DDG has (unexpected) connections to projective geometry and its subge-
ometries. In particular some theorems of differential geometry follow from
incidence theorems of projective geometry.

Applications

Current interest in DDG derives not only from its importance in pure mathe-
matics, but also from its applications in other fields including;:

» Computer graphics. CG deals with discrete objects (surfaces and curves for
instance) only.

Figure 1.3. A simplicial rabbit.

» Architecture. Freeform architecture buildings have non-standard (curved)
geometry but are made out of planar pieces. Common examples are glass
an steel constructions.

Figure 1.4. Two examples from Berlin: The “Philologische Bibliothek der FU
Berlin” and an inside view of the DZ Bank at Pariser Platz.

» Numerics. “Proper” discretizations of differential equations are often ge-
ometric in order to preserve some important properties. There are many
examples and also recent progress in hydrodynamics, electrodynamics, elas-
ticity and so on.

» Mathematical physics. Discrete models are popular. DDG helps for example
to clarify the phenomenon of integrability.
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History
Three big names in (different branches of) DDG are:

» R. Sauer (starting 1930’s)

Theory of quad-surfaces (build from quadrilateral) as an analogue of parametrized
surfaces. Important difference equations (related to integrable systems), spe-
cial classes of surfaces.

» A.D. Alexandrov (starting 1950’s)

Metric geometry of discrete surfaces. Approximation of smooth surfaces by
polyhedral surfaces.

» W. Thurston (1980’s)
Developed Koebe’s ideas of discrete complex analysis based on circle pat-
terns. Further development of this theory led in particular to construction
of surfaces from circles.

Figure 1.5. A discrete version of the Sherk tower, made out of touching discs.

Discretization principles

Which discretization ist the best?

» Theoretical point of view. The one which preserves all the fundamental
properties of the smooth theory.

» Practical point of view (from Applications). The one which possesses good
convergence properties and represents a smooth shape by a discrete shape
with just a few elements very well.

Fortunately it turns out that in many cases a “natural” theoretical approx-
imation possesses remarkable approximation properties.

Two principles of geometric discretization

» Transformation group principle: Smooth geometric objects and their trans-
formations should belong to the same geometry. In particular discretizations
should be invariant with respect to the same transformation group as the
smooth objects are (projective, hyperbolic, Mdbius etc.). For example a
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discretization of a notion which belongs to Riemannian geometry should be
given in metric terms only.

Another discretization principle is more special, deals with parametrized objects,
and generalizes the observation from Fig. 1.2:

» Consistency principle: Discretizations of surfaces, coordinate systems, and
other smooth parametrized objects should allow to be extended to multidi-
mensional consistent nets. All directions of such nets are indistinguishable.



Part 1
Discrete Curves

2 Curves and curvature

2.1 Basic definitions

Definition 2.1 (smooth curves). Let I < R be a finite or infinite interval.
Then a smooth curve in RY is a map

v:I—-RN

such that all derivatives v/, 7”,. .. exist.
The length of a smooth curve + is defined by

L(7) ::L”*y’(x)“ dz.

~ is called regular if |7/ (x)| > 0 for all z € I.
For a regular curve v the (unit) tangent vector at x € I is defined by

~v is called arc length parametrized if |+'(z)| = 1 for all z € I.
Remark 2.1.

» Any arc length parametrized curve is regular and any regular curve can be
parametrized by arc length. We usually denote the arc length parameter of
a curve by s.

» The length of an arc length parametrized curve is given by L(v) = |I|.

» We defined curves as ’parametrized curves’. But we are also interested in
quantities that are invariant under reparametrization and Euclidean trans-
formations, i.e. well-defined on equivalence classes representing the ’shape of
a curve’.

Definition 2.2 (discrete curves). Let I < Z be a finite or infinite interval.
Then a discrete curve in RY is a map

v:I—>RN.

For a discrete curve v we define the vertez difference vector at the edge (k, k+1)
with k,k+ 1€ I by
AVk = Ykt1 = Tk

and its length by

L) =D lwesr =%l
k,k+1el
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If any two successive points of v are different, i.e. |[Avyg| > 0 we can define the
(unit) tangent vector at the edge (k,k + 1) with k,k+ 1€ I by

T o 1=
ver1 = vl
We further define
~v reqular :< any three successive points Ye—1, Vi, Vk+1

are different for all k — 1,k,k+1€1
~ arc length parametrized < ||ye+1 — | =1forall kel

Figure 2.1. Part of a discrete arc length parametrized curve.

Remark 2.2.

» The vertex difference vectors A~ and tangent vectors T) are naturally de-
fined on edges rather than vertices despite the notation.

» For a discrete arc length parametrized curve ~ the tangent and vertex dif-
ference vectors coincide

Ti = Avg = Vi1 — Vi

It is regular if and only if two successive tangent vectors Ty_1 and T} are
not anti-parallel.

» The definition of regularity is more than is needed to define edge tangent
vectors. But we will see that it allows to have a well defined discrete tangent
flow at vertices as well.

» For plane curves it will be sometimes convenient to identify R? =~ C and for
space curves R3 >~ ImH

2.2 On the smooth limit

Consider a discrete curve v : Z — R . To obtain a continuous limit we introduce
a small parameter € > 0 and replace the lattice Z by

Bf = ¢cZ
for e > 0 and B° := R. So the discrete curve is replaced by a family

7 B° - RV,
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In the limit € — 0 the vertices ek € €Z become points z € R.}

We will not concern ourselves with the question of convergence of the curve
itself but are more interested whether we can recover the smooth quantities —like
tangent vectors and arc length— from the corresponding discrete definitions.
Suppose that v* possesses a smooth limit

¥ =y (e—0).

or alternatively start with the smooth curve and define the family of discrete
curves by sampling. Then we can investigate how properties from the discrete
case transfer to the smooth case in the following way:

» Take some local discrete quantity depending on some vertex k € Z and its
neighbors.

» Replace ke Zby apoint te R, k—1byxz—¢ec, k+1byx+e, ...

» Investigate the limit ¢ — 0, e.g. by applying Taylor’s theorem at ¢ = 0.

Vk+1—"Vk

become smooth unit tan-
\|’Yk+1—"/k H

The discrete unit tangent vectors Ty =
_ (=) .
gent vectors T = EOIE
_ y@te) =) _ A+ ofe)
(@ +e) =) [V (@) +ole)l
_ Y@ +ol) | A=)
I @) +o(1) V(=)

If we consider the (non-unit) vertex differences Ay, = yx4+1 — Y% we have to
scale appropriately to obtain the tangent vector 7/(x) in the limit. Indeed

Ty

1 1
21 =) = Z(7'(2)e + 0(e)) = 7'(2)-
Starting with a discrete arc length parametrized curve for e = 1, i.e. |Avyg| =
1, we take all curves of the family v¢ to have vertex differences of constant length,
ie. |AvE| =€ for all € > 0, k € Z. Then the smooth limit is also arc length
parametrized:
1 €
|V @) < = lvmsr =l = = =1.
€ €
In the arc length parametrized case the tangent vectors T}, are equal to the
vertex differences Avy,. But while scaling down the lattice size by ¢ we get

_ A
5 b

Tk

due to the normalization of T.

1Depending on the situation it might be more convenient to consider a refinement of the
lattice, like Q%Z. The procedure described above is convenient for the investigation of local
properties around 0.
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Let us investigate sum and difference of two neighboring tangent vectors T and
Ty_1 in the smooth limit. In this limit the angle between the vectors tends to 0.

Ty + Ty = é(A’Yk + A1)
- é(’y(x +e) —v(z—¢9)
_ %(V(x) +e7(z) —v(z) + &/ (2) + 0o(e))
= 279/(x) + o(1).
Ty — Th1 = %(Avk — A1)
- é(v(m +¢e) = 2y(x) + y(z — ¢€))
=2 (7@ 3270 - @)+ 30 k)

7' (z) + o(e).

Il
o

So to approximate the second derivative of the curve we have to scale the dif-
ference of the tangent vectors by %

2.3 Discrete curvature from osculating circles

Definition 2.3 (curvature of smooth curves). Let v:I — RY be a smooth
curve parametrized by arc length. Then the curvature of v at s € I is

r(s) = ["(s)]-

This definition extends to any smooth regular curve upon reparametrization by
arc length.

Remark 2.3.

» The osculating circle at s € I is the unique circle best approximating ~ at
~(s). It can for example be obtained

e as the arc length parametrized circle through ~(s) agreeing with v up to
second order.

e by a limiting procedure of circles through three distinct points on v going
to y(s).

e as the circle among all tangent circles at y(s) for which the distance to
~ in normal direction decays the least.

Let R(s) > 0 be the radius of the osculating circle. Then the curvature of v

at s € I is the reciprocal
1

K(s) = R0)

» If 4"(s) # 0 the osculating circle lies in the osculating plane which is the
plane spanned by +/(s) and ~”(s).
If v"(s) = 0 it degenerates to a line and (s) = 0.
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» Let v: I — R? be a plane curve parametrized by arc length. Then we can
define a signed curvature x4 (s) of v at s € I by

T'(s) = 5 ()N (s).
where T'(s) = 7/(s) and N(s) == iT(s) is T'(s) rotated by 7.

We consider three possibilities of defining osculating circles in the discrete
case leading to different notions of discrete curvature. Let v:I — RY be a
discrete curve. We define

or = X(Avk, Ayp—1) = (Th, Tp—1) € [0, 7].

AY

Figure 2.2. Turning angle at a vertex of a discrete curve.

For planar curves v : I — R? we can define the angle ¢, to be in [—7,7].

2.3.1 Vertex osculating circle

Definition 2.4 (vertex osculating circle). The wvertex osculating circle at a
vertex k is the circle through 4 and its two neighbors v,—; and ~yg41.

Vi

Ve—1
VE+1

Figure 2.3. Vertex osculating circle as the circle through three neighboring
vertices.

Its center is given by the intersection of the two bisecting lines of the adjacent
difference vectors A7, and Avg_;. The radius is given by |yg+1 — Ye—1] =
2Ry, sin g, which leads to the curvature

2sin g

Kp = ————————.
k1 — Ye—1

Note that for planar curves with ¢y € [—m, 7] this leads to a signed curvature
where the sign corresponds to the expected behavior from the smooth case.
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Remark 2.4. For discrete arc length parametrized curves we find

» T, — Ty is perpendicular to the circle at ;. So T, + Ty_1 is tangent to
the vertex osculating circle.

» The curvature is bounded from above by 2 since the radius of the vertex
osculating circle is always greater than % in this case.

2.3.2 Edge osculating circle

The edge osculating circle can only be defined for planar curves since we need
any three consecutive edges to be planar.

Definition 2.5 (edge osculating circle). Let v be a planar discrete curve. Then
the edge osculating circle of v at the edge (k, k + 1) is the oriented circle which
touches the lines through the three successive edges Avg_1, Ay and Avyg41 such
that the orientation of the circle at the touching points matches the orientation
of the lines (which are oriented by the direction of the corresponding edges).

Figure 2.4. Edge osculating circle as the circle touching three consecutive edges.

The edge osculating circle is uniquely determined as long as the three con-
secutive edges are of different directions. Even if the curve is non-convex.

Figure 2.5. Edge osculating circle for a non-convex discrete curve.

Its center is the intersection of the two angular bisectors of the three consec-
utive edges. The radius is given by |Av,| = Ri(tan £ + tan £55). This leads

to the curvature
tan £ + tan £

R =
1Ak
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It is unbounded from above even for arc length parametrized curves but has the
disadvantages of being not as local as the previous definition,? while only being
applicable to planar curves.

2.3.3 Osculating circle for arc length parametrized curves

For arc length parametrized discrete curves we can achieve the locality of the
first and the unboundedness of the second definition by taking the circle touching
two consecutive edges in their midpoints. This works in any dimension.

Definition 2.6 (osculating circle for arclength parametrized curves). Let v : I — RV
be a discrete arc length parametrized curve. Then we define the osculating circle
at vertex k to be the circle touching the two edges T;_; and T}, in its midpoints.

Figure 2.6. Osculating circle for a discrete arc length parametrized curve.

The center is given by the intersection of the bisecting lines of the two edges while
we find for the radius 2Ry tan £ = 1 which leads to the following definition of
curvature

K = 2tan %. (2.1)

Note that it is zero at straight vertices and goes to infinity at non-regular ver-
tices.

21t is defined at edges while depending on the neighboring edges which makes it involve a
total of four consecutive points.
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3 Flows on curves

3.1 Flows on smooth curves
3.1.1 Local geometric flows

We want to describe the motion of a curve v : I — RY in space by applying
some vector field v. In general v might depend on the whole curve, i.e. be some
vector field on some domain in the space of curves. If v depends only locally
on 7, i.e. only on a small neighborhood at each point of the curve, we call the
generated flow a local flow. This is the case if the evolution process of v under
the flow generated by v can be described by a differential equation

oy =v (7,7, 7"...). (3.1)
A one-parameter family of curves
v:IxJ—>RY
which is a solution of (3.1) in the sense that

at’}/(sat) =v (V(Sat)ap)/(svt)f)/”(sat)v .- ) = ”U(S,t)

for all (s,t) € I x J is called the evolution of the curve vyo(s) = v(s,0) under the
flow given by v.

For this particular initial curve 7y the vector field v becomes a one-parameter
family of vector fields along the parametrization

v:IxJ—o>RY

and (3.1) becomes
at’Y(va = U(Sat)'

The map
(P : (t7’7) = q)tPYa

where ®;7(s) = (s, t) is the evolution of ~ is called the curve flow given by v.
Note that in general ® might not be well defined due to lack of existence and
uniqueness of solutions of (3.1) for arbitrary .

Additionally one might want the flow to be geometric, i.e. only depend on
the shape of the curve. For this it should be invariant with respect to

» Euclidean motions,?
» reparametrization of the curve.

The flow is then well defined on the corresponding equivalence classes of parametrized
curves.

Example 3.1 (planar geometric flow). For planar curves these two conditions
can be realized by the ansatz:

v=uv(k,r K" ...)=alk K K& .. )T+ Bk K", ...)N. (3.2)

30r more general, invariant with respect to the action of some other Lie group.
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3.1.2 Arc length preserving flows

Now we restrict our attention to flows that preserve the arc length parametriza-
tion, i.e.
o || =o. (3.3)

If we think of the curve as a one-dimensional distribution of mass, (3.3) means
that the density along the curve does not change under the action of the flow.
In particular the length of the curve is preserved.

Example 3.2 (planar geometric flow preserving arc length). Using the ansatz
(3.2) for a planar geometric flow and starting out with an arc length parametriza-
tion we obtain

oy =T+ al"+ BN+ BN =(a/ —k8)T + (ka+ )N,

where we used 77 = kN and N’ = —kT. Under this condition (3.3) becomes

1
0=3507,7) =07") = & = K.
The solution o = 1, 8 = 0 leads to the tangent flow
at’}/ = T7
while o = %52, B = &’ leads to the modified Korteweg-deVries flow (mKdV flow)
1 2 /
Opy = 5 T+ «'N.
The curvature x of curves evolving under the mKdV flow changes as
Ork = (T', Ny =(0;T",N) = (ra + )
3
_ §Ii2/{/ + KW,

which is the mKdV equation.

Example 3.3 (arc length preserving tangent flow). Consider a curve flow on
curves in R in tangent direction

(9t”y =al.

Closed curves and infinite curves are invariant with respect to such a flow. In
general the flow just induces a reparametrization of the curve. It is arc length
preserving if and only if « is constant along the curve at any time, i.e. a = a(t).
The normalized version a = 1 acts as

Pyy(s) = y(t,s) =v(0,5 + 1) =v(s + 1)

Example 3.4 (Heisenberg flow). For arc length parametrized curves in R3
consider the Heisenberg flow*

oy =7" x+". (3.4)

4The Heisenberg flow is also known as the smoke ring flow or Hashimoto flow.



3 FLOWS ON CURVES 18

Using a Frenet frame T, N, B we obtain
Oy=T xT=kNxT =—kB.

So the Heisenberg flow is always acting in binormal direction and is therefore
arc length preserving.
The tangent vector evolves under the Heisenberg flow as

atT _ (,y// x ,y/)/ — ,y/I/ X ,y/ — T// X T

3.2 Flows on discrete arc length parametrized curves

For I == [0,...,n] c Z finite interval, I = Z,, == Z/nZ and I = Z we define the
space
Cr={y:1->RY}
of finite, finite closed and infinite curves respectively. Note that in the finite
case C; =~ (RV)". By C;*® and C3*¢ we denote the corresponding submanifolds
of regular and arc length parametrized curves.
A flow of discrete curves is given by a vector field

v:Cr — TC;, ~w~—v[y]eT,Cr,

or on some submanifold U < C;. In the finite case we have T,C; = (RV)™. So v
gives a direction in RN at every vertex k which possibly depends on the whole
curve v. We state this relation as

vr[v] € RY.

For a given initial curve v:I — RY the vector field v on C; becomes a
one-parameter family of vector fields along the parametrization of the curve

v:lxJ—>RN,

where J < R is an open interval. The action of the flow leads to a continuous
deformation of the curve 7, = 7 (0)

v:IxJ—>RY

satisfying
Orvi(t) = vi(t).

In the following we restrict our attention to inner vertices only. The advan-
tage is that we have to define vector fields only on inner vertices. This restriction
is realized by examining closed and infinite curves, i.e. [ = Z,, or I = Z.

As in the smooth case we focus on local geometric flows on C7*¢. In the discrete

case we interpret these conditions as follows.

arc length preserving To preserve arc length parametrization, i.e. make
stay in C# the flow must satisfy®

0 = 0 | A
< 0= 0 A, Tk) = O Vr+1 — O Vi, Th) = (Vg1 — Uk, Th)-

5This means we want the vector field v to be defined on the submanifold C#e of Cyp, i.e.
make sure that v[y] € T,C3° < T,Cr.

(3.5)
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Decomposing the vector field at the vertex k into its parts along the tangent
plane span{T},T;_1} and its orthogonal complement we see that this only
imposes constraints on the former.

local flow By a local flow we mean a flow which at every vertex k only depends
on the curve at the adjacent vertices®, i.e. Yu—_1, Yk, Vos1:

Vg [7] = U(’yk—la Yk 7k+1)-

geometric Since we do not consider reparametrizations in the discrete case
a geometric flow is a flow which is just invariant with respect to Euclidean
transformations, i.e. translations and rotations.
On the level of the vector field this means that for R € SO(N), a € RY

vi[Ry + a] = Rug[v].

Let us break down these conditions a little bit further in the case of local
flows on C5*¢.

translation invariance For a local flow given by the vector field v transla-
tion invariance means that for any a € RV

’U(’kal + @, Yk + @y V41 + a) = U(’Yk71>’7ka’7k+1)»

which can also be expressed the following way: For any given direction
beSN-1
d

de
For a flow on C#¢ we can rewrite a local vector field to be a function of the
form v, = v (g, Tk, Ti—1). For this we get

V(Yh—1 + b, Yk + €b, Yis1 + €b) = 0.
e=0

d

E (v +€b, T, Ti—1) =

e=0 6%

for all b e SV, i.e. v must not explicitly depend on v, and therefore be of
the form
Vg = U(Tk,Tk_l). (36)

rotation invariance For a local translation invariant vector field (3.6) on
C3 this means that for any rotation R € SO(N)

U(RTk, RTk_l) = R’U(Tk, Tk—l)'

We consider this further in the three dimensional case. At every ver-
tex” k we can take Ty, Ti_1,T: %X Th_1 as a rotation invariant basis.®

6By this we mean in particular that v depends on the adjacent vertices “equally” at every
vertex.

7At least at regular, non-straight vertices.

81n this context T}, Ti_1 have to be interpreted as vector fields on C;. The cross product
of two rotation invariant vector fields is rotation invariant. So we get three rotation invariant
vector fields which define a basis of T,Cr = (R3)™ for any curve 7, i.e. a basis of R? at every
vertex k.

Note that this in general is not an orthonormal basis. Such a basis could be obtained by
Tp+Tk—1 Typ—Tr—1 Tp xTp—1
Te+Te—1 " [ Te=Th—1[” [Tk % Th—1

taking I
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Expressing v in this basis we get

O (T, Tr—1) = 1 (Th, Ti—1) T+ 2 (T, Tie—1) Ty + a3 (T, Tho—1) Tie X Ty 1,
(3.7)
and see that rotation invariance is equivalent to the invariance of the scalar

components o;:
ai(RTk, Rkal) = Ozi(Tk, Tk,l). (3.8)

3.2.1 Tangent flow

Since tangent vectors of a discrete arc length parametrized curve 7 live on edges
it is not instantly clear what the tangent direction at a vertex k should be. If we
want it to depend only on the neighboring tangent vectors an obvious symmetric
choice would be?

T + Th—1.

If we set a local flow on C7*° to be parallel to T} + T}y it is already uniquely
determined —up to a constant— and turns out to be geometric.

V| Ye+1 — Yo—1 = Tk + Th—1

V41

Figure 3.1. Tangent flow on a discrete arc length parametrized curve.

Proposition 3.1 (discrete tangent flow). The discrete tangent flow!°
P Ty + Tk
zVk k - 1 +<Tk,Tk—1>

is up to a multiplicative constant the only discrete local curve flow in tangent
direction Ty, + Ti—1 which preserves arc length parametrization.
It is geometric.

Proof. Let us start with a general flow in tangent direction
vg = (T + T-1),

where aj = ag[v] might depend on the curve in any way.
Now we impose arc length preservation. From (3.5) we know that

0 =0 | A
= 0 = Vks1 — Vi, Tk)
= (a1 (Tht1 + Ti) — ar(Th + Th—1), Ti)
= ap41((Th+1, Th) + 1) — ap (T, The—1) + 1)

=:Ck

< Cr+1 = Ck

9Note that this is only a well-defined direction on regular vertices.
10Note that x is the flow parameter of the tangent flow here.
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for all ke I. So ¢, = ci[y] = ¢[7] is constant in k and therefore

ch]
akh/] - 1+ <T]€,Tk_1>7

where this constant might still depend on 7.
Now the locality of the flow ensures that c is the same for any curve v.!!
The flow is geometric since it is of the translation invariant form

vi[v] = (T, Ti—1 ) (T + Tho—1),

where o(Tg, Ti—1) = m is rotation invariant. O
Remark 3.1.

» Since 1 + (T}, Tp—1) — © as T, — —Tj_1 it is only well-defined at regular
vertices.

» Comparing with the smooth tangent flow on arc length parametrized curves
which is 0,7 = ' gives rise to the definition of the vertex tangent vector at
the vertex k of an arc length parametrized curve'? to be

Tp + Th—1
1+ <Tk,Tk_1>.
Note that .
L (T, Tor) = 5 | T + T

So the vertex tangent vectors are not of constant length

H Ty + Ty s ‘ R
1+ <Tk, Ti_1) HTk + Tp—1| '
» For the discrete tangent-flow v
v[v] is a translation < ~ is a straight zig-zag curve
v[7] is a rotation < ~ is a circular zig-zag curve.

Note that the first case includes straight lines and the second regular poly-
gons as special cases.

w5

Figure 3.2. Discrete tangent flow. Straight zig-zag curves evolve by a transla-
tion. Circular zig-zag curves evolve by a rotation.

19, local = c[v] = c(Yk—1,Vks Yet1) With the same value for every k.
12This can be generalized to general discrete curves as can be seen in [Hof08].
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» We investigate the smooth limit where we refine the lattice eZ — Ras € — 0
as discussed in Section 2.2. We set |Avyx| = ¢ and therefore T}, = %.
Replacing k € Z by x = €k € R we have

Ty + Ti—1 = 29'(z) + o(1)
and

1
L+ (T, Ty = 5 | T + T |® = 2|7/ (2)] + 0(1) = 2 + o(1)

since the smooth limit is arc length parametrized, i.e. |/ (z)|| = 1. So

T+ Tryr 29'(x) +0(1)

1 +<T/€aTk}—1> B 2—|—0(1) 7/(37)7

which is the smooth tangent flow of an arc length parametrized curve as
introduced in Section 3.1.

3.2.2 Heisenberg flow

We now consider curves in R? and a flow in binormal direction T} x Ti—_1. Any
flow in binormal direction is arc length preserving.'® So this property does not
distinguish any of these flows as for the flows in tangent direction. But there is
only one that commutes with the tangent flow.

Proposition 3.2 (discrete Heisenberg flow). The discrete Heisenberg flow

Tk X Tk—l
OtV = Wk *

Ty (39)

is up to a multiplicative constant the only discrete local curve flow in binormal
direction Ty X Ti_1 which commutes with the tangent flow.
It is geometric and preserves arc length parametrization.

Remark 3.2.

» Commuting flows (infinitely many) is a characteristic feature of integrable
systems.

» Two flows given by v and w commute if they can be integrated simultane-
ously. This means for some initial curve - there is some local two-parameter
variation

v: (—€,6) X (—¢,e) = CF
(z,t) = ~(z,1)

OxYe = Uk
OVE = Wy

A necessary and sufficient condition for this is

satisfying

0z0tYk = 010z Vk»

13See for example (3.5).
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formally meaning that the derivatives 0, d; € T,C}" on C7*° identified with
the vector fields v, w at the point v commute, i.e.

0 = [0y, 0] € T,C°.

Proof. We start with a general flow in binormal direction
Ory = wi, = Br(T x Tg-1),

where B = Bk[7].

(=) We have to show that, if w commutes with the tangent flow

Ti + 11

Oy =Vp = —————,
v k 1+<Tk,Tk,1>

it has to be the Heisenberg flow, where x is the flow parameter of the tangent
flow and ¢ is the flow parameter of our ansatz.

0201y = Oz Wk
= 0 (BeTh x Tr—1)
= 0Ok (0xTk X Ti—1 + T X 0 Th—1)
+ (02Bk) Tie x T—1
= Bk [(Vk+1 —vk) X Tt + Tj % (v — vr—1)]
+ (0eBr) T x Th—1

Tr1 + Tk Ty +Th1
= Bk - X Ti—1
1+ <Tk+1, Tk> 1+ <T]C7 Tk_1>
Ty + Ty Ty1+ Tp_
+Tk><< ktde—1 gt k2>]
14+ Ty, Tr—1) 1+ Tp-1,Ti—2)

+ (6zﬂk)Tk X Tk71~
So in particular

Ti1 %X T—1, Tk

00y, Ty = .
(020t Th) = Br 1+ T, T

(3.10)
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On the other hand

010y = Oyup,

-9 Ty +Ti—1
A\ 1+ (T, Tt

1 1
=— 0, (T + T, O | ————— )| (T}, + T;
1+ (T, To) ¢ (T + Trs1) + O <1+<Tk;Tk—1>)( ke + Tht1)
( )
= —— (w — Wk—
T+ (T To s k+1 k—1

T+ <Tk1Tk:71>)2 (<wk+1 — Wi, T—1) + Tk, w, — wk._1>) (T, + Ti—1)

1

— 1+ (Ty, To_1) <5k+1Tk+1 % Ty — Bro1Th1 X Tk_2>

1
(U Tk, Te1))? (6k+1<TkH X T, Tie-1)

— Br—1{Tx, T—1 x Tk—2>) (Te + Th—1).

In particular

Tig1 % Th, Te—1)

01027, Ty = —
<t Y k> Br+1 1+<T}c7Tk71>

(3.11)

Comparing (3.10) and (3.11) we get

Bk _ Br+1
1+ (Tp1, Ty 1+ Ty, Th1)

< Br(1 4+ Ty, Tr-1)) = Brs1(1 + (Ty1,Tk))

for all k£ € I which is equivalent to

c[v]
Bl = —F———,
[ ] 1+<Tk,Tk_1>
where ¢ is some constant depending on the curve . Imposing the locality
of w eliminates this dependence.

(<) A similar —but even longer— calculation shows that the obtained Heisenberg
flow actually does commute with the tangent flow. After calculating 0,07y
and 0;0,y one can compare the scalar products with Ty, T 1 and Tj X Ty _1
respectively.

We still have to show that the Heisenberg flow is geometric and arc length
preserving.
Similar to the tangent flow it is of the translation invariant form

wr[v] = B(Th, Th—1) Tk X Tie—1,

where [ is rotation invariant. Since T} X Tj_1 is a rotation invariant vector field
the Heisenberg flow is geometric.

It always lies in the orthogonal complement of span{T},T;_1} and therefore is
arc length preserving. O
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Remark 3.3. We investigate the smooth limit using the method described in
Section 2.2. Setting x = ek we have'*

Tp x Ty =T(z) x T(x —¢)
=T(z) x (T(z) — T’ (x) + o(g))
=eT'(z) x T(x) + o(e)
and
1+ <Tk,Tk,1> =2+ 0(1)

Rescaling the time by replacing t — %t we obtain the smooth limit
Oy =T xT. (3.12)
This results in the following equation of motion for T’
oxT(x) =T" x T, (3.13)

which is the continuous Heisenberg magnetic chain as described in Section A.
This is an integrable system as is the discretization obtained from (3.9) which
yields

Tk+1 X Tk _ Tk X Tk,1
1 +<Tk+1,Tk> 1 +<Tk,Tk_1>

T Ty
_ < o1 N -1 > T
T+ Tpyr1, Ty 14+ Ty Tre1)

0Ty =
(3.14)

14Which might be seen immediately from Ty x Tp_1 = (T — Th—1) X Th—_1.
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4 Elastica

4.1 Smooth elastic curves

We consider variations of curves v in R? with fixed endpoints, fixed end direc-
tions and fixed length.

7(0)
7(0)

Figure 4.1. Curve with fixed endpoints and fixed end tangent vectors.
We represent each curve by its arc length parametrization « : [0, L] — R3 with
T :=+:[0,L] — S?. Then admissible variations have to
> fix 4(0), v(L) e R?,
» fix T(0), T(L) € S?,

» preserve the arc length parametrization, i.e. |[T(s)| = 1,
in particular this implies that the length of ~ is preserved.

We define the bending energy of v to be
L L
Ely] = J r(s)?ds = J (T', T"ds = E[T],
0 0

where k = |7”|* = |T"|* is the curvature of ~.

Remark 4.1. Note that the bending energy is invariant w.r.t. Euclidean motions.

Definition 4.1 (Bernoulli’s elastica). An elastic curve is a critical point 7 of
the bending energy £ under the described admissible variations.

The tangent vector T : [0, L] — S? uniquely determines the curve v up to
translations. We note that fixed v(0), v(L) € R? implies

So if we reformulate the problem of finding critical points of the bending en-
ergy E[T] only in terms of T : [0, L] — S?, we have to impose this additional
constraint. Admissible variations of T have to

» fix T(0), T(L) € S?,
» satisfy Sé T(s)ds = const. € R3,

» preserve ||T(s)| =1 for all s € [0, L].



4 ELASTICA 27

Basic fact from the calculus of variations: Lagrange-multipliers. The
critical points of the functional

sm:Lcmaﬂww

on the space of smooth functions q : [0, L] — R® under the variations preserving
the constraints

L
Fi:J fila,d)ds =c;ieR, i=1....N
0

are the critical points of the functional

N
S,\ 1:S+ Z )\ze

i=1

with some constants \; (Lagrange-Multipliers ).
These constants are determined from the conditions F; = ¢;, i=1,...,N.

Basic fact from Lagrangian mechanics: Hamilton’s principle of least
action. The trajectory q(t) of a mechanical system with potential energy U and
kinetic energy T is critical for the action functional

ﬂﬂ=£2admdwﬂt

1

with the Lagrangian £ =T —U.

Implementing the constraint Sé‘ T(s)ds = const. € R? into the functional via
Lagrange-multiplicators, we obtain the following physical interpretation.

Theorem 4.1 (Kirchhoff analogy for elastic curves). An arc length parametrized

curvey : [0, L] — R3 is an elastic curve if and only if its tangent vector T ==~ : [0, L] — S?
describes the evolution of the axis of a spherical pendulum.

The arc length parameter of the curve coincides with the time parameter of the
pendulum.

Figure 4.2. Spherical pendulum T with gravitational vector a.
Proof. The extrema of the functional
L
EJT] = J (T, T") + 2a, T)) ds,
0

where a € R3 and T : [0, L] — S? can be interpreted in two different ways:



4 ELASTICA 28

(1) Extrema of the bending energy
L L
£ = f kids = J (T, T")ds
0 0

for variations with fixed endpoints under the constraint S(]): Tds = const. €
R3. Here a = (a1, a2, a3) are treated as Lagrange-multipliers

3 3 L L
Z NE; = Z aiJ T;(s)ds = J {a,T)ds.
i=1 i=1 YO0 0

(2) Extrema of the action functional with Lagrangian £ =T — U where T =
(T, T, U = —{a,T) are the kinetic and potential energy of the spherical
pendulum.

Here a € R3 is the gravitational vector.

Remark 4.2.

» Planar elastica were first classified by Euler.
The tangent vector describes the motion of a planar pendulum. The only
closed elastica in the plane are the circle and Euler’s elastic eight.

oo () CO

Figure 4.3. Some planar elastic curves.

» Elastica in RN are reduced to elastica in R3.
They always lie in the 3-dimensional space

span{y(L) —~(0), T(0),T(L)}.

SNfl

Similarly the spherical pendulum in always lies in the 2-dimensional

space
SVt~ span{a, T(0),77(0)}.
Basic fact from calculus of variations: Euler-Lagrange equations.

q:[0,L] — R3 is a critical point of the functional S[q] = Sg L(q(s),¢'(s))ds
under variations with fixed endpoints q(0), q(L) if and only if

d
=V L—V,L=0.

We can implement the remaining constraint |7 = 1 into the functional
using a “continuous Lagrange-multiplier”:

L
ElaoT] = L (T T + o) (T, T — 1) + 2a, T)) ds.

From this we obtain the Euler-Lagrange equations for elastic curves.



4 ELASTICA 29

Theorem 4.2 (Euler-Lagrange equations for elastic curves). An arc length
parametrized curve v : [0, L] — R3 is an elastic curve if and only if

Y xy =axvy+b

for some a,be R3,
or equivalently if and only if its tangent vector T : [0, L] — S? satisfies

T'xT=axT
for some a € R3.

Proof. The equation for v can be obtained from the equation for T' by integra-
tion, using (7" x v') =T" x T.

With ) .
‘C(T7 Tl) = §<T/a T/> + 56(8)(<T7 T> - 1) + <Cl, T>
we obtain
d "
$VT/£ =Vl © T"=¢(s)T +a
eT"xT=axT,
where we applied the cross-product with T'. O

Remark 4.3. We recognize the left-hand side of the Euler-Lagrange equations as
the Heisenberg flow (3.4) (acting on v and T respectively) while the right-hand
side describes an infinitesimal Euclidean motion.

Corollary 4.3. A curve v is an elastic curve if and only if the Heisenberg flow
preserves its form, i.e. under the action of the Heisenberg flow the curve evolves
by an FEuclidean motion.

Proof. That v +— a x v+ b is the infinitesimal generator of an Fuclidean motion
is best be seen using the quaternionic description of Euclidean motions, which
is described in the following section. O

4.2 Quaternions and Euclidean Motions

The quaternionic algebra H is a 4-dimensional generalization of the complex
numbers. It can be constructed the following way.

Let H be a real 4-dimensional vector space R* where we denote the standard
basis by {1,1,],k}. So a general quaternion ¢ € H can be written as

q = qol + qii + g2j + g3k

with q; € R.

We define a multiplication on H by prescribing it on the basis vectors. By
distributivity it uniquely extends to all quaternions. For this the following
relations are sufficient:

i? = j? = k? = ijk = —1. (4.1)
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Associativity then fixes the multiplication for all combinations of basis vectors.

ij = —ji = k
jk=-kj=1
ki = —ik = j

This also implies skew symmetry and therefore non-commutativity of the quater-
nionic multiplication. On the other hand we see that 1 commutes with every-
thing, which is why we can identify the first component of the quaternions with
the real numbers where 1 = 1. Eventually we write

q = qo + qii + g2j + g3k

The quaternionic multiplication extends the scalar multiplication of the vector
space.
We denote the real and imaginary part'® of ¢ € H by

Req = qo = qol = qo1
Img = qii + q2] + g3k

and the conjugated quaternion by
q = Req — Img.

Like in the complex case we define the absolute value of an quaternion ¢ € H

by
la* = q@=T0 =3+ 4} + & + a3

which turns out to be the same as the Euclidean distance in R%.

Quaternionic conjugation and absolute value give us means to define an
inverse'® for ¢ € H, ¢ # 0:
-1 q

gl

We see that the quaternionic multiplication induces a group structure on the
following subsets of H:

q

H = H\{0}
Hy ={qeH| |q| =1} unitary quaternions

4.2.1 Euclidean motions in R3
The set
ImH := {g € H | Req = 0}
of imaginary quaternions is a 3-dimensional vector space which we identify
with R3:
v11 + v9] + v3k € ImH < (v, v9,v3) € R3

This leads to the following geometric interpretation of multiplication of two
imaginary quaternions.

15Note that the imaginary part includes the basis vectors unlike in the complex case.
161t is meaningful to write this as a fraction, since |q|2 is real and therefore real invertible
while commuting with every quaternion.
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Lemma 4.4. Let v,w € ImH. Then

vw = — v, wy+ v x w € H.
—_—
eR eImH

Proof.

(’011.1 + vo + Ugﬂ{)(wlﬁ + wo] + U)g]k)

= —vjw; — Vows — V3w3 + (Vaws — v3ws)i + (vswy — viws)] + (Viwgy — vawy k.
O

So we get the cross product and the scalar product of v, w € ImH in terms
of commutator and anti-commutator.

1 1
vXxw=—=(vw—wv) = i[v,w]

2
(0, w)

In particular, two imaginary non-vanishing quaternions v,w # 0 are parallel
if and only if they commute, and they are perpendicular if and only if they
anti-commute:

—i(vw + wv)

w—uwr=0 < vxw=0 < v|w

vwHwr=0 < (bwy=0 < vlw
Lemma 4.5. Unitary quaternions q € Hy can be parametrized as
g =cosa + (sina)n,
where n € ImH with |n| =1 and a € [0, 7].

Proof. For q € H; we can write Req = qp € R and Img = ¢n with ¢ = 0, n € ImH,
|n| = 1. Then
1 =g = (qo + en)(go — en) = ¢2 + ¢

which can be parametrized as

qo = cos

c=sina
with « € [0, 7]. O
Remark 4.4. This parametrization is a double covering since
a(—a,—n) = qla,n).

Proposition 4.6 (quaternionic rotation in R?). Forq e Hy, ¢ = cosa + (sina)n,
nelImH, |n| =1, a € [0,7] the map R, : R? — R3 given by

Ry(v) = qug™"

is a rotation about the azis n by the angle 2.7

17Instead of ¢ € Hy one can take g € Hy, since the absolute value of ¢ cancels in qug~1!.
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w v

Figure 4.4. Decomposition of a vector v into its part along the rotation axis
and along the orthogonal complement.

Proof. Decompose v € ImH into the part parallel and the part perpendicular
to n, i.e.
v =) + v,

where vjw = wo) and v, w = —wv,. Then
gt =
quiq~" = (cosa + (sin a)n)v (cos o — (sin a)n)

= (
= (cos® a — sin? a2(cos arsin a)n)v
= (

cos2a)v] + (sin20)w X v .
O
Remark 4.5. The map H; — SO(3), ¢ — R4 is a double covering of SO(3)

since

R_yg =Ry

Multiplication of unitary quaternions corresponds to the composition of rota-
tions
Rgsqr = Rz © Ray

i.e. multiplication in SO(3).
An Fuclidean motion is a composition of rotation and translation:
v qugt +p, velmH,

where g € Hy, p € ImH. Consider an Fuclidean flow

O,(v) = q(tjog(t) ™" +p(t), teR.
The infinitesimal generator of this flow

d

o1(Pe(v)) = T

P q)t (’U)

gives a time-dependent vector field which is called an infinitesimal Euclidean
motion.
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Corollary 4.7 (Infinitesimal Euclidean motions). Infinitesimal Fuclidean mo-

tions are vector fields of the form
1
v»—»i[a,v]+b:axv+b, v € ImH,

where a,b € ImH are called the angular and translational velocity.
Proof. We have to compute the time derivative of an Euclidean flow

S80) = (altoa(®) ) + ()
= qvg ' —quig ) + ¢
= qvg " —qug g+ pf
=[d'a " ()] + 0"~ [d'q”
1

3la(®), 2e(v)] + b(2),

' p]

where we set a(t) = 2¢'(t)g~(t) € ImH and b(t) = p'(t) — [a(t),p(t)] €

ImHI.

Conversely, given a one-parameter family of infinitesimal Euclidean motions

pi(v) = aft) x v +b(t),

there exists an essentially unique corresponding one-parameter family of Eu-

clidean motions ®;(v) which is the flow generated by :(v).

It can be obtained by integrating the quaternionic linear differential equations

/_1a

¢ = 5aq

) 1

p' =0+ s[a,p]

2
This completes the proof of Corollary 4.3.

4.3 Discrete elastic curves
We consider discrete arc length parametrized curves
Vil >R Tp=yep = [Tl =1

What is the proper bending energy for discrete elastica?

(0

<,

VF(¢)

Figure 4.5. Bending energy as the integral of the bending force.
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Assume that the bending force at an inner vertex k € I (depending on the
bending angle ¢y) is proportional to the curvature

Pk
= 2tan —
Kk an 5

we defined for discrete arc length parametrized curves.
Then we obtain the corresponding local energy at vertex k

Pk
= —4log cos %

fpk k()dy = 2f% tan %dw = —4log COS%

0 0 0

2
= —2log cos? Ph_ 2log (1 + tan? ﬁ) =2log |1+ B
2 2 4
We define the local bending energy

2
&, = log <1+’1k>.

With
3 |T% + Tk_1H2 =14 (T}, Tp_1) = 1 + cos pp = 2cos> %

we find alternate expressions
Er = —log (1 + Ty, Tp—1)) +1og2 = —log |Tx + Tk,1||2 + log 4.
Remark 4.6.

» The discrete local bending energy is invariant under Euclidean transforma-
tions.

» In the smooth limit we have ¢ — 0 and therefore x; — 0. We find that

2 2
K K

& = log <1 + 4’“) ==k + o(r?)
is quadratic in the curvature.

» At singular vertices we have ¢ — 7 and therefore kK — 0. We obtain
2
K
€k=10g<1+4’“> — 00.

So discrete elastic curves are regular.

For finite curves with I = [0,n] we consider variations of the total energy on
C?.I'C

where the sum goes over all “inner vertices” of I.
Admissible variations should fix end points and end tangent vectors and preserve
the arc length.
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Definition 4.2 (Discrete elastic curve). A discrete arc length parametrized
curve v : I — R3 I = [0,n] = Z with tangent vector T : I — R3, T}, = V11—
is called discrete elastic curve if it is a critical point of the functional

n—1 2 n—1 n—1
K
El] = ) lo 1+’“>~ log (1 + (Tk, Th1)) ~ Y log | Ti + Th—
[v] ];1 g( 1 1;:]1 g (1 + T, T—1)) Z g Tk + Ti—1|

under variations on C3#¢ with fixed vy, v, 7o, Tn—1, where x5, = 2tan “"7’“ is the
discrete curvature. The ~ denotes equivalent functionals, i.e. functionals which
have the same critical points.

Remark 4.7.

» Closed arc length parametrized curves I = Z,_1 can be treated as a special
case of I = [0,n] with v = yn—1,71 = ¥ and therefore T,,_1 = Tp.

Tn =T

Tn—1 = 70

Figure 4.6. Closed elastic curves as a special case.

We note that factorizing by Euclidean motions we can get rid of any fixed
points and directions in this case.

» Factorizing by translations we reformulate the variational problem in terms
of T : I — R? only. Admissible variations of 7' have to

o fix TO7TTL—1 € SZ,
o satisfy 31— o Tk = n — 70 € R?,
e preserve |T| =1fori=0,...,n— 1.

» Functionals are functions of many variables in the discrete case. Applying
that Ty, T—1 € S? are fixed,

ET] =ETy, ..., Tno1) =E(Th, ..., T_2)
is a function of 3(n—2) variables which has to be varied under the constraints
. ZZ;? T, = const. € R3,
o |[Tx|=1fori=1,...,n—2.

Theorem 4.8 (Euler-Lagrange equations for discrete elastic curve). A discrete
arc length parametrized curve v: 1 —R3, I = [0,n] = Z is a discrete elastic
curve if and only if there exists a,b e R> such that
Tk X Tk—l
1+ (T, Ther1)

where T, = Y41 — k-

=a x v + b, k=1,...,n—1,
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Proof. We want to derive equations for the critical points of

n—1
E(Th,..., Tuz) = Y, log (1 + (Ti, Tx—1))

k=1
under the constraints
> Zz;f T}, = const. € R3,
» [Tk =1fork=1,...,n—2.
We implement these constraints using Lagrange-multipliers ¢y e R,k =1,...,n—

2 and a = (a1, az,a3) € R?, and obtain

n—1 n-2
E\ = Z log (1 + (Ty, Ty—1)) — Z (er(Th, They + Ca, T)) -
k=1 k=1

The corresponding Euler-Lagrange equations are
Vr.Ex =0, k=1...,n—2.
Using V1,{Tk,ay = b and V1, {Ty, Ty = 2T}, we find for k =1,...,n — 2
Ti—1 Thy1
L+ T, Th—1) 1+ Thy1, Tk
Taking the cross-product with T}, we obtain
Topr x Ty Thoy x T,
L+ (Thy1, Ty 1+ (T, Tiom1)

kag)\ =

- 2Cka —a=0. (42)

=axT,=ax (Ye+1 — V&), (4.3)

which is equivalent to

Tk X Tk—l 3
—————— —a Xy =b=const. e R°.

1+ Tk, Thot1) "
Noting that (4.2) and (4.3) are equivalent, we obtain the claim. O
Remark 4.8.

» If we identify the left-hand side of the Euler-Lagrange equations as the dis-
crete Heisenberg flow, which we denote by d;, we have shown

~ discrete elastica < 0y =a x v + b
< 0Ty =a x Ty,

where the second line are the equivalent equations in terms of the tangent
vector which are written down explicitly in (4.3).

» Recalling the smooth limit of the Heisenberg flow (3.12) and (3.13), we obtain
for the smooth limit of the Euler-Lagrange equations

T'xT=axvy+b o v'xy =axy+b
s T'xT=axT,

which are the Euler-Lagrange equations for smooth elastic curves as stated
in Theorem 4.2.
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Corollary 4.9. A discrete arc length parametrized curve is a discrete elastic
curve if and only if the Heisenberg flow preserves its form, i.e. under the action
of the Heisenberg flow the curve evolves by an Fuclidean motion.

Proof. Same as in the smooth case. O

Definition 4.3 (discrete spherical pendulum). A discrete spherical pendulum
is a mechanical system on S? with discrete time and Lagrangian

Ly =log (1 + Tk, Tr—1)) — {a, Ty

with some a € R3. This means that the trajectories T : I — S? are critical points
of the action functional & = ), Ly.

Remark 4.9. The terms Ty = log (1 + {Tk, Tx—1)) and Uy, = {a,T}) are inter-
preted as kinetic and potential energies of the pendulum with gravitation vector
a. In the smooth limit

Z/{k - <aa T>7

2
K K
T ~ log (1 + —k) =k 4 o(k?),
4 4
where ki, — [T7]|. So in the smooth limit the kinetic energy is quadratic in the
velocity.

From this definition we immediately obtain a discrete analog of Theorem 4.1.

Theorem 4.10 (Kirchhoff analogy for discrete elastic curves). A discrete arc
length parametrized curve v : I — R3 is a discrete elastic curve if and only if
its tangent vector Ty, = Y11 — Vi describes the evolution of a discrete spherical
pendulum.

Proof. Analogous to the proof of Theorem 4.1. O

4.4 Moving frames and framed curves

Let T,N,B : I — R3 be three smooth maps such that T'(s), N(s), B(s) is an
orthonormal basis for any s € I, i.e. the matrix R(s) == (T(s),N(s), B(s)) €
SO(3). We can think of it as a coordinate frame fixed inside a rigid body which
rotates around some fixed point. In this interpretation we call (T, N, B) the
body frame.

Definition 4.4 (moving frame). Let I < R be an interval. A mowving frame is
a differentiable map
R : 1 — SO(3).

This is a special case of an Euclidean motion where the rotation R describes
the movement of the frame with respect to the stationary coordinate system
(e1,e2,€3):

T=7?,€17 N=R€2, B=R€3.
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On the other hand R is the coordinate transformation mapping points

X = Xie1 + Xoeg + X3e3

in the rotating body frame to points

x(s) = X1T(s) + XaN(s) + X3B(s) = z1(s)er + x2(s)ex + x3(s)es

in the stationary coordinate system by

r=RX.

We usually suppose the frame to be aligned with the fixed coordinate system

for s = 0, i.e. R(0) = idgs.

T

Figure 4.7. R describes the rotation of a moving frame. It is the coordinate
transformations from the rotating coordinate system to a stationary coordinate
system. The translational part along the corresponding framed curve can be

obtained by integration.

Curvatures k1, k2 and torsion 7 of a frame R = (T, N, B) are defined as

R1 = <T/7 N>
Rg = <T‘I7 B>
T ={(N' B).

Remark 4.10. A moving frame can be recovered from the differentiable data
K1, k2,7 : [0, L] — R up to rotation using the frame equations

T O K1
N = —K1 0
B —KRo2 —T

K2 T
|| N (4.4)
0 B




4 ELASTICA 39

Definition 4.5 (framed curve). A framed curve is given by an arc length
parametrized curve v : I — R3, T := +' together with a unit normal field N : I — S2,
ie. (N, T)=0.

A framed curve is carrying a moving frame R : I — SO(3), R = (T, N, B),
where B := T x N. Vice versa, given an orthonormal frame we can recover the
curve v (up to translation) by integration of T'.

So framed curves and moving frames are in one-to-one correspondence.

The curvature « = ||| = | T”|| of the curve ~ satisfies

K = n%+li§.

for any frame.

Remark 4.11. The transformation z = RX captures only the rotation of the
frame, not the translation along the curve. The coordinates in the moving frame
—as it moves along the curve— are given by

z(s) = R(s)X +(s),

where v = (T

Using H; as a double covering of SO(3) we apply the quaternionic description
for Euclidean motions. We identify R : I — SO(3) with!®

&1 —H,
ie.
R e SO(3) acts on X e R3 by v = RX
becomes
®ecH,; actson X e ImH by z = PXd~ 1.

Then the movement of some static point X = X1 + X5j + X3k € ImH in the
rotating frame as it is seen in the stationary frame is described by the differential
equation

¥ =dXP ! — X 'p' P!

1
=[®d ! 2] = i[w,x] =w X,

where w = 20’'®~1, i.e.
1
@ = Swl. (4.5)

Here, w is called the angular velocity in the stationary frame. In the rotating
frame the angular velocity is seen as §) where w = ®Q®~!, ie. O = 20710,
The movement of the frame in terms of {2 can be expressed as

P = %cm. (4.6)

18Note that ® is not the Euclidean flow as before, but the quaternion —denoted by g before—
corresponding to the rotation of the flow.
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Remark 4.12. In this form it corresponds directly to (4.4). Indeed,
(4.4) < (T,N,B)T = A(T,N, B)"
e R7T = ART
= R =RA".

The components x1, ko, T of A € s0(3) correspond to the components of 2 € ImH
as we will see below.

For the basis vectors of the frame
T,N,B:I— ImH

we have
T=2o1d"!, N=03jd ! B=dkd !
which becomes 1
T = -[w,T]=wxT

2

1
N/=§[w,N]=w><N (4.7)
B = %[w,B] =wx B

upon differentiation. From here we obtain
K1 :<T/aN>:<w X TaN>:<T X N7w>:<va> :<€3,Q>
ko =(T",B) ={w x T, B) = (T x B,w) = —(N,w) = —{e3,)
7={(N',B)=(wx N,B) =(N x B,w) ={(T,w) = {e1, Q).

Remark 4.13. (4.4), (4.5), (4.6), (4.7) are equivalent versions of the frame equa-
tions using different choices within the identifications

SO(3) « H;, R*® < so(3) < ImH

or different coordinate systems to express the angular velocity. They describe
the relation between the rotating motion and its angular velocity as the in-
finitesimal generator.

4.4.1 The Lagrange top

The Lagrange top is a rigid body with a symmetry axis that rotates around
a fixed point on its symmetry axis in a homogeneous gravitational field. Let
® =~ (T,N,B) : I - SO(3) be the rotating frame fixed within the body such
that T is aligned with the axis of symmetry. In this body frame the tensor of
inertia is diagonal and looks like
a 0 0
J=10 1 0
0 0 1
with some o > 0. The kinetic energy of the Lagrange-top is
T ={Q,JQ) = aler, Q)? + lea, D* + {e3, Q)?
= (T, w)* + (N,w)* + (B,w)’ (4.8)

= ar? + k2.
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Alternatively, in terms of 7' and w only:

(Q, JQ) = (Q, Q) —(Q, (J — id) )

= (w,w) + (@ — (T, w)?. (4.9)

For symmetry reasons the Lagrange top has its barycenter on the axis of
symmetry, which goes through T'. So its potential energy is given by

U=-2aT)

with some a € R3.
We obtain the action functional for the Lagrange top

L
S[®] = JO ((w,w) + (o — 1)(w, T + 2a, T) ds. (4.10)

Remark 4.14. Note that the functional S[®] originally depends on ® : I — Hj.
In particular it depends on its derivative p(s) = ®'(s) € Tq(y)Hi, or equiva-
lently!? on w(s) = 2¢/(s)®~!(s) € ImH.

If we want to treat (®,¢) as independent variables,?’ we have to impose an
additional constraint characterizing the relation ® = ¢. In terms of (®,w) this
is ' = %w@. This leads to the phase space H; x ImH. Since ® enters S only
in terms of T we can of course reduce this further, replacing H; by S2.

Finally we end up with a functional S[T,w] on the phase space S? x R? and the
additional condition T = w x T.

Remark 4.15. From now on we will not distinguish between R € SO(3) and
® € H; anymore.

4.5 Smooth elastic rods

Elastic rods are described by framed curves

N

Figure 4.8. Elastic rods as framed curves

We extend variations of the curve « : [0, L] — R? with fixed endpoints and
fixed length to the frame @ : [0, L] — SO(3),

19By identifying all tangent spaces of H; with ImH by right translation.
20This means replacing the configuration space SO(3) by the phase space TSO(3) which is
the tangent bundle.
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Figure 4.9. Curve with fixed end-frames.

which leads to admissible variations that
» fix 7(0), (L) € R?,
> fix ®(0), ®(L) € SO(3),

» preserve orthonormality, i.e. ®(s) € SO(3) for all s € [0, L],
in particular preserve the arc length parametrization and therefore the length
of the curve.

We complement the bending energy of v by an adjustable torsion energy

L
E[P] = f (k(s)* + ar(s)?) ds

0

with some torsion coefficient a # 0.

Definition 4.6 (Elastic rod). An (isotropic) elastic rod is a framed curve (v, @)
which is a critical point of the energy functional £ under the described admissible
variations.

If we want to formulate the variational problem solely in terms of the moving
frame @ : [0, L] — SO(3), we have to impose the additional constraint

» §XT(s)ds = (L) — y(L) € R3

again, to take the fixed endpoints of the curve into account.
We use
K2+ ar? = (w,w) + (a — 1){w, T)?

as follows from (4.8) and (4.9) to express the energy in terms of the angular
velocity w and T only, where 7" = w x T. Implementing the constraint for the
fixed endpoints of the curve Sg T(s)ds = const. via Lagrange-multiplicators, we
finally obtain

L
EulT,w] = J ((w,w) + (@ — 1){w, T)* + 2(a, T)) ds.
0
Recognizing the action functional (4.10) of the Lagrange top we formulate the
Kirchhoff analogy for elastic rods.

Theorem 4.11 (Kirchhoff analogy for elastic rods). A arc length parametrized
curve 7 : [0, L] — R3 with frame ® : [0, L] — SO(3) is an elastic rod if and only
if its tangent vector T ==+ : [0, L] — S? describes the evolution of the symmetry
axis of the Lagrange top with angular velocity w : [0, L] — R? of the frame ®.
The arc length parameter of the framed curve coincides with the time parameter
of the top.
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To derive the Euler-Lagrange equations for elastic rods, we investigate how
admissible variations of ® look in terms of w and T where T" = w x ®.
Since H; is a multiplicative (differentiable) group we can express all variations

®:[0,L] x (—e,&) > Hy

as

O(s,t) = H(s,t)P(s),

where
H:[0,L] x (—¢,e) > H;

with H(s,0) = 1, H(0,¢) = H(L,t) = 0.

®(0) \ O(s,t) = H(s,t) - D(s)

Figure 4.10. Variations of the frame ® in terms of multiplication by a quater-
nion.

The variational vector fields along the curve are described by

1(s) = i(s,0) = (5, 0) Bl (= n(0) = (L) = 0),

which build a vector space.?!

So admissible variations of w(s) = 2®'(s)®~*(s) become
@(s,t) == 20/ (s,0) D (s,t) = 2(H®) (HD)
=2(H'®+ HY)O 'H' = 2(H'® + %qu))clrlH*l
=2H'H '+ HoH ™',
and the corresponding variational vector fields

w(s,0) = 2H ' —2H'H 'nH* + qwH ™' — HwH 'nH™")|
=210 +nw—wn =210+ [nw] =21 +n xw).

t=0

With T(0) = i the integral version of T/ = w x T = 1[w,T] is T = ®i®~'. So
admissible variations of 1" are

T(s,t) = ®id~! = HOi®d 'H ' = HTH™!,
and the corresponding variational vector fields

T(s,0)= (TH ' —HTH 'nH")|,_,
=nT'—=Tn=[nT]=2nxT.

This describes admissible variations of (T,w) : [0, L] — S? x R3.

21'We denote partial derivatives w.r.t. s by / and w.r.t. t by
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For the variation of the energy we obtain

L
&[T, @) = f d
40 o Ot

o (@ @)+ (@ = 1)@, 1) + 2a, 1)) ds

L
:4f (G + 1 % w,0) + (@ — D, T + 1 % @, T + (w, x T)

0
+ {a,n x T))ds
L
B 4L (G w) + (@ = 1w, TX', T) + a,n < T)) ds
L
= 4_[0 (', —w+ (1 —a)rT) +{n,T x ay)ds
L
= 4] n,—w' + (1 —a)(7'T +7T") + T x a)ds,
0

where we used partial integration with vanishing boundary terms due to 7(0) =
n(L) = 0. So the Euler-Lagrange equations are given by

T =wxT

W= 1=-a)(7"T+71T")+ T x a.
Further simplification is still possible by the following Lemma.
Lemma 4.12. The torsion 7 of an elastic rod is constant.

Proof. We have 7 = {w,T). So
T =W\ T)+ (W, T) = (1-a)r

where we plugged in the Euler-Lagrange equations for 77 and w’. So we get
7/ = 0 since « # 0 for elastic rods. O

Eventually we arrive at the final version of the Euler-Lagrange equations for
elastic rods.

Theorem 4.13 (Euler-Lagrange equations for elastic rods). An arc length
parametrized curve 7 : [0, L] — R® with frame ® : [0, L] — R® is an elastic rod
with torsion coefficient « if and only if its torsion T is constant (' = 0) and
one of the following conditions is satisfied:

(i) There is a € R? such that

T =wxT
W o =1-a)tT"+T x a,

where T = ~' is the tangent vector and w = 2&'®~! the angular velocity
of the frame.

(ii) There is a,be R? such that

!

Y xy +cey =axy+b.
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(iii) There is a € R? such that

T'"'xT+cl=axT,

where ¢ = —ar.
Proof. We are left to show the equivalence of these three equations.
(ii)«<>(iii) By integration/differentiation.
(i)=>(ii) Integrating w’ = (1 — )77’ + T X a, we obtain
wH+b=(1-a)TT +v x a.
From this and 7" = w x T we get

T xT=(wxT)xT={wTT-w
=1l —w=arT+ax~y+Db.

(iii)=>(i) Define w by 7" = w x T and {w,T) = 7.2
Then 7" =w' x T +w xT". So

T x T ="\ TYT — " +{w, TYT" = 7T" — .
On the other hand we have
T"'xT=7aT +axT.
Together this implies
W=01-a)rT"+T % a.
O

We identify the left hand sides of (ii) and (iii) as a linear combination of the
Heisenberg flow ¢; and the tangent flow 0., i.e.

(Ot +cOp)y=ax~y+b

and
(0t +¢c0p)T =a xT.

Corollary 4.14. A framed curve is an elastic rod if and only if a linear com-
bination of the Heisenberg flow and the tangent flow with non-zero coefficients
preserves its form, i.e. under the action of this combined flow the curve evolves
by an Euclidean motion.

22Tn quaternions this is w = (T’ — 7)T~1.
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Remark 4.16 (anisotropic elastic rods). The theory can be generalized to anisotropic
elastic rods by using an anisotropic bending energy

E= J (1K + agkl + azr?)ds.

Figure 4.11. Anisotropic rod. The bending energy depends on the cross section.

4.6 Discrete elastic rods

We use the characterization in terms of Heisenberg flow and tangent flow to
obtain a definition for discrete elastic rods.

Definition 4.7 (Discrete elastic rods). A discrete arc length parametrized curve
~: I — R3 is called discrete elastic rod if it evolves under a linear combination
(0t + ¢0z), ¢ # 0 of the discrete Heisenberg flow d; and the discrete tangent flow
0, by an Euclidean motion, i.e.

» there is a,b e R? and ¢ # 0 such that

Tp x Ty ‘e Tp + Tk
1+ <Tk, Tk_1> 1+ <Tk, Tk_1>

=a x v + b,

or equivalently

» there is a € R3 and ¢ # 0 such that

( Tht1 Th—1 >
— X Tk
1+ <Tk+1, Tyy 1+ Ty, Tk—1>

Thy1 + Ty Ty +Th—1 )
+c + =a x T}.
<1 + D1, Ty 14 (T, T

Remark 4.17. These equations go to the Euler-Lagrange equations for smooth
elastic rods since the discrete Heisenberg flow and discrete tangent flow go to
their corresponding smooth counterparts, which we have seen already.
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5 Darboux transforms

5.1 Smooth tractrix and Darboux transform

Assume that a point moves along a curve - and pulls an interval (-, %) so that
the distance ||§ — 7| ist constant, and the velocity vector 4’ is parallel to v — 4.
The curve 4 can be thought of as a trajectory of the second wheel of a bicycle
whose first wheel moves along the curve ~.

Definition 5.1 (Smooth tractrix). Let v : R 2 I — R? be a smooth planar
curve. A curve 4 : I — R? is called a tractriz of v, if the difference v := 4 — ~
satisfies

[v| = const. and A v.

Lemma 5.1. Let v be arclength parameterized, let 4 be a tractriz of 7y, and let
v =4 —r. Then the curve ¥ := v + 2v is also arclength parametrized and 7 is
a tractriz of v as well.

Proof. We will show that |¥|? — |7/|? = 0. Note that
1712 = V1?2 = & +47 =" = 27 ++, 0.

But (5 +7) = v + v is the tractrix of 7. The derivative 4’ + 7' is therefore
parallel to v. Now the claim follows from 0 = (|v|?)" = 2{v,v"). O

Definition 5.2 (Smooth Darboux transform). Two arclength parameterized
curves v, are called Darbouz transforms of each other if

[7(8) = v(8)] = const.,

and 7 is not just a translate of ~.

Figure 5.1. A Traktrix and the corresponding Darboux transform of ~.

Theorem 5.2. Let v : I — R? be an arclength parametrized curve. Then the
following claims are equivalent:

(i) 7 is a Darbouz transform of ~

(ii) 4 := 3(v +7) is a tractriz of v (and of 7).
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Proof. (ii) = (i): This is the statement of Lemma 5.1.
(i) = (ii): It is clear that v := (¥ — ) is of constant length. It remains to
show that 4’ || v which is the same as 4’ L v in this case. This is true since

1 1

5(’7/ 7)) = 1(1 -1)=0.

~! / 1 ! ~/
<’}/,'U>:<§(’7 +’7)a
5.2 Discrete Darboux transform

For discrete curves the definition is the same:

Definition 5.3 (Discrete Darboux transform). Two discrete arclength parame-
trized curves v,7 : I — R? are called Darboux transforms of each other if their
corresponding points are at constant distance, |Jx — Y| = const, and 7 is not
a parallel translation of ~.

Ve+1

Vi

FVe+1

Figure 5.2. An elementary quadrilateral of the Darboux transformation (“Dar-
boux butterfly”).

There are two important generalizations of the Darboux transformation:
1. Mobius geometric (cross-ratio condition)
2. Space curves (non-commutative).

Next we will discuss the M&bius geometric generalization in detail.

5.3 Cross-ratio generalization and consistency

Definition 5.4 (Cross-ratio). The cross-ratio of four points 21, 29, 23, 24 € C~
CP! is defined as

(21 — 22)(23 — 24)
(22 — 23)(24 — 21)°

Cr(21,22,23724) =

Important poperties:
1. The cross-ratio is preserved by fractional linear transformations

az+b
cz+d’

Z >

ad — be # 0.

These are isomorphic to the group PSL(2, C):

az+b a b
cz+d d

> € PSL(2,C),



5 DARBOUX TRANSFORMS 49

Tractrix - O x
Jawa Application Window
Help
open | closed
conwrol points:| 6 subdivision:|  2}-][Reser |
time:|15J023":—| q | | 12 |m step: OJll
Figure 5.3. A pair of discrete curves in Darboux relation to-

gether with the curve traced out by the midpoint of the assembly.
For this and other applications look at: http://www.math.tu-berlin.de/geometrie/lab/

where
PSL(2,C) == {A e GL(2,C) | det(A4) = 1}/{iid}.

Extended by the complex conjugation z — z these group expands to the
group of Mébius transformations of the plane. The real part and the
absolute value of the cross-ratio are preserved by Mobius transformations
since the complex conjugation z — Z induces cr — CT.

2. cr(z1, 22,23, 24) € R < the points 21, 29, 23, 24 are concircular. Moreover
cross-ratios of embedded circular quads are negative, and of non-embedded

ones are positive.
cr (Q}) <0, cr (M) > 0.
3. Mobius transformations map circles and straight lines to circles and straight

lines

Lemma 5.3. Assume v, vis1, 3 satisfying |yesr — ) = A and [5, — ] = 1
are given. Let Y,11 be the point determined from the condition

" A
\ Fi+1

AQ
CI"(’Yk,Vk-t-la'Yk-s-la’Yk) = ZT ‘

’ Tk
Vk+1 4

Then [Fk+1, k] is the Darbouz transform of [Ye+1,Vx]-
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Proof. The Darboux transform ;.1 is geometrically uniquely determined by
Y, Ve+1 and . From the definition of the cross-ratio follows

A2
Cr(Ves Ve+1, Vo1, Vo) = 2

(the value of the cross-ratio is greater 0 since the quadrilateral is not embed-
ded). Since the cross-ratio for three fixed points and one variable argument is
a bijective function, the former equation also determines 541 uniquely. O

This leads to the following Mobius generalization of the Darboux transfor-
mation.

Definition 5.5 (M6bius Darboux transform). Let v : I — C be a discrete curve,
and let o; € R (or C) associated to the edges [v;,vi+1]. A curve ¥ : I — C is
called a Mobius Darbouz transform of v with parameter A € R (or C), if

- - Qg
er(Vis Yit1, Vi1, %) = N

Lemma 5.3 shows that the standard Euclidean definition 5.3 of the Darboux
transformation corresponds to A = l% and o; = 1 Vi in the Mdbius generaliza-
tion, where [ = | — ~| is the constant distance.

Note that the cross-ratio condition can also be applied to non-arclength
parametrized curves.

Now consider a three dimensional combinatorial cube and assume that all
edges of the cube parallel to the axis j carry a label o;. Suppose that the
values z, z1, 29, z3 € C are given at a vertex and its three neighbours. Then the
cross-ratio equation

(67}
cr(z, i, zij, 25) = oTj

applied to the three faces intersecting at z uniquely determines the values

212, %13, 223-
293 Q) ~123
23
213
ag
212
z22
(€5
21
z Qaq

After that the cross-ratio equation delivers three a priori different values for z;23,
coming from the three different faces containing z123 on which the equation can
be imposed.

In general, if for such a system these values, which can be computed in sev-
eral ways, coincide for any choice of the initial data z, 21, 2o, z3, then the system
is called 3D-consistent.

It is not difficult to show that any 3D-consistent system is ND-consistent
for any N > 3, thus can be consistently defined on a Z"-lattice.
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Theorem 5.4. The cross-ratio equation is 3D-consistent.

Proof. cr(z, 21, 213, 23) = %, can be rewritten as

Q1213 — 21 _ %13 — %3

a3 21— 2 23—z
o1 Z23 — 21
= o (2:13 2’1) P = (2'13 Zl) + (Zl 23)

Q1 23 — 2

< (213 — 21) <1 +

=23—21 =23 —2+2—21.
a3 2 — 21

Thus (213 — 21) is a Mobius transformation of (z3 — 2):

213 — X1 = L(thval,a?))[szo - Z]v

1 zZ—2
L(Zl,Z,Oél,Oég) = ( [e5} 1 > .

asz(z—z1)

where

is its matrix representation and

EP LA DR L
“\e d) 7 ez +d

Going arround the cube once, we have
z123 — 712 = L(212, 21, a2, a3)[213 — 21]
z123 — 212 = L(212, 22, 1, a3)[223 — 22].
This equality of these two values of 2123 follows from the stronger claim
L(z12, 21, a2, a3)L(z1, 2,01, a3) = L(z12, 22, a1, a3) L(29, 2, ag, ag).

which shall be checked as an exercise.
The last equation (on the top face) then follows from symmetry. O

Now we will show that the Darboux butterflies can be put to all the faces of
a combinatorial cube consistently.

Corollary 5.5 (Counsistency of the 2D Darboux transformation). Given a point
z and its three neighbours z1, 22,23 € C, let z;; be the Darboux transforms as-
sociated to the faces of a cube. Then there exists a unique z123 € C such that
the faces (z1, 213, 2123, 212), (22, 223, 2123, 212), and (23, 213, 2123, 223) are Darboux
butterflies.

Proof. This follows from the previous Theorem 5.4 if one sets a; = [?, where
l; = |Z — Zz| O

The idea of consistency (or compatibility) is in the core of the theory of
integrable systems. One is faced with it already in the very beginning when
defining complete integrability of a Hamiltonian flow in the Liouville-Arnold
sence, which means exactly that the flow may be included into a complete
family of commuting (compatible) Hamiltonian flows. The 3D-consistency is an
example of this phenomenon in the discrete setup. Moreover, the consistency
phenomenon has developed into one of the fundamental principles of discrete
differential geometry, the consistency principle already mentioned in Section 1.

Next we give a simple example to show how this principle implies some facts
from the corresponding smooth theory.
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2123
21
z3 22 Z3

l
22 3 223

213
z Z1 212

Figure 5.4. The combinatorial Darboux cube for the given data and the two
dimensional embeding of the corresponding Darboux butterflies together with the
unique consistent completion.

5.4 Darboux transformation and tangent flow

The tangent flow can be seen as an infinitesimal Darboux transformation. This
observation is based upon a simple

Lemma 5.6 (Tangent flow as infinitesimal Darboux transformation). Let yx—1, Yk, Ye+1
be three consecutive vertices of an arclength parametrized curve. A Darboux
transform of this curve is determined by choosing a vertex ny corresponding to

the vertex v infinitesimally close to yi_1:

N = Ye—1 +ew+o(e), &—0
with some w € C. Then the next vertex of the Darboux transform is given by
Me+1 = Yk + evp(w, Tr—1) + o(e), (5.1)

where vy is the tangent flow at vy :

v Ty +Tk—1
]y e —
1+ <Tk, Tk-_1>
In particular, if w = vg_1 then also N+1 = Y, + vk + o(e).
Proof. The distance between 7 and its Darboux transform 7 is given by

1?2 = |y — 77“2 = |Tp—1 —ew + o(s)H2 =1-—2e{w, Tx—1) + o(e).

For the cross-ratio this implies
1
q 1= Cr(Vk—15 Vhs Mo Mh—1) = i 1+ 26w, Ti—1) + o(e).

Resolving the cross-ratio formula ¢ = cr(vg, Vk+1, Mk+1, Mk) for Nx+1 we obtain

(1= @) vk — Yos1) Mk — &)
Ve — Yr+1 + (e — k)

Nk+1 — Yk =

In the limit € — 0 this yields

Ty - Th—1

— t+o(g),
Ty + Tk ()

a1 — Yh = e{w, Tr—1)

which is equivalent to (5.1). O
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If we apply such a Darboux transformation to the left end vertex of g of a
discrete curve v : {0,.., N} — R? we obtain an infinitesimal tangent flow of all
vertices (except maybe 7).

Theorem 5.7. The Darboux tranformation of discrete arclength parametrized
curves is compatible with its tangent flow. This means:

Given two discrete arclength parametrized curves v,7 : I — R? evolving under
the tangential flow t — ~(t,-), t — A(t,-). If the curves are in Darbouz corre-
spondence at some t = to, then they are Darboux transforms of each other for
all t.

Proof. This fact can be derived from the permutability of the Darboux trans-
formations. The three directions of the compatibility cube for Darboux trans-
formations get three different interpretations:

Let v and 4 be a Darboux pair. Let n be an infinitesimal Darboux transform
of v as in Lemma 5.6, i.e. with 1 — v5—1. The Darboux condition determines
vertices 7 and 7jx41, as in the picture, uniquely (from Corollary 5.5 we know
that everything is consistent).

From the cross-ratio cr(yk, nk, 7k, Jx) it is easy to see that the vertex 7 of
the Darboux cube also satisfies 7, — Fr_1 and therefore, due to Lemma 5.6,
the curve 7} is given by the tangent flow of 4.

Passing to the limit ¢ — 0 we obtain the claim of the theorem.

Mk Mh+1

Yk

FVie+1

<— Darboux transformation

- — — Nk+1

i .
tangent flow as 7k & Vk+1
infinitesimal Dar- curve

boux transform
Figure 5.5. The Darboux compatibility cube with different interpretations of

the three dimensions.

O

Remark 5.1. (Mobius geometry tangent flow).
For the Mobius Darboux transformation the corresponding construction leads
to the flow

Yt
Avg - Ay Tk

A+ Ay Jk+1
Ye—1

Ve

which is tangent to the circle through ~vi_1,v% and yii1.

Remark 5.2. (Generalization to space curves).

There exists also a generalization of the Darboux transformation to a consistent
system in an associative algebra A. The case of quaternions, A4 = H, leads to a
Darboux transformation for space curves (with twist).
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Figure 5.6. A Darboux butterfly for space curves is not planar.
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Part 11
Discrete Surfaces

There is no canonical way of defining a discrete surface. We usually think of
discrete surfaces as surfaces build from vertices, edges and faces. As an example
consider

simplicial surfaces Surfaces glued from triangles.
We see that not every possibility of gluing together triangles constitutes in

something we want to call a discrete surface.
discrete surface not discrete surfaces

Generalizing the faces to be polygons we obtain the notion of
polyhedral surfaces Surfaces glued from planar polygons.
In particular

simple surfaces Polyhedral surfaces with all vertices of valence three.

They can be seen as an analogue of the characterization of a surface via
enveloping tangent planes. Start with a simplicial surface and add a plane at
every vertex. By intersecting neighboring planes we obtain another polyhedral
surface. Since three planes generically intersect in one point we obtain a vertex
for every face of the original surface and a face for each vertex. This means
that the obtained surface is combinatorically dual to the simplicial surface.
The faces are now planar polygons and all vertices of valence three.

Another special case of polyhedral surfaces are

quad-surfaces Surfaces glued from quadrilaterals
They are analogues of parametrized surfaces. For each quad there is two
unique transversal directions given by pairs of opposite edges leading to pa-
rameter lines consisting of strips of quadrilaterals.
A reasonable generalization here is to consider non-planar quads.

Dropping the combinatorial structure completely one might consider

point samples Surfaces generated by sets of points. But it is not clear when a
set of points without further structure should be considered a discrete surface
or how to obtain this additional structure. E.g. In the domain of computer
graphics the non-trivial problem of obtaining a water tight polyhedral surface
from a “point cloud” is considered.

Reasonable data from an experiment, e.g. scanning a 3D-object could be not
only positions but also normal directions. Providing each point with a normal
vector or equivalently with a tangent plane leads to
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contact elements Points with planes. This can be seen as a notion of a surface
together with its Gauss map.

We will mainly deal with polyhedral surfaces and begin by specifying how ver-
tices, edges and faces constitute a discrete surface.
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6 Abstract discrete surfaces

We consider discrete surfaces consisting of vertices, edges and faces from the
point of view of topology (abstract discrete surfaces), metric geometry (piecewise
flat surfaces) and Euclidean geometry (polyhedral surfaces).

6.1 Cell decompositions of surfaces

From the topological point of view a discrete surface is a decomposition of a
two-dimensional manifold into vertices, edges and faces. This is what we call
the combinatorics of a discrete surface.

First some preliminary definitions

Definition 6.1 (surface). A surface is a real two-dimensional connected man-
ifold, possibly with boundary.

Remark 6.1. We mainly focus on compact surfaces and compact closed surfaces.

Definition 6.2 (n-cell). We denote the open disk in R™ by
D" ={xeR" [ |z <1}
and its boundary by o
oD"™ = D™M\D",
where the bar denotes the topological closure.
An n-dimensional cell or n-cell is a topological space homeomorphic to D™.

Remark 6.2. Note that D° = {0} is a point and its boundary dD° = .

Definition 6.3 (cell decomposition). Let M be a surface and T = {U;}Y, a
covering of M by pairwise disjoint 0-, 1- and 2-cells.
T is called a finite cell decomposition of M if for any n-cell U; € T there is a

continuous map o

which maps D™ homeomorphic to U; and ¢D" to a union of cells of dimension
at most n — 1, i.e. 1-cells are bounded by 0-cells and 2-cells by 1- and 0-cells.
0-cells are called wvertices, 1-cells edges and 2-cells faces.

Figure 6.1. This is not a cell decomposition.
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Remark 6.3.
» More requirements are needed to define infinite cell decompositions.

» The existence of a finite cell decomposition makes a surface necessarily com-
pact.

» Cell decompositions of surfaces are a special case of cell complexes.
E.g. a 1-dimensional cell complex is a graph.

Example 6.1. A convex polyhedron induces a cell decomposition of S2.

We introduce some additional properties coming from polyhedra theory but
mostly deal with general cell decompositions.

Definition 6.4 (regular and strongly regular). A cell decomposition T =
{U3Y., of a surface M is called regular if the maps ¢; map D™ homeomor-
phic to Uj;.

A regular cell decomposition is called strongly reqular if for any two cells U; and
Uj the intersection of their closures U; N 7] is either empty or the closure of one

C@.G@@

Figure 6.2. Examples of non-regular cell decompositions. Cells with boundary
identifications —i.e. self-touching cells— are not allowed. E.g. no loops.

< &P ©

Figure 6.3. Examples of non-strongly regular cell decompositions. Cells with
multiple common boundary components are not allowed. E.g. no double edges.

Example 6.2.

(1) The cell decompositions of S? induced by convex polyhedra are strongly
regular.
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(2) Cube with a hole:

This is not a cell-decomposition of the cube with a hole.

not a 2-cell a cell but regular but not strongly regular

not regular strongly reglar

Figure 6.4. Cube with a hole. From "not a cell decomposition” to a strongly
regular cell decomposition by adding edges.

Definition 6.5 (abstract discrete surface). Let T be a cell decomposition of a
surface M. Then we call the combinatorial data S := (M, T) an abstract discrete
surface and a homeomorphism f : M — R" its geometric realization. We write
thisas f: S — R".

Remark 6.4.
» Abstract discrete surfaces are compact.

» We use the terms vertices, edges and faces for the combinatorial cells U; € T
as well as for the images under the geometric realization f(U;) < f(M) < R™.

Example 6.3 (quad-graph). A quad-graph is an abstract discrete surface with
all faces being quadrilaterals. A geometric realization with planar faces is called
a @-net.

6.2 Topological classification of compact surfaces

We outline the topological classification of compact surfaces. This means that
we are interested in topological invariants which uniquely identify a compact
surface up to homeomorphisms. A cell decomposition of a surface induces the
following topological invariant.

Definition 6.6 (Euler characteristic). Let V, E, F be the sets of vertices,
edges and faces of an abstract discrete surface S = (M, T) and |V|, |E|, |F)|
their cardinalities. Then

X(M) = V| - [E| + |F]|

is called the Fuler characteristic of M.
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Remark 6.5. Since the Euler characteristic is independent of the cell decompo-
sition T' of M and every compact surface has a cell decomposition?3, this indeed
defines a topological invariant of the surface M.

Example 6.4.
disc triangle cube tetrahedron
x=1 X=2
‘lllliiillll" l£==!l IL==J'
torus x=0 double torus y=-2

Figure 6.5. Cell decompositions of a disk, sphere, torus and double torus. With
Euler characteristic x = |[V| — |E| + | F|.

We describe the construction of closed surfaces by combining some elemen-
tary compact closed surfaces of high Euler characteristic using the connected
sum. The classification theorem then states that this already yields all possible
compact closed surfaces up to homeomorphisms.

s? RP? T K

T2 K2

Figure 6.6. Elementary closed surfaces from identifying edges of bigons and
quadrilaterals.

There are two essentially different ways of orienting the two edges of a bigon.
Identifying the two edges along these orientations yields the sphere S? and the
real projective plane RP? respectively. The first of which is orientable while
the second is not. Counting vertices, edges and faces of the cell decompositions
induced by the original bigon we obtain the Euler characteristics

x(S*)=2-1+1=2, x(RP*)=1-1+1=1

Pairwise identifying the four edges of a quadrilateral gives us two additional

23Even stronger: Every compact surface has a triangulation.
Note that abstract discrete surfaces —which is our case of interest— are compact and always
come with a cell decomposition.
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surfaces which are the torus T? and the Klein bottle K2 with
X(TH=1-2+1=0, x(K)=1-2+1=0.

We notice that the torus and the Klein bottle can not be distinguished by their
Euler characteristic alone. But the torus is orientable while the Klein bottle is
not.

For two surfaces M and N their connected sum M#N is obtained by re-
moving an open disk from each and gluing the resulting surfaces together along
the circular boundary components of the missing disks.

This operation is associative, commutative and the sphere is the identity ele-
ment, i.e.
M#S? = S’#M = M

Let us determine the Euler characteristic of the connected sum M#N. Con-
sider a cell decomposition of M and N respectively. A cell decomposition of M°
which is the surface M with an open disk removed can be obtained by adding
one edge as a loop at one vertex of the cell decomposition of M, so

X(M?) = x(M) — 1.

Same for N°. Gluing along the circular boundaries is then equivalent to the
identification of these new edges and the adjacent vertex. So we have one edge
less and one vertex less in the connected sum which cancel out in the Euler
characteristic

X(M#N) = x(M°) + x(N°) =1+ 1=x(M)+ x(N) — 2.

Starting with a sphere as the identity element we construct surfaces of lower
Euler characteristic by connecting tori, projective planes and Klein bottles to
it. Connecting ¢ tori to the sphere?* yields an orientable surface with g holes,
ie.

X((T2)#9) = x(T°# ... #T%) =2—-29, ¢>0,
where we define M#9 := S? by the identity element. g is called the genus of the
resulting surface.

Building the connected sum of h projective planes we obtain surfaces of odd
and even Euler characteristic all of them non-orientable.?>

X(RP?)#M) = y(RP?# ... #RP*) =2 —h,  h>1.

Any other combination of connected sums of our elementary surfaces S2, T?,
RP? and K2 does not yield new surfaces. Indeed building the connected sum of
two projective planes already gives us a Klein bottle

RP?#RP? = K.

Figure 6.7. The connected sum of two projective planes is a Klein bottle.

240r equivalently to each other.
25 Any connected sum containing at least one projective plane is non-orientable.
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Attaching another projective plane to the Klein bottle is the same as attach-
ing it to a torus?®
K#RP? = T2#RP2.

So any mixed combinations of tori and projective planes are already included.?”
T2 and RP? together with the connected sum # generate a monoid of which

the classification theorem states that it already includes all compact closed
surfaces.

Theorem 6.1 (classification by connected sums). Any compact closed surface
M is either homeomorphic to the connected sum of g = 0 tori

M = (']1‘2)#9
or to the connected sum of h = 1 real projective planes
M = (RP%H)#",
In the first case M is orientable and in the second non-orientable.

And as an immediate consequence of our considerations about the Euler
characteristics

Corollary 6.2 (classification by orientability and Euler characteristic). Any
compact closed surface is uniquely determined by its orientability and FEuler
characteristic up to homeomorphisms.

Remark 6.6.

» A compact closed orientable surface can be classified by its Euler character-
istic only, or equivalently by its genus g since

X(M) =2—2g.

» The classification theorem can be generalized to compact surfaces with bound-
ary by adding another topological invariant which is the number of connected
boundary components k. In this case the Euler characteristic for orientable
surfaces becomes

X(M)=2-2g—k.

» The easiest and most recent proof of the classification theorem is Conway’s
ZIP proof which can be found in [FW99].

» The procedure of identifying edges of bigons and quadrilaterals to obtain
compact closed surfaces can be generalized to the pairwise identification of
edges of even-sided polygons. This leads to other possible ways of classifica-
tion.

26We see that the connected sum has no inverse operation.
27This can be restated more general in the following way. On any non-orientable surface
there is no way to distinguish a handle from an attached Klein-bottle.
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7 Polyhedral surfaces and piecewise flat surfaces

We start with a short presentation of curvature in the classical smooth theory.

7.1 Curvature of smooth surfaces

Extrinsic curvatures of a smooth surface immersed in R® are defined as follows.
Consider the one parameter family of tangent spheres S(x) with signed curvature
K touching the surface at a point p. k is positive if the sphere lies at the same
side of the tangent plane as the normal vector and negative otherwise. Let M
be the set of tangent spheres intersecting any neighborhood U of p in more than
one point. The values

== inf =S
K1 SlgM/f(S), Ko SBA[;/Q(S)

are called the principal curvatures of the surface at p.

N

I€1<0

Figure 7.1. The curvature spheres touching the surface in p.

The spheres S(k1) and S(k2) are called principal curvature spheres and are in
second order contact with the surface. The contact directions are called principal
directions and are orthogonal.

The Gaussian curvature and mean curvature are defined as

1
K = kiky, H = 3 (K1 + K2) .

The Gaussian curvature of a surface at a point p is also the quotient of
oriented areas A(-):
AN (Us(p)
KO =0 =10
where U (p) is an e-neighborhood of p on the surface, and N(U.(p)) = S? is its
image under the Gauss map.
The following classical theorems hold.

Theorem 7.1 (Gauss’ Theorema Egregium). The Gaussian curvature of a sur-
face is preserved by isometries.

Theorem 7.2 (Gauss-Bonnet). The total Gaussian curvature of a compact
closed surface S is given by

J KdA = 2mx(S).
S
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7.1.1 Steiner’s formula

The normal shift of a smooth surface S with normal map N is defined as
Sp =8+ pN.

For sufficiently small p the surface S, is also smooth. Interpreting S as an
enveloping surface of the principal sphere congruences one can show that the
centers of the principal curvature spheres of S and S, coincide. The signed radii
are reduced by p so the principal curvatures change as

Theorem 7.3 (Steiner’s formula). Let S be a smooth surface and S, its smooth
normal shift for sufficiently small p. Then the area of S, is a quadratic polyno-
mial in p,

A(S,) = A(S) — 2H(S)p + K(8)p?,

where K(S) = (g KdA and H(S) = {4 HdA are the total Gaussian and total
mean curvature of S.

Proof. Let dA and dA, be the area forms of S and S,. The normal shift
preserves the Gauss map, therefore one has

KdA = K,dA,,

where K and K, are the corresponding Gaussian curvatures. For the area this

implies
A(S)—f dA —f £dA
P SP P s Kp
1

1

:mea—mg—wm -

f (1 — (k1 + K2)p + R1H2p2) dA
s

— A(S) — 2H(S)p + K(S)p>.

Remark 7.1. Equation (7.1) also holds true without integration. We can state
Steiner’s formula in the differential version

dA, = (1= 2H(p)p + K(p)p*)dA,

where K (p) and H(p) are the (local) Gaussian and mean curvature at p.
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7.2 Curvature of polyhedral surfaces

Definition 7.1 (polyhedral surface). A polyhedral surface in R™ is a geometric
realization f : S — R™ of an abstract discrete surface S = (M, T) such that the
edges are intervals of straight lines and the faces are planar.

A simplicial surface is a polyhedral surface with all faces being triangles.

7.2.1 Discrete Gaussian curvature

For a polyhedral surface the Gaussian curvature is concentrated at vertices in
the following sense: The area of N (U, (p)) vanishes for all internal points on faces
and edges. For a vertex it is equal to the oriented area of the corresponding
spherical polygon.

Figure 7.2. The angle «; at vertex p is the external angle of the spherical
polygon at vertex ;.

Let N; be the normal vectors of the faces adjacent to the vertex p. Each two
neighboring normals define a geodesic line on S?, which all together constitute a
spherical polygon. The angle a; at vertex p of the face on the polyhedral surface
with normal vector IV; is equal to the external angle of the spherical polygon
at the vertex N;. So the angle defect 2 — >  «v; at the vertex p is the area of
the spherical polygon where Y|« is the total angle on the polyhedral surface
around the vertex p.?8

Definition 7.2 (discrete Gaussian curvature). For a closed polyhedral surface
S the angle defect

K(p) := 27 — Z Q; (7.2)

at a vertex p is called the Gaussian curvature of S at p.
The total Gaussian curvature is defined as the sum

K(S):= > K(p).

peV

The points with K(p) > 0, K(p) = 0 and K (p) < 0 are called elliptic, flat and
hyperbolic respectively.

28This is an oriented area since the “external angle” depends on the orientation of the
polygon.
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Remark 7.2. The angle defect at a vertex p is bounded from above by 27 but

3&!(4

Figure 7.3. The discrete Gaussian curvature at a vertex p can be made arbi-
trarily low by “folding” a vertex star.

Lemma 7.4. Let p be an inner point of a polyhedral surface. Then

p convexr = p elliptic
p planar = p flat
p saddle = p hyperbolic,

where

p convexr :< the spherical polygon of the normal vectors around p is convex
p planar < p and its neighbors lie in a plane

p saddle :< p lies in the convex hull of its neighbors (and p not planar).

Remark 7.3. In general, none of the implications in Lemma 7.4 is reversible.

Since the discrete Gaussian curvature is defined intrinsically?® we immedi-
ately obtain a discrete version of Gauss’ Theorema Egregium.

Theorem 7.5 (polyhedral Gauss’ Theorema Egregium). The Gaussian cur-
vature of a polyhedral surface is preserved by isometries, i.e. depends on the
polyhedral metric only.

There also holds a discrete version of the Gauss-Bonnet theorem.

Theorem 7.6 (polyhedral Gauss-Bonnet). The total Gaussian curvature of a
closed polyhedral surface S is given by

K(S) = 27x(S).

Proof. We have
K(S) =Y Kp) =2r|V|l- >  a

peV all angles of S

The angles m — «; are the (oriented) external angles of a polygon. Their sum is

(m — o) = 2.

all angles of
one polygon

29The cone angle Y’ «; is invariant under isometries. We discuss this and polyhedral metrics
in more detail in Section 7.3.
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The sum over all faces gives

21 |F| = 2 (mr — ;) =27|E| — 2 a;,

all angles of S all angles of S

where we used that the number of angles is equal to 2| F| (each edge is associated
with 4 attached angles but each angle comes with two edges).
Finally

K(S) = 2n([V] = |E| + |F[) = 27x(5).

Figure 7.4. Oriented external angles of a polygon.

Example 7.1 (Gaussian curvature of a cube). Consider a standard cube with
all vertex angles equal to 5. Then the Gaussian curvature at every vertex p is

K(p)=27rf3g=

T

5"
So the sum over all eight vertices yields K (S) = 4.
On the other hand x(S) = x(S?) = 2.

Remark 7.4. The polyhedral Gauss-Bonnet theorem can be extended to poly-
hedral surfaces with boundary. Since the boundary components of a polyhedral
surface are piecewise geodesic we only have to add the turning angle of the

boundary curve
o) =7 - Yo,

at each boundary vertex p to the total discrete Gaussian curvature.3°

7.2.2 Discrete mean curvature

Definition 7.3 (discrete mean curvature). The discrete mean curvature of a
closed polyhedral surface S at the edge e € E is defined by

where [(e) is the length of e, and 6(e) is the oriented angle between the normals
of the adjacent faces sharing the edge e (the angle is considered to be positive
in the convex case and negative otherwise).

The total mean curvature is defined as the sum over all edges

H(S) = Y H(e) = % ST o).
ece eeFE

300r alternatively define the discrete Gaussian curvature at boundary vertices by the turning
angle.
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e \g/ng
VA
ni

Figure 7.5. Discrete mean curvature for polyhedral surfaces.

With this definition the following discrete version of Steiner’s formula holds
true.

Theorem 7.7 (Steiner’s formula for convex polyhedra). Let P be a convex
polyhedron with boundary surface S = 0P. Let P, be the parallel body at the
distance p

P, = {peR®[d(p,P) < p}.

Then the area of the boundary surface S, = 0P, is given by

A(S,) = A(S) + 2H(S)p + 4mp?. (7.3)

P,

Figure 7.6. Boundary surface S of a convex polyhedron and S, of its parallel
body at distance p.

Proof. The parallel surface S, consists of three parts:

» Plane pieces congruent to the faces of S.
Their areas sum up to A(S).

» Cylindrical pieces of radius p, angle 6(e) and length [(e) along the edges e
of S with area 6(e)l(e)p = 2H(e)p.

» Spherical pieces at the vertices p of S with area K (p)p®. Since a convex poly-
hedron is a topological sphere the Gaussian curvature sums up to K (S) = 4,
i.e. merged together by parallel translation the spherical pieces comprise a
round sphere of radius p.

O
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Remark 7.5 (Steiner’s formula for polyhedral surfaces). At non-convex edges
and vertices we can define the parallel surface as depicted in Figure 7.7

Figure 7.7. On the definition of the parallel surface S, in the non-convex case.

and take the area of the corresponding cylindrical and spherical pieces as nega-
tive. Then Steiner’s formula for an arbitrary closed polyhedral surface S reads
as follows:

A(S,) = A(S) + 2H(S)p + K(S)/
where K (S) = 2mx(S) is the total Gaussian curvature.

7.3 Polyhedral Metrics

We want to investigate the intrinsic geometry induced by polyhedral surfaces.
Definition 7.4. A metric on a set M is a map
d: MxM-—>R
such that for any x,y,z€ M
@
(ii
(iii
(i

The pair (M, d) is called a metric space. B
Let (M, d) and (M, d) be two metric spaces. Then a map f : M — M such that
for any z,y € M

Z’?
—0ex=y

d(y, )
+d(y, z) = d(z, 2)

Z,

T,y

T,y

) d(z,y) =
) d(z,y)
i) d(z,y) =
v) d(z,y)

d(f(x), f(y)) = d(z,y)

is called an isometry.
(M,d) and (M, J) are called isometric if there exists a bijective isometry f : M — M
called a global isometry.
(M, d) is called locally isometric to (M CZ) at a point z € M if there exists a
nelghborhood U of z and a neighborhood U M such that (U, d) is isometric

to (U, d).
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Remark 7.6.
» Every isometry is continuous and every global isometry a homeomorphism.

» An abstract discrete surface S = (M, T) equipped with a metric becomes a
metric space (M,d).

» For a geometric realization f : § — R” the Euclidean metric on R™ induces a
metric on f(M) < R™. To study this metric intrinsically on the correspond-
ing abstract discrete surface S we pull it back, i.e. we define the metric on
S such that f is an isometry.

Let f: S — R”™ be a polyhedral surface. We examine the metric induced by
the Euclidean metric of R”. For two points x,y € f(M) we are interested in the
length L(+y) of the shortest curve « lying on f(M) connecting = and y:

d(z,y) = igf{L(v) | v:[0,1] = f(M),7(0) = z,v(1) = y}.

Example 7.2 (shortest paths on a polyhedral surface). Isometrically unfolding
a cube to a plane we see that connecting two points by a straight line might not
always constitute a shortest path.

Figure 7.8. Straight line on a cube which is not the shortest path connecting =
and y.

Shortest paths are a global property of the metric.

We start by investigating locally shortest paths which are called geodesics.
We look for local isometries to some planar domain where we already know the

geodesics.
1N

(D

Figure 7.9. Neighborhoods of a point on a face, edge and vertex of a polyhedral
surface.

Consider a point p € M on a face A € F.. Then a small enough neighborhood
of f(p) on f(M) is entirely contained in the planar face f(A). So the neighbor-
hood can be mapped isometrically to a disk D?.
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For points on edges a small neighborhood intersects the interior of two planar
faces. Isometrically unfolding those two faces to a plane we find that the neigh-
borhood is also isometric to a disk.

For points on a vertex we could also unfold the adjacent faces to a plane. But
this leaves a cut in the neighborhood. What we can do isometrically is map the
small neighborhood to the tip of a cone characterized by the angle 6 which is
the sum of angles a; between the edges adjacent to the vertex. The angle defect

K(p)=2r—196

is a measure for the non-flatness of the metric at p.
In general 6 can be greater than 27 in which case the cone becomes a saddle.
We make the following classification

K > 0 elliptic point, locally isometric to a cone.

K = 0 flat point, locally isometric to a disk,
i.e. the vertex and its adjacent edges could be completely removed from the
combinatorics without changing the polyhedral surface.

K < 0 hyperbolic point, locally isometric to a saddle.

We find that the metric induced on the polyhedral surface f(M) by the Eu-
clidean metric in R™ is locally equivalent to the Euclidean metric of R? every-
where except for the vertices.

Pulling back the metric with the map f to the abstract discrete surface S we
obtain a metric with the same properties, i.e. a small neighborhood of a point
peMona

» face is isometric to a disk D?.
» edge is isometric to a disk D?.
» vertex is isometric to the tip of a cone.

We can now forget about the combinatorics and obtain an abstract surface M
with a polyhedral metric which we call piecewise flat surface.

Definition 7.5 (piecewise flat surface). A metric d on a surface M is called a
polyhedral metric if (M, d) is locally isometric to a cone at finitely many points
V ={Py,...,Pn} © M (conical singularities of the metric) and locally isometric
to a plane elsewhere.

The pair (M, d) of a surface and a polyhedral metric is called a piecewise flat
surface.

Remark 7.7. A polyhedral metric d on a surface M carries no obvious informa-
tion about edges and faces, only about the vertices.

How to prescribe a polyhedral metric?

We investigate how the information about the metric gets transferred from a
polyhedral surface to its corresponding piecewise flat surface (w.l.0.g. we con-
sider simplicial surfaces).

A simplicial surface induces a piecewise flat surface (M, d) together with a tri-
angulation T such that the vertex set includes the conical singularities and all
edges are geodesics on (M, d).
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Definition 7.6 (geodesic triangulation). Let (M, d) be a piecewise flat surface
with conical singularities Vj.

Then a geodesic triangulation of (M,d) is a triangulation of M such that its
vertex set includes the conical singularities Vy < V' and all edges are geodesics
on (M,d).

Remark 7.8. In general a geodesic triangulation on a piecewise flat surface does
not have to come from a polyhedral surface.

The geodesic triangulation fixes the polyhedral metric of the piecewise flat
surface. Its triangles are isometric to Euclidean triangles with straight edges
and the polyhedral metric is determined by the lengths of the edges.

The Euclidean triangles on the other hand are uniquely determined by the
lengths of its edges if and only if these satisfy the triangle-inequality.

We obtain the following general construction on how to prescribe a polyhedral
metric.3!

» Start with an abstract discrete surface S = (M, T') where T is a triangulation.

» Define a length function [ : E — R on the edges E of T such that on every
face the triangle-inequality is satisfied.

From this data we can construct unique Euclidean triangles which fit together
along corresponding edges of T. We can always glue the obtained Euclidean
triangles together along the edges around one common vertex —thus obtaining
a polyhedral metric on the abstract surface S— but we cannot be sure that
they will fit together to constitute a whole polyhedral surface. Summing up
the angles at corresponding vertices we obtain the angle defect of the conical
singularities of the polyhedral metric.
We get closer to the answer of the questions:

Is a piecewise flat surface always realizable as a polyhedral surface?
And is the corresponding polyhedral surface uniquely determined?

Isometric deformations of a simplicial surface preserve its polyhedral metric and
therefore the corresponding piecewise flat surface.

Example 7.3 (pushing a vertex in). If all neighbors of a vertex p are coplanar
we can reflect the whole vertex star in this plane without changing any angles.

Figure 7.10. Pushing a vertex in does not change the metric.

We obtain the same piecewise flat surface with the same geodesic triangulation.
So the polyhedral surface generating a piecewise flat surface is in general not
unique.

31Note that choosing a triangulation of M —i.e. gluing M together from triangles— to pre-
scribe the polyhedral metric is still eminent in this construction.
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Example 7.4 (isometric bending of a polyhedral quadrilateral and edge flip-
ping). Consider two planar triangles with a common edge. Isometrically unfold-
ing the two triangles along the common edge we obtain a planar quadrilateral.
If the quadrilateral is convex we can replace the edge by the other diagonal and
fold the quadrilateral along this new edge.

N\

Figure 7.11. Edge flip. Isometrically unfold a quadrilateral to a plane and fold
it along the other diagonal.

The edge flip can be done directly on the polyhedral surface without any folding
by introducing a non-straight edge.

We obtain a different geodesic triangulation on the same piecewise flat surface
which does not necessarily come from a polyhedral surface anymore.

Lemma 7.8 (Possibility of an edge-flip). Let (M, d) be a piecewise flat surface
with a geodesic triangulation T.

Then an edge e of T can be flipped if its two neighboring triangles are distinct
and unfolding them into a plane yields a convex quadrilateral.

Remark 7.9. Since we admit non-regular triangulations we need the condition
of the two triangles to be distinct to make the edge flip combinatorially possible.

Example 7.5 (tetrahedron). Four congruent equilateral triangles can be glued
together to obtain a tetrahedron.

A%A /\q D/\

Figure 7.12. Two geodesic triangulations of the piecewise flat surface given by
a tetrahedron.

An edge-flip of one of their edges constitute four triangles which do not fit
together as a whole polyhedral surface with the given combinatorics.

We have seen that not every geodesic triangulation of a piecewise flat surface
is realizable as a polyhedral surface. Nor is the polyhedral surface we seek
uniquely determined even if we know the combinatorics.



7 POLYHEDRAL SURFACES AND PIECEWISE FLAT SURFACES 74

We finish this section by stating two classical theorems.

Theorem 7.9 (Burago-Zalgaller, 1960). Every piecewise flat surface can be
realized as a polyhedral surface embedded in R3.

Remark 7.10.
» Note that the ambient space can always be taken to be R3.

» This is a pure existence statement and the proof gives no indication on how
to construct the polyhedral surface.

For convex polyhedral metrics the corresponding polyhedral surface which is
convex is unique and can be obtained via a construction algorithm.

Theorem 7.10 (Alexandrov). Let (M, d) be a piecewise flat sphere with a con-
vex polyhedral metric d. Then there exists a convex polytope P < R® such that
the boundary of P is isometric to (M,d). Besides, P is unique up to a rigid
motion.

Remark 7.11.

» A polyhedral metric d with conical singularities Py, ..., Py is called convex
if all its conical singularities are elliptic, i.e. K(P;) = 0.

» The edges of P are a complicated functions of d, since the metric does not
distinguish points on edges from points on faces.

» For a proof of this theorem with a construction algorithm see [BI08].

» An implementation of the algorithm can be found at [Sec].
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8 Discrete cotan Laplace operator

We introduce a discrete Laplace operator naturally induced by a simplicial sur-
face (or more general by a geodesic triangulation of a piecewise flat surface).

8.1 Smooth Laplace operator in RY

Let © < RY be an open set with boundary 9. We denote the coordinates
in RNV by = (21,...,2y5). The Laplace operator of a function f : Q — R is
defined by

~

j5)
(¥}

N

€T=

N 2
Asza
1=1

A function with Af = 0 is called harmonic.
The problem of finding a harmonic function with prescribed boundary data
g:00—->R

Afla=0, flaa=g (DBVP)

is known as the Dirichlet boundary value problem.
The Dirichlet energy is given by

B() = 5 | 1947 aa,

where V f is the gradient of f.
Let ¢ € CL(Q) be a continuously differentiable function with compact support
on 2. Then due to Green’s formula

GEG + 9o = | (91,904 = | p(anda.

This integral vanishes for arbitrary ¢ if and only if f is harmonic. So harmonic
functions are the critical points of the Dirichlet energy.

For sufficient smooth boundary>? one can prove the existence and uniqueness
of solutions of the Dirichlet boundary value problem (DBVP) for arbitrary con-
tinuous g € C(0N). This solution minimizes the Dirichlet energy.

Remark 8.1. Sometimes the Laplace operator is defined with minus sign to
obtain a positive definite operator.

32For example of Holder class 09 € C1*¢, with some a > 0.
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8.2 Laplace operator on graphs

Definition 8.1 (Laplace operator and Dirichlet energy on graphs). Let G =
(V, E) be a finite graph with vertices V' and edges E. Let v : E — R be a weight
function defined on the edges of G.

Then the discrete Laplace operator on G with weights v is defined by

AN =3 vefE) - Fi)

j:(ij)=e€eE

for all i € V and all functions f: V — R on vertices.
The Dirichlet energy of f is defined by

(ij)=ecE
A function f:V — R satisfying Af = 0 is called discrete harmonic.

Example 8.1. By setting v(e) = 1 for all e € E one obtains the combinatorial

Laplace operator
ANG =Y, (fG) = f(G)
J:(i5)eE
on any graph G.
In the case G = Z we obtain

(Af)(n) =2f(n) = f(n+1) = f(n—1),
and for G = Z?
(Af)Y(m,n) =4f(m,n)— f(m—1,n)— f(m+1,n)— f(m,n—1)— f(m,n+1).

Let Vo c V (treated as the “boundary” of G).

Figure 8.1. The set Vj of “boundary” vertices on a graph (black vertices in the
figure) is arbitrary.

Given some c¢: Vo — R consider the space of functions with prescribed values
on the boundary

_/—"V07C:{f:V4>R‘ f‘v0:C|V0}~

This is an affine space over the vector space Fy; 0.
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Theorem 8.1. A function f:V — R is a critical point of the Dirichlet energy
E(f) on Fv, ¢ if and only if it is harmonic on V\Vy, i.e.

Af(i)=0 Vie V\W.
Proof. Consider a variation f + tp € Fy, . of f € Fy, e, i.e. ¢ € Fy,,0. We have

E(f +tp) = E(f) + PE(p) +t Y v(ij)(f(i) — F())(e(i) = #(7)

(ij)eE
=E(f)+E(@) +tY (i) Y. v — 1)
i€V j:(ij)eE
= E(f) +?E(p) +t > (i) (Af)(i).
eV
So q
| Bl +tp)= D e((Af)() (8.1)
t=0 eV
vanishes for all ¢ € Fy, ¢ if and only if Af(i) = 0 for all i € V\Vj. O

Remark 8.2. We can also state (8.1) in terms of the gradient of the Dirichlet
energy as

VE(f)=Af (8.2)
in the sense that 0y, E(f) = (Af)(i) for all i e V.

If all the weights are positive v : E — R, then the discrete harmonic func-
tions have properties familiar from the smooth case.

Theorem 8.2 (maximum principle). Let G = (V, E) be a connected graph and
Vo < V. Let A be a discrete Laplace operator on G with positive weights. Then
a function f:V — R which is harmonic on V\Vy can not attain its mazimum
(and minimum) on V\Vj.

Proof. At alocal maximum i € V' < Vg of f one has Af(i) = 2. ;jyep V(1) (f (1) —
f(4)) > 0, therefore f cannot be harmonic. O

For Vy = ¥ this implies:

Corollary 8.3 (discrete Liouville theorem). A harmonic function on a con-
nected graph with positive weights is constant.

and for Vy # &:

Corollary 8.4 (dDBVP, uniqueness). The solution of the discrete Dirichlet
boundary value problem with positive weights

Af|v\vO =0, f|v0 =c (dDBVP)
1S unique.

Proof. Let f, f be two solutions of (dDBVP). Then ¢ = f—fe Fvy,0 for which
the maximum principle implies ¢|;, = 0. O
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Theorem 8.5. Let G = (E, V) be a finite connected graph with positive weights
v:E—->Ry and & # Vo € V. Given some c: Vy — R there exists a unique
minimum f :V — R of the Dirichlet energy on Fy, .

This minimum is the unique solution of the discrete Dirichlet boundary value
problem (dDBVP).

Proof. The Dirichlet energy is a function on Fy, . = RIV\Vol. We investigate its
behavior for Hf|V\V0 H — 00. Define
vy = mbln{u(e)}, o = Izré%_zc{c(z)}

For R > ¢o let f(k) > R at some vertex k € V\Vy. Let 7, < E be a path
connecting k to some vertex in Vp. It has at most |E| edges. For the Dirichlet
energy this gives the following rough estimate:33

B = 5w D) (70 - 16))
(i7)€Vk
(R — Co) o

> —
= =)

(R — o0).

Thus the minimum of the Dirichlet energy is attained on a compact set
{feFvye| |f(i)| <R Vi} with some R € R.
The uniqueness has already been shown in Corollary 8.4. O

Summarizing we have the following equivalent statements:
> f € Fy,,c harmonic, i.e. Aflyy, =0, fly, =c
» f is a critical point of the Dirichlet energy on Fy ., i.e. VyE = 0.

» f is the unique minimum of the Dirichlet energy E on Fy; .

2
33Where we use )1 ; a? > % Xty a)”.
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8.3 Dirichlet energy of piecewise affine functions

A discrete function f:V — R defined at the vertices of a simplicial surface S
uniquely extends to a piecewise affine function f : 5 — R.

Theorem 8.6. Let S be a simplicial surface and f:S — R a continuous and
piecewise affine function (affine on each face of S).
Then its (continuous) Dirichlet energy is

B =3 [[19A4=5 ¥ v - 16)*

(ij)eB
v(ij) = {

called cotan-weights.

with weights

(cot o + cot ajy)  for internal edges

(I NI

cot oy for external edges

< (>

i

Figure 8.2. «a;; and «;; are the angles opposite the edge (i7).

Figure 8.3. Triangle F' with vertices v;, sides a;, angles a; and heights h;.

Proof. We compute the Dirichlet energy of an affine function on a triangle.
Denote by vy, va,v3 € RN the vertices of a triangle F and by ¢1, ¢2, 3 the basis
of affine functions on F' given by

(pj(l) = 5ij7 Z,] = 172,3.

Then 1 + @2 + ¢3 = 1 and an affine function f : F' — R on the triangle F' is
determined by its values f; = f(v;) at the vertices:

3
f=2 i
i=1
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For the gradient of f we obtain

2 3 3
VI = = Z filVeil* +2 Z fifis1{Vpi, Vi), (8.4)
=1

i=1

3
WAL
=1

where the indices are considered modulo 3.

Denote by «; the interior angle at vertex v;, by w; = v;_1 — v;11 the directed
edge opposite v;, by a; = |w;| its lengths, and by h; the height based at w;.
Then the area of the triangle is given by A(F) = %hiai, and for the gradient
Vp; we obtain

1 1 a; 1
|V<Pz|2 = ﬁ = 2A(F) hf = T(F,)(COtOéi_l + COtO(H_l)7
~ lwiwir1)  aiaipcosa o cotay g
<VSDZ7VS07,+1> - 4A(F)2 - 4A(F)2 = 2A(F) B

For the gradient (8.4) of f this implies

3
ViI* = QAI(F) D (fiy1 = fim1)? cot ai.
i=1

Multiplying by 1 A(F) we obtain the Dirichlet energy of f on F:

3

Z(fiJrl — fii1)? cot .

i=1

e

B() = | 19474 -

O

For a discrete function f:V — R defined at the vertices of a geodesic tri-
angulation of a piecewise flat surface (M, d) we can unfold each triangle to the
Euclidean plane and define its Dirichlet energy by the affine extension to this
triangle in the same way. We also define the corresponding discrete Laplace
operator on triangulated piecewise flat surfaces.

Definition 8.2 (discrete Dirichlet energy and discrete cotan Laplace operator).
Let (M, d) be a piecewise flat surface, V' < M a finite set of points that contains
all conical singularities. Let T' € Tas, v be a geodesic triangulation of M.
Then we define the discrete Dirichlet energy corresponding to T of a function
f:V—>Rhby
1 . ) )
E(f) =35 >, vl = f())?
(ij)eE
and the discrete cotan Laplace operator corresponding to T' by
(Af)GE) = > vd)(f() — f()
J:(ij)eE
for all 1 € V and all functions f : V — R, with cotan-weights as defined in (8.3).
Remark 8.3.

» The basic relation between the discrete cotan-Laplace operator and the dis-
crete Dirichlet energy is given by (8.1) or (8.2).
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» The contan-weights (8.3) are not necessarily positive, and the maximum
principle (Theorem 8.2) does not apply for general triangulations. Nonethe-
less, the discrete Dirichlet energy with cotan-weights is always positive def-
inite, and solutions to (dADBVP) are unique.

8.4 Simplicial minimal surfaces (I)

Consider the area of a triangle in dependence of its edge-lengths:

Lemma 8.7. Let a1, as, a3 > 0 which satisfy all triangle inequalities a; < aj+ay
fori+#j# k. Let A(ay,az,a3) be the area of the Euclidean triangles with edge-
lengths a1, as,as, and «; the interior angle opposite a;, i = 1,2,3. Then

Alay,az,a3) = i (af cot ay + a3 cot as + a3 cot az) (8.5)
wnd oA 1
0 Ui cot a; (8.6)
fori=1,2,3.

Figure 8.4. Subdivision of a triangle by connecting the center of the circumcircle
to its vertices.

Proof. Subdivide the triangle by connecting the center of the circumcircle to its
vertices and denote the heights of the three sub-triangles with respect to the
base a; by l;, i = 1,2,3 (compare Figure 8.4). Then the area of the sub-triangles
is given by

1 1, .

Zaili = Zai cot ay;, i=1,2,3,
which sum up to (8.5). Note that I;, and therefore the corresponding area of
the sub-triangle, can be negative. This is the case, if the circumcenter is not
contained in the original triangle.

To obtain (8.6) we compute

0A 1 90 cot o
7a, 2a2 cota; + — Z aj 2a; ,

and find that the second term of the rlght—hand side vanishes:
2 a0 cot a; 1
DAL i D)

: 5 3
where R is the radius of the circumcircle and ZJ 1 U‘;J =3 2jm1 o =0. O
J J

2
“j

aaj _ oy Z oo B
oa; 0,

sin® o day

»M»—*
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Consider the area of a triangle in dependence of the position of its vertices:

Lemma 8.8. Let A(v1,vs,v3) be the area of the triangle given by its vertices
v1,v2,v3 € RN, and denote by «; the interior angle at v;, i = 1,2,3. Then

A(v1,v9,v3) = i (\1}3 — v2|2cota1 + vy — v3|2cota2 + |vg — v1|2cota3)
(8.7)
and 1 1
Vo, A(v1,v2,v3) = 5 cotaj (v; —vg) + 3 cot oy, (v; — vj) (8.8)
fori# 35 #k.

Proof. The length of the edge opposite v; is given by a; = |v;—1 — v;+1| and
(8.7) follows immediately from (8.5).
Differentiating (8.5) we obtain

oA oA
A=229, 0+ LV,
Vo, o Vot + 5V,

Using Vy,a; = V,,

v; — vg| = ik = %tk and (8.6) we obtain (8.8). O

[vi—vk]

Figure 8.5. Triangle with directed edge w; and altitude vector m; of the sub-
triangle.

Direct proof of (8.8). We denote by w; := v;—1 — v;4+1 the directed edges of the
triangle, and by m; the altitude vectors of the three sub-triangles with respect
to the base w;, i = 1,2,3 (compare Figure 8.5). To obtain the gradient of the
area with respect to, say, v; we note that the area of the triangle is given by
A= % |wy] hy where hq is the height based on w;. Thus, its gradient is

1
V,UIA(U1,U2,U3) = §Jw1 (89)

where J denotes the Z-rotation in the plane of the triangle with orientation
given by the directed edges. Now for the right-hand side of (8.9) we obtain

1 1 || |ms]
~J —=J = —J(mgy — = 2, — 8l
5 w1 5 (we + w3) (mg — mg3) — Wo - 3

1
— cot ag wo — — cot ag ws.
5 2 Wz 5 3 w3



8 DISCRETE COTAN LAPLACE OPERATOR 83

Now we can represent the area of a simplicial surface as a Dirichlet energy:

Theorem 8.9. Let f:S - RY, S = f(S) be a simplicial surface, where
f:V > RN also denotes its vertices. Let v be the cotan-weights as defined
in (8.3) and E(fy) the Dirichlet energy of the k-th coordinate function. Then
the total area of S is given by

N
Sy =2 E(fi) = > v(ij)|f(i)— f()I (8.10)
k= (ij)eE

where | f(i) — f(G)|? = Zi\;l | £ (i) = fr(4)|? is the square of the edge lengths.
The area gradient at the vertex f(i) is equal to the discrete cotan Laplace
operator of f at i:

ViAW) =2(A0)@) =2 Y, v(ii)(f(0) = f(5))- (8.11)

j:(ij)EE

Proof. From (8.7) we find

AS) =7 D AGGLFG)LIR) =5 X cotay|76) — 1)
(ijk)eF (ij)eE
N
=, Z v(if) | fx(i) = ()P
k=1 (ij)eE

From (8.8) we obtain for the area gradient

Vi A(S Z V iy A(vi, vj, vr) Z cot o (f(¢) — f(4)).
(ijk)~i (ig)~i

Remark 8.4.

» Foru : V — RY the discrete Laplace operator is understood to act component-
wise, e.g.

Au=0 < Aup,=0Vk=1,...,N.

» We have shown that the gradient at a vertex is given by

Vi ) E(fi) = (AF)(0),
k=1

which resembles (8.2) with an RV -valued f.

We have used the exact same definition of discrete Dirichlet energy and
discrete cotan-Laplace operator as introduced in Section 8.3, but here the
cotan-Laplace operator acts on the same function f that determines the
weights v. Thus variations of the simplicial surface f also change the weights,
which is the reason why Theorem 8.9 does not immediately follow from (8.2).
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We have
f harmonic (w.r.t. cotan Laplace) < S critical for the area functional.
So we might define simplicial minimal surfaces as suggested in [PP93] by
S discrete minimal surface < Af =0,

which immediately suggests a computation algorithm.

Data: Simplicial surface f: S — S < RY
Result: Simplicial minimal surface (w.r.t. cotan Laplace operator).
while S is not critical for the area functional do
Compute f such that
Af=0
which defines a new simplicial surface S;

Replace S by the new surface S;
end

Figure 8.6. Simplicial minimal surface algorithm (with cotan Laplace
operator).

Remark 8.5. In each step the weights of the discrete contan-Laplace operator
are fixed by the simplicial surface f, and we compute a new simplicial surface
by the condition A f = 0. This is a discrete Dirichlet boundary value problem
(dDBVP), and using the discrete Dirichlet energy with cotan-weights the solu-
tion is unique if it exists (compare 8.3). The new surface f then carries a new
cotan Laplace operator, which is used in the next step.

The weights v of the discrete cotan Laplace operator can be negative. So it
lacks the following property which is a reformulation of the maximum principle
for RN -valued functions.

Proposition 8.10 (local maximum principle). Let A be a discrete Laplace
operator on a graph G with positive weights. Let u:V — RN be a map which
is harmonic at a vertexi € V.

Then the value u(i) at the vertex i lies in the convex hull of the values of its
neighbors.

Proof. With
C= > vlij)

j:(ij)eE

we have
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Figure 8.7. Simplicial minimal surface violating the maximum principle. One
vertex does not lie in the convex hull of its neighbors.

The maximum principle is a desirable feature analogous to the smooth prop-
erty of all points of a minimal surface being hyperbolic. So we ask the question

When does the cotan Laplace operator have positive weights?

For an edge (ij) € E we have

v(ij) = = (cot ay; + cot ay;)

(8.12)

DN = N =

COS vj; Sin aij; + COS Qtj; Sin Qg
sin Q5 sin Qg
sin(a;; + a;
=0 (04 - ])20 < o4+ oy <o,
S (5 S O

which is not satisfied for the long edges in Figure 8.7. We will come back to this
when introducing the discrete Laplace-Beltrami operator.
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9 Delaunay tessellations

We have noted that the polyhedral metric of a piecewise flat surface (M, d)
carries no obvious information about edges and faces. In the following we show
how to use the metric to obtain a distinguished geodesic tessellation of (M, d).
After recalling the notion of Delaunay tessellations of the plane we demonstrate
how to generalize it to piecewise flat surfaces.

9.1 Delaunay tessellations of the plane

9.1.1 Delaunay tessellations from Voronoi tessellations

Consider n distinct points in the plane V = {Py,..., P,} = R?. For each P, e V
one defines the Voronoi region

Wp, = {PeR? | |PP]| < |PP;| Vj #i}.

With Hij = {PE RZ ‘ |PP1| < |PPJ|} we have Wpi = ﬂ
regions are convex polygons.

i H;;. Thus Voronoi

Figure 9.1. Voronoi tessellation for some given points V = {Py,..., P,} in the
plane. A vertex @ of the Voronoi tessellation has equal shortest distance to at
least three points of V.

Voronoi regions are the 2-cells of the Voronoi tessellation.>*

For P € R? consider
FP,V = {PJ eV | |PP]| = }Ijl};lér‘l/|PPk|}

We can identify points of 2-cells, 1-cells and 0-cells of the Voronoi tessellation
by counting points in V' that have equal shortest distance to P.
The 2-cells of the Voronoi tessellation are the connected components of

{PeR? | #I'py =1},
the 1-cells are the connected components of

{PeR® | #I'py =2},

34A tessellation is a cell-decomposition with polygonal 2-cells.
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and the O-cells are the points in
{PeR? | #I'py = 3}.
For P’ € R? with #Up v =2, P, Pje I'p v, P; # P; the corresponding 1-cell
is given by
{PeR? | |PP| = |PPj| < |PPy| Vk #1,j},

and for P € R? with #I'p > 3, P, Pj, Py € I'py different, the corresponding
0-cell is given by

{PeR?| |PP| =|PP)| = |PPy| < |PPy,| Vm}.
Let @ be a vertex of the Voronoi tessellation, i.e.
3,5,k Ym: rq = |PP;| = |PP;| = |PPy| < |PPp,]|.

Define the disk
Do ={PeR?®||PQ|<rg}.

It contains no points of V. But its closure D¢ contains at least three. Thus
Hg =conv{P, eV | |QP| =rq}

is a convex circular polygon.

Figure 9.2. Delaunay cells are convex circular polygons. They are triangles in
the generic case.

The Hg are the 2-cells of the Delaunay tessellation.
The vertices of this tessellation are V' and the edges (P; P;) where ¢, j are indices
of neighboring Voronoi cells, i.e. there exists a corresponding Voronoi edge.

Remark 9.1.
» Voronoi and Delaunay tessellations are dual cell-decompositions.

» Corresponding edges of the Voronoi and Delaunay tessellation are orthogonal
but do not necessarily intersect (see Figure 9.2). The Voronoi edge bisects
the corresponding Delaunay edge.

» Voronoi and Delaunay tessellations of the plane are strongly regular.
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» One can also introduce a Delaunay-Voronoi quad-tessellation as a composi-
tion of both:

Figure 9.3. Voronoi-Delaunay quad tessellation. Faces (dotted lines) are convex
or non-convex kites.

Vertices are the union of Voronoi and Delaunay vertices.

Edges are the intervals connecting the centers of Voronoi cells with their
vertices or alternatively the centers of Delaunay cells with their vertices.
Faces are embedded quads with orthogonal diagonals and the diagonal which
is a Delaunay-edge is bisected into two equal intervals by the line through
the orthogonal Voronoi-edge.

Theorem 9.1. Given a set of distinct points V = {Py,..., P,} € R? there erists
a unique Voronoi and Delaunay tessellation.

These tessellations are dual to each other: The Delaunay vertices V are the
generating points of the Voronoi tessellation. The Delaunay faces are convex
circular polygons centered at Voronoi vertices. The corresponding edges of the
Voronoi and Delaunay tessellations are orthogonal.

9.1.2 Delaunay tessellations in terms of the empty disk property

How to define Delaunay tessellations without referring to Voronoi?
We noticed that:

All faces of a Delaunay tessellation are convex circular polygons.
The corresponding Delaunay open disks Dg contain no vertices.

and call this the empty disk property.

Definition 9.1. A tessellation of a planar domain is called Delaunay if it pos-
sesses the empty disk property.

An edge of a tessellation is called Delaunay edge if two faces sharing this edge
do not have any of their vertices in the interior of their disks.

AN e

~ _—

Figure 9.4. Empty disk property of Delaunay tessellations.
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Theorem 9.2. The property of being a Delaunay tessellation is invariant under
Mébius transformations.

Proof. Follows directly from the empty disk property being Mobius invariant.
O

Remark 9.2. Delaunay tessellations on S? can be obtained by stereographic
projection.

Lemma 9.3 (angle criterion for circular quadrilaterals). Let Py, Ps, P3, Py €
R? be four points in the plane cyclically ordered. Let C be the circle through
Pla PQ; P37

= {P1P2P37 B = {P3P4P1.

Then
Py lies outside C < a+f<m

PyliecsonC & a+fB=m
Py lies inside C < o+ 3> .

Figure 9.5. Angle criterion for circular quadrilaterals.

Proposition 9.4 (angle criterion for Delaunay triangulations). A triangulation
of the plane is Delaunay if and only if for each edge the sum of the two angles
opposite to this edge is less than or equal to 7.

9.2 Delaunay tessellations of piecewise flat surfaces
9.2.1 Delaunay tessellations from Voronoi tessellations

Let (M,d) be a piecewise flat surface. Let V = {Py,..., P,} be points on M
such that V' o {conical singularities of (M, d)}.

On M —in contrast to the planar case— it can happen that the distance between
two points is realized by more than one geodesic. The suitable generalization of
counting points of equal shortest distance to V' is counting geodesics that realize
this distance. For P € M we define

Tpy = {7:[0,1] > M geodesic | 4(0) = P, v(1) € V; L(y) = d(P,V)}.

The 2-cells of the Voronoi tessellation of M with vertex set V are the connected
components of
{PEM | #Fp’v =1},



9 DELAUNAY TESSELLATIONS 90

the 1-cells are the connected components of
{PeM|#I'py =2},
and the O-cells are the points in
{PeM | #I'py = 3}.
We can try to describe the cells in a similar manner as in the planar case. E.g.
for P’ e M with #'p v =2, vi,72 € Tpy, 1 # 72, P =1n(1), P =7(1) eV
(possibly i = j) the corresponding 1-cell is given by

(PeM | d(P,P)=d(P,P;) <d(P,P,) Yk #i,j (and #Tp (p, py = 2)} .

Example 9.1 (Voronoi tessellation of a cube). Let V' be the set of vertices of
a cube.

Figure 9.6. Voronoi tessellation of a cube.

Let P be an internal point of a Voronoi edge. Then there is P;, P; € V
(possibly 7 = j) such that

d(P,P,) = d(P, P;) < d(P, Py) Vk # i, .

This describes an empty immersed disk centered at P with exactly two elements
of V on the boundary.?

The endpoints of Voronoi edges are Voronoi vertices. Let @@ be such a point.
Then there is P;, P;, P, € V such that

This describes an empty immersed disk centered at @) with at least three ele-
ments of V on the boundary.36

As in the plane the Delaunay tessellation is defined as dual to the Voronoi
tessellation.

350r one element but two different geodesics minimizing the distance to P.
360r less but with at least three different geodesics minimizing the distance to P.
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P o
j 1N
AN - P -
Figure 9.7. (left) An internal point P of a Voronoi edge. (right) A Voronoi
vertex (. Both are the center of an empty immersed disk on M with vertices on
the boundary. The Delaunay edges are geodesic arcs connecting the points of V'
on the boundary, i.e. the Delaunay faces are flat circular polygons.

Remark 9.3. A geodesic tessellation of a piecewise flat surface (M, d) is a tes-
sellation with flat polygonal 2-cells (compare Definition 7.6).

Delaunay tessellations are geodesic tessellations on M. The edges of Voronoi
tessellations are geodesic arcs but it is not a geodesic tessellation since the faces
are not flat.

Theorem 9.5. Let (M,d) be a piecewise flat surface without boundary, V. M
a finite set of points that contains all conical singularities.
Then there exists a unique Delaunay tessellation of M with vertex set V.

Remark 9.4.
» The proof via construction of the Voronoi tessellation can be found in [MS91].

» If one triangulates all Delaunay faces by triangulating the corresponding
circular polygons in the corresponding empty immersed disks one can obtain
Delaunay triangulations.>”

On the contrary, the unique Delaunay tessellation can be recovered from any
Delaunay triangulation by deleting edges.

» We will show later how to construct a Delaunay triangulation starting from
an arbitrary triangulation by applying an algorithm of consecutive edge flips.

9.2.2 Delaunay tessellations in terms of the empty disk property

We define Delaunay tessellations on a piecewise flat surface in a selfcontained
way without referring to Voronoi.

Definition 9.2 (empty immersed disk). Let (M, d) be a piecewise flat surface
without boundary, V< M a finite set of points that contains all conical singu-
larities.

Then an immersed empty disk is a continuous map ¢ : D — M such that ¢ D
is an isometric immersion®® and ¢(D) "V = &.

37In contrast to the Delaunay tessellation the Delaunay triangulation is not unique as soon
as one has circular polygons which are not triangles.

38 An isometric immersion is a local isometry, i.e. each P € D has a neighborhood which is
mapped to M isometrically.
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Definition 9.3 (Delaunay tessellation). Let (M, d) be a piecewise flat surface
without boundary, V' < M a finite set of points that contains all conical singu-
larities.

The Delaunay tessellation of M with vertex set V is a cell-decomposition with
the following cells:

C < M is a closed cell of the Delaunay tessellation if there exists an immersed
empty disk ¢ : D — M such that ¢~ (V) # & and C = p(conve =1 (V)).

The cell is a 0-, 1-, 2-cell if ¢~1(V') contains 1, 2, or more points respectively.

Claim 9.6. This is indeed a tessellation.

Remark 9.5. For the proof see [BS07].
€ (p'l(V) P,-

P
7N SN

/ \ / \Pj
\

vertex edge faces

Figure 9.8. Delaunay cells and their corresponding empty immersed disks.

We characterize Delaunay triangulations in terms of a local edge property.

Definition 9.4 (Delaunay edge). Let T be a geodesic triangulation of a piece-
wise flat surface (M,d). Let e be an interior edge of T. We can isometrically
unfold the two triangles of T" that are adjacent to e. e is called a Delaunay edge if
the vertices of these unfolded triangles are not contained inside the circumcircles
of the triangles.

AN s

~

Figure 9.9. Unfolded triangles adjacent to a Delaunay edge. The inside of the
circumcircles contain no vertices.

Theorem 9.7 (Characterization of Delaunay triangulations in terms of Delau-
nay edges). Let (M,d) be a piecewise flat surface without boundary, V. M a
finite set of points that contains all conical singularities.

A geodesic triangulation T € Ty v of (M, d) is Delaunay if and only if all of its
edges are Delaunay edges.



9

DELAUNAY TESSELLATIONS 93

Remark 9.6. We first explain the general scheme used in the proof to obtain a
locally isometric model in the Euclidean plane for parts of our surface M. We
do some notably identifications on the way.

»

For any face A € F(T) there is a triangle in the Euclidean plane which can
be isometrically immersed into the piecewise flat surface M (continuous on
the boundary) such that its image corresponds to the face.

Notationally we identify the combinatorial/metrical face on M and the un-
folded Euclidean triangle.

We extend the isometric immersion such that it stays an isometric immersion
in the interior and continuous on the boundary.
E.g. by some circular piece or a neighboring triangle.

Note that we might not be able to extend it to the circumcircle of the
unfolded triangle in the plane.

That is why it is not obvious whether Delaunay edges imply the existence
of empty immersed disks for their adjacent faces.

Only inside the domain of this extended immersion can we be sure to draw
straight lines and obtain geodesics on M and measure lengths and angles as
they are on M, i.e. measure quantities in our planar isometric model that
are well-defined by the piecewise flat surface.

Proof. If T is Delaunay obviously all edges are Delaunay edges.
Assume that all edges are Delaunay but the triangulation is not.

Any face A € F(T') can be isometrically unfolded into the plane. We denote

its circumcircle in the plane by Da.

For an edge a of A consider the one-parameter family of circles in the plane
through its endpoints. a divides the corresponding open disks into two parts of
which we take the one that does not intersect A. We call them disk segments
which fit to A along a.

Figure 9.10. (left) Unfolded face A with circumcircle Da and disk segment
D’ fitting to A along a. (right) We extend the isometric immersion of A behind
the edge a to the largest possible disk segment Da . To every (A, a,S) € A we
associate an angle .
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Da.,q = {D' | disk segment fitting to A along a,
the isometric immersion of A can be extended to D’
(continuously to D'),
D'V =g}

For any edge a of a face A we denote the largest such disk segment by

Dpo = U D'.
D'€Da.q

If Da,q is bounded, then Da , € Da, and there has to be a vertex on the
circular arc bounding Da 4, i.e.

(0DaL\@) NV # &.

Otherwise we could enlarge D 4.
A face A which has no empty immersed disk must have an edge a such that
(Dao\a) € Da. Thus the set
A:={(A,a,5) e F x ExV | A has no empty immersed disk,
a is edge of A with (Da ,\a) < Da,
S e (0Dag\a) "V}

is not empty.
We introduce the angle o : A — (0, ),

a (A, (BC),S) = xBSC.
Let (A, a,S) € D such that

(A, a,8) = max a(A,a,S). (9.1)
(A,a,S)eA

Figure 9.11. (left) For (A,a,S) € A we obtain a neighboring element
(Ay,a1,51 € A. (right) We find a(A1,a1,51) > a(A,a,S) since v1 < v in
contradiction to the assumption.
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Let A; be the face sharing the edge a with A. We can isometrically unfold it
to the same plane as A. Let B,C be the endpoints of a and X the opposite
vertex of Ajq.

a Delaunay edge = X ¢ Da.

Since no triangle may contain any vertices we also have S ¢ A;.
Let aq be the edge of A; closest to S, say a; = (BX). Then there is S; € V
(possibly S7 = S) such that

(Ay,a1,51) € A

Let us denote the corresponding angles by « := (A, a, S) and a1 = a(Aq,a1,S1).
Due to Lemma 9.8 the angle v := m — « is the intersection angle of the circular
arc of 0Da o with a at B. Similarly ;.
Clearly, v > 1 which implies

a < o

in contradiction to (9.1). O
Lemma 9.8. Let B,S,C be three points on a circle, o = xBSC. Then the

intersection angle between the tangent to the circle at B and the secant (BC')
as depicted in Figure 9.12 is equal to «.

Figure 9.12. Angle in a circular arc.

Proof. While moving S along the circular arc the angle o = ¥xBSC stays con-
stant. In the limit S — B the edge (BS) becomes the tangent at B and
(SC) — (BO). O

The characterization of Delaunay triangulations in terms of Delaunay edges
allows us to formulate an angle criterion as in the planar case.

Proposition 9.9 (Angle criterion for Delaunay triangulations). A geodesic tri-
angulation of a piecewise flat surface is Delaunay if and only if for every edge
the sum of the two angles opposite to this edge is less than or equal to m.

This is a practical geometric characterization since angles can be measured
directly on the piecewise flat surface without any need to find empty immersed
disks. Recalling (8.12) we notice at this point

Proposition 9.10. The discrete cotan Laplace operator of a geodesic triangu-
lation T of a piecewise flat surface (M,d) has non-negative weights if and only
if T is Delaunay.
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9.3 The edge-flip algorithm

Let T be a geodesic triangulation of a piecewise flat surface (M, d).

If we unfold two adjacent triangles of T into the plane, we obtain a quadri-
lateral ), where one of its diagonals e corresponds to the shared edge of the
triangles and the other one e* corresponds to the edge resulting in an edge flip
of e if possible.

Lemma 9.11. FEvery non-Delaunay edge of T can be flipped and the flipped
edge is then Delaunay.

Proof. Let e be a non-Delaunay edge.

We use Lemma 7.8 to characterize whether e can be flipped. The sum of the
angles opposite to e in the adjacent triangles is greater than w. Therefore the
two triangles have to be different since the sum of all angles in a triangle is
equal to w. The two triangles form a convex quadrilateral as can be seen e.g.
from Figure 9.5. So e can be flipped and the sum of the angles opposite to the
flipped edge e* is less than or equal to . O

The following question emerges.

Can any given triangulation be made Delaunay by consecutive edge-
flips?

Definition 9.5. We denote the set of all geodesic triangulations of a given
piecewise flat surface (M, d) with vertex set V' by Tasv.

The edge-flip algorithm acts on Ty, in the following way.
Data: Some T € Ty,v.
Result: A Delaunay triangulation T e Ty v.
while T is not Delaunay do
Take any non-Delaunay edge e of T
Flip e in T
end

Figure 9.13. Edge-flip algorithm.

Example 9.2. We make the triangulation of the tetrahedron shown in Fig-
ure 9.14 Delaunay by applying the edge-flip algorithm.

identified edge
valence 3 vertex valence 2 valence 1

cut here to A
e
unfold unfold flip flip \ result /

L = k\

Figure 9.14. Making a given triangulation Delaunay.
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Figure 9.15. Result with colored edges. Green and yellow edges are original
edges. Red and yellow edges are Delaunay edges.

Note that the resulting triangulation is not regular and has a vertex of valence
one.

Theorem 9.12. The edge-flip algorithm terminates for any start triangulation
T € Tar,v after a finite number of steps.

Remark 9.7. Removing all edges which would stay Delaunay upon an edge-flip
we obtain the unique Delaunay tessellation. Claiming the existence of some
geodesic triangulation on any piecewise flat surface this implies Theorem 9.5.
In practice having some start triangulation is not an issue since the standard
ways of prescribing a piecewise flat surface already includes a triangulation.

The state of the algorithm is determined by the current triangulation in
Tu,v. We address the question of possible loops in the algorithm later by
means of a function f : Ta7,y — R that decreases on each step.

For a piecewise flat surface —in contrast to triangulations of a finite set of
points in the plane— the set of all triangulations 73z, is an infinite set in general.

Example 9.3 (infinitely many triangulations of the cube with arbitrary long
edges). Consider a standard cube with vertex set V. Unwrapping the cube as
in Figure 7.8 suggests how to create an arbitrary long edge between two vertices
of V. Completing to a triangulation we conclude that there are infinitely many
triangulations of the cube.

So even with the exclusion of loops the algorithm might not terminate.

Definition 9.6 (proper function). We call a function f: Ty — R proper if
for each c € R the sublevel set {T' € Ty | f(T) < ¢} is finite.

Having a proper decreasing function we can ensure termination after a finite
number of steps.

Example 9.4 (edge length function). For an edge e of a triangulation T' we
denote its length by I(e). Consider the function I : Tasy — R which assigns to
each triangulation its maximal edge length

T) = l(e).
(T) RIS (e)

As we have seen in Example 9.3 the function [ might be unbound on T v .
Nonetheless bounding [ only leaves a finite number of triangulations.

Claim 9.13. The edge length function l is proper.
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9.3.1 Dirichlet energy and edge-flips

Let T be a geodesic triangulation of a piecewise flat surface (M, d). We investi-
gate the local change in the Dirichlet energy of a discrete function u : V(T) — R
upon an edge-flip.

The geometry of a convex non-degenerate quadrilateral ) with vertices
1,2, 3,4 denoted in counter-clockwise direction is completely determined by the
values of r1,79,73,74 > 0 and 6 € (0, 7) as depicted in Figure 9.16. We denote
such a quadrilateral by Q(r1,7r2,73,74,0).

2

AT
<

Figure 9.16. A convex non-degenerate quadrilateral Q(r1, 72,73, 74,6).

Lemma 9.14 (Rippa’s Lemma). Let uy,us,us,us be the values of a function
on the vertices of the convex non-degenerate quadrilateral Q(ry,r,r3,74,0). Let
u13 : Q@ — R and be the linear interpolation which is affine on the triangles (123)
and (134) whereas ugq : Q — R is the linear interpolation affine on (234) and
(241). Let ug and ul be the values at the intersection point of the diagonals of
u13 and ugy Tespectively.

Then the difference of the corresponding Dirichlet energies is

1 (ug —ud)? (r1 +73)(ra +74)
E —F = - — . 9.2
(u13) — E(u24) 1 g pap—— (rir3 —rary) (9.2)

Proof. The diagonals of ) separate the quadrilateral into four triangles A;, Ao,
Az, A4. Both linear interpolations are affine on each of these triangles while the
Dirichlet energy of any affine function u : A; — R on the triangle A; is given by

1 1

Ea,(u) = ,J Vu?dA = L (2 +u2)A(A,).
2 Ja, 2

Consider the triangle A;. The interpolation u := w3 is determined by the

values ug, u1, us and the geometric data r1, ro, 6 of the triangle. Choosing a

coordinate system such that the x-axis is aligned with the edge r; of Ay

Figure 9.17. Triangle A, in suitable coordinate system.
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we find

Ul — U = UgT1

U — Uy = UzT2 cOS O + uyre sin b,

from which we obtain the partial derivatives u, and u, of u on A;

Uy — Uo
Uy =
1
1 Ug — Up U — Ug
Uy = — — cosf | .
sin 6 ro 71

For the gradient we get

Vul? = w2 +u2 = ! <<u1_u0>2+<u2_u0>2_2(ul_UO)(U2_U())COSQ>'

sin? 6 1 ) 179

The gradient of the interpolation u* = ugy on A; is obtained by replacing ug

by ug. With A(A,) = %7‘17“2 sin 6 the difference of the Dirichlet energies on A

1S

EAl ('I.L) - EAl (u*)

Il

1
3 (197 = 19 aca)

r172 2 s [ 1 1 2coséd
= — J— + _
4sinf ((uo u) <T% r3 172

+ 6
+2(uo—u6")(_:;_u§+(u1u2)005>)

1 Ty r17Tro
Uy — ug T2 T1
= - Ug + U, — + — —2cosf
4sin 6 (( 0 0) T To
r r
+2<u12 — gt 4 (uq +uQ)cos,9>>.
T1 T2

For the difference on Ay we replace vy — 19, 79 — 13, 8 > ™ — 6 and obtain

uo — ug o (T3 T2
E — En,(u*) = = 4+ 2 1+ 2cos6
3a(0) = Bas(u%) = 220 () (24 22 4 2cost)
+2(U2mU3M(U2+U3)COSG>).
ry  rs

Similarly for As and Ay.
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We sum up over all four triangles obtaining the difference of the Dirichlet ener-
gies on the whole quadrilateral

2 (Ba0) ~ Ba,0))

Uy — ug TN To T3 T4 To T3 T4 r)
+

E(u) — E(u®)

=—H(w+ui)| =+ —+—+—+ =+ —+—
4sind <(O 0)<r2 rg T4 T T T2 T3

+
T T T T T T T
2<u1<2+4> +u2<3+1) +U3<4+2> +u4( )))
1 1 T2 T2 T3 T3 T4 T4

Lo (s [ 1,1
Y <(u0+u0)<(7“2+r4)(r1+r3 + (ry +r3) r2+r4

—2<(r2+r4)<¢11+:i’>> +(r1+r3)(:f22 +:f;‘>>

The values up and uf come from the different linear interpolations along the
diagonals (13) and (24) respectively.

r3u] + rius
Uy = ———

ry+r3
" T4U2 + ToU4
Uy = ———
0 T + T4
Using
U n U3 u 1+ 13
= 4+ 2 =y
™ T3 rr3
U " Uy U To + T4
- — — w0
T2 T4 2Ty

we can eliminate all dependence of the vertex values from the difference of the
Dirichlet energies

1

Uy — UG
rirs TaTy

uo — ug 1 1 " 1 1
=0+ + — — — ) U — - —
4sin 0 (r 4 73)(r2 + 74) (uo (r2r4 T3 Yo

Bu) ~ B(u*) = 90 (ry 4 13)(r + 1) ((uo - u) (1 . ) P < LU

= M(m +173)(re + 1r4)

T1T3 — TroTy
4sin 0 TIToTsT s

We notice that all factors in (9.2) but the last are positive.3® The sign of
the last factor determines which edge is Delaunay.

39Note that for ug — ug‘ # 0 we require that not all of uy, u2, us, ug are equal.
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Lemma 9.15 (circular quadrilaterals). The quadrilateral Q(r1,r2,73,74,0) s
circular if and only if rirs = rory.
Furthermore

r1r3 > rory < (24) Delaunay

rirg < rory < (13) Delaunay.

7

Figure 9.18. Circularity criterion for a convex quadrilateral in terms of lengths
of diagonal segments.

Corollary 9.16. Suppose that not all of the vertexr values uy, us, ug, ug are
equal. Then

E(u13) = E(ug4) < Q circular, i.e. both edges are Delaunay
> E(ugq) < (24) Delaunay
E(u13) < E(ug4) < (13) Delaunay.
So an edge-flip from a non-Delaunay edge to a Delaunay edge decreases the

Dirichlet energy.

Remark 9.8. Note that the Dirichlet energy depends on the triangulation T
as well as on the function u : V(T) — R. To ensure that the Dirichlet energy
decreases upon an edge-flip u is required to be non-constant close to the edge.

9.3.2 Harmonic index

We introduce a related function that decreases on each step of the edge-flip
algorithm and only depends on the triangulation.

Definition 9.7 (harmonic index). For a triangle A with side-lengths a, b, ¢ we
define its harmonic index to be
a’ + b* + ¢?

h(A) = TN

and for a geodesic triangulation 1" € T,y of a piecewise flat surface

WT) = > h(A).

AeF(T)
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Lemma 9.17. Let A be a triangle with angles o, 3, v. Then
h(A) = 4(cot a + cot 8 + cot ).

Proof. Denote by a, b, ¢ the lengths of the sides of A opposite «, 3, v respec-
tively. Consider the height h, on a.

Figure 9.19. Triangle with side lengths a, b, ¢, corresponding heights hq, hs, he
and angles «, 8, 7.

Then
a = hg(cot B + coty),

and therefore
a® = 2A(A)(cot B + cot ).

Adding this up with the corresponding formulas for the remaining edge lengths
we obtain
a® + b% + ¢ = 4A(A)(cot a + cot B + cot ).

What has the harmonic index of a triangulation T to do with the
Dirichlet energy?

Lemma 9.18. Let T be a geodesic triangulation of a piecewise flat surface,
;i : V(T) = R, ;(j) = 6;; the basis functions on T. Then

WMT)=8 3, E(p).
i€V (T)
Proof. The Dirichlet energy of ¢; is given by
1
E(p;) = i Z (cot v + cot ayj;).
jeV:(ij)eE
Summing along all vertices ¢ € V amounts in counting every angle twice
1
Z E(p;) = B Z (cot aj; + cot aji).
€V (ij)eE
O

Corollary 9.19. The harmonic index decreases on each step of the edge-flip
algorithm.
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Lemma 9.20. The harmonic index h : Tas v — R is a proper function.

Proof. Denote by A the total area of the surface M. We do a very coarse esti-
mation using the maximal edge length [ : Tas v — R introduced in Example 9.4:

T
WT)= > h(A)= ur).
A
AeF(T)
So for ce R
MT)<c = T)<~/h(T)A = VcA,
and we know that [ is proper. O

We conclude that the edge-flip algorithm terminates after a finite number of
steps. We have therefore proven Theorem 9.12. But even more

Theorem 9.21. Let (M, d) be a piecewise flat surface without boundary, V. < M
a finite set of points that contains all conical singularities.

Let f : V. — R. For each triangulation T' € Tyr,v let fr : M — R be the piecewise
linear interpolation of f which is affine on the faces of T.

Then the minimum of the Dirichlet energy E(fr) = §,, |V fr|>dA among all
possible triangulations is attained on a Delaunay triangulation T,% € Tuyv of
(M,d):

min B(fr) = B(frg).

TeTm, v

9.4 Discrete Laplace-Beltrami operator

Let (M,d) be a piecewise flat surface without boundary, V' < M a finite set of
points that contains all conical singularities.

Let Tp be the Delaunay tessellation of M and TDA € Tu,v some Delaunay
triangulation of Tp. Recalling (8.12) we see that for an edge (ij) € E we have

V(’L]) =0 < aij—l—aji =T,

which is the case for circular quadrilaterals. So the edges in T’ DA coming from tri-
angulating circular polygons of the Delaunay tessellation Tp have zero weights.
The weights of edges on the boundary of circular polygons of Tp are independent
of the chosen triangulation as can be seen in Figure 9.20.

Figure 9.20. Cotan-weights of the Delaunay tessellation. (left) An edge coming
from triangulating circular polygons has zero cotan-weight. (right) The cotan-
weight of an edge on the boundary of a circular polygon does not depend on the
triangulation.
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So the cotan-weights are well-defined on the edges of the Delaunay tessellation.

Definition 9.8 (discrete Laplace-Beltrami operator). Let (M, d) be a piecewise
flat surface without boundary, V < M a finite set of points that contains all
conical singularities.

Let Tp be the Delaunay tessellation of M.

Then the discrete Laplace-Beltrami operator of (M, d) is defined by

AfG@) = Y v (f) — f(G)

e=(ij)eE(Tp)

for any function f:V — R.
The corresponding Dirichlet energy on (M, d) is defined by

E(f)=5 Y ve[fd)-fi),

e=(ij)eE(Tp)

where v are the cotan-weights as defined in (8.3) coming from any Delaunay
triangulation T4 € Tarv of Thp.

Remark 9.9.

» The sum can be taken over all edges of any Delaunay triangulation as we
have seen above.
The notion of neighboring vertices might differ from the one given by the
“extrinsic triangulation” of a polyhedral surface in RY. Also triangles of a
Delaunay triangulation are not necessarily planar in RY anymore.

ALY Wi &
VAT SN
A LKy
4 N/ TR,

b 42

Figure 9.21. Simplicial cat. (left) Triangulation coming from the simplicial
surface. (right) Delaunay triangulation (white and red edges).

\

\N\»{

» The Laplace-Beltrami operator is a well-defined property of the Delaunay
tessellation Tp which is uniquely determined by (M, d) and the vertex set
V. So we have defined a unique discrete Laplace-Beltrami operator of the
piecewise flat surface (M, d), which is determined by the polyhedral metric
only, i.e. invariant w.r.t. isometries.

» In Proposition 9.10 we have seen that all weights of the Delaunay triangu-
lation are non-negative. With above considerations we can now conclude
that all weights of the Delaunay tessellation are positive. So for the dis-
crete Laplace-Beltrami operator we can apply the results of the theory of
discrete Laplace operators with positive weights. We are assured to have the
maximum principle and unique minima of the Dirichlet energy.
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9.5 Simplicial minimal surfaces (II)

Having the discrete Laplace-Beltrami operator we can improve the definition of
simplicial minimal surfaces of Section 8.4.

Definition 9.9 (simplicial minimal surface). Let f : S — S < RY be a simpli-
cial surface and T its triangulation. Then

S minimal (in the wide sense) :« Af =0

S minimal (in the narrow sense) :< Af =0 and T is Delaunay,

where in both cases A is the discrete Laplace-Beltrami operator of S.
Remark 9.10.

» The Laplace-Beltrami operator coincides with the cotan-Laplace operator
only in the narrow definition. So only in this case the surface is actually a
critical point of the area functional.

» The Laplace-Beltrami operator has all positive weights. If f is harmonic the
maximum principle (Proposition 8.10) implies that any vertex point f(4) lies
in the convex hull of its neighbors:

(i) € conv{f(j) e R" | (ij) € E(Tp)},

where neighbors are determined by the Delaunay tessellation Tp of S.

Figure 9.22. (left) Simplicial surface which is minimal with respect to the def-
inition of Section 8.4. It violates the maximum principle. (right) Corresponding
minimal surface (in the narrow sense) with respect to Definition 9.9. It satis-
fies the maximum principle. By “corresponding” we mean that it is obtained by
applying Algorithm 9.23 to the left surface.

In the wide definition the neighbors satisfying the maximum principle might
be different from the ones given by the triangulation of S, where in the
narrow definition they coincide.
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This new definition leads to the following algorithm producing minimal sur-
faces in the narrow sense, if it converges.

Data: Simplicial surface f : S — S < RY with triangulation T.
Result: Simplicial minimal surface in the narrow sense.
while S is not minimal in the narrow sense do
Compute Delaunay triangulation 7' of S (use Algorithm 9.13);
Compute f such that ~
Ay f =0,

which defines a new simplicial surface S;
Replace S by the new surface S;
Replace T' by T:
end

Figure 9.23. Simplicial minimal surface algorithm (with intrinsic dis-
crete Laplace-Beltrami-operator and change of combinatorics).

Remark 9.11. The state of the algorithm is determined by the simplicial surface
S and its triangulation T
In each step of the while-loop we replace

(8,T) « (5,7,

where T is the Delaunay triangulation of S which might not be Delaunay any-
more for S.

Besides using the intrinsic Laplace-Beltrami operator the fundamental difference
to Algorithm 8.6 is the change of combinatorics in each step.
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Figure 9.24. Simplicial minimal surface from Algorithm 9.23.

\

\ ‘fﬁﬁyhf
T v

—Z

&"‘—,j Z— \

T

sl

A

i
\

2O

Figure 9.25. Using the intrinsic Laplace-Beltrami operator with and without
change of combinatorics. Starting with a random triangulation the change be-
comes particularly eminent. (left) Random start triangulation. (middle) Result of
Algorithm 9.23 without change of combinatorics. (right) Result of Algorithm 9.23
with change of combinatorics.
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Figure 9.26. Comparing intrinsic and extrinsic Laplace-Beltrami operator. We
start with a triangulation which is not suitable for the resulting minimal surface.
(top) Start triangulation. (bottom left) Result of applying Algorithm 8.6 for some
time. No convergence! (bottom right) Result of Algorithm 9.23.
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10 Line congruences over simplicial surfaces

[Wan+13] J. Wang et al. “Discrete Line Congruences for Shading and Light-
ing”. In: Proceedings of the Eleventh Eurographics/ACMSIGGRAPH
Symposium on Geometry Processing. SGP ’13. Genova, Italy: Eu-
rographics Association, 2013, pp. 53-62. DOI: 10.1111/cgf.12172.

We develop a curvature theory for simplicial surfaces based on a discrete
version of Steiner’s formula.

10.1 Smooth line congruences

A smooth line congruence L is a smooth 2-dimensional manifold of lines de-
scribed locally by lines I(u,v) which connect corresponding points a(u,v) and
b(u,v) of two parametrized surfaces. e(u,v) = b(u,v) — a(u,v) indicates the

Figure 10.1. Line congruence given by two parametrized surfaces.

direction of the line.
A wvolume parametrization of L is given by

x(u,v,\) = a(u,v) + Ae(u,v) = (1 = Na(u,v) + Ab(u,v)

A ruled surface R < L is described by two functions w(t), v(t) where the
parametrization is given by

(t,A) = @(u(t), v(t), A)

R is called developable if [e, e;,a:] = 0 or equivalently [e, b, ar] = 0, i.e. e, as, by
are coplanar where [, -, -] denotes the determinant. The corresponding equation
for u; and vy is

uf[eu,au,e] + UVt ([ey, Ay, €] + [ev, ay, €]) + U?[ev,au,e] =0 (10.1)

This quadratic equation has up to two solutions Z—z which are called torsal
directions.

10.1.1 Normal line congruences

A line congruence formed by the lines orthogonal to a surface is called normal
line congruence. e(u,v) can be chosen unit.

(u,v) — a(u,v) curvature line parametrization < e, || @y, €y || @y

The normals along a principal curvature line constitute a developable ruled
surface. Thus the normal line congruences always have torsal directions. These
directions are orthogonal and are called principal directions.

Remark 10.1. If 2(u, v, \) = a(u,v) + Ae(u,v) is a volume parametrization of a
normal line congruence, then any constant distance offset a? == a + de, e? == e
defines the same congruence x%(u, v, \) = x(u,v, A + d).
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Figure 10.2. A normal shift of a surface constitutes the same normal congruence.

A general line congruence
z(u, v, X) = a(u,v) + Ae(u,v)
might be a normal congruence of a yet unknown surface a* (u,v) with normal
vectors e(u,v). In order to find it we have to solve
a*(u,v) = a(u,v) + Mu,v)e(u,v)
for A(u,v). We restrict e(u,v) to |e] = 1. Then the orthogonality conditions
(e,aky ={e,a¥) = 0 are equivalent to

Au = _<au; 6>, )\’u = —<CL1,, €>

This equation has a solution if and only if A, = Ay, i.e.

(ay, n) =y, €u)-

10.2 Line congruences defined over simplicial surfaces

Let A and B be two combinatorically equivalent simplicial surfaces with vertices
{a;} and {b;}. Via linear interpolation the correspondence a; < b; defines
correspondences between faces a;ajai and b;b;b,. Connecting corresponding

Figure 10.3. Corresponding faces of two simplicial surfaces.

points we obtain a line congruence L. Its volume parametrization for one face
a;a;ay is given by
x(u, v, \) = a(u,v) + Ae(u,v) (10.2)

where

a(u,v) = a; + ua;j + vagg, e(u,v) = e; +ue;; + ve, (10.3)

€;, = bz — Q, (lij = aj — Qay, eij = €j —€;
and u, v, 1 —u—wv > 0.
One can compute the torsal directions using (10.1). Assume that torsal direc-
tions exist for all (u,v). Then they can be integrated starting from any point.
The corresponding integral curves are called torsal lines.

Proposition 10.1 (torsal lines on simplicial surfaces). Torsal lines on the linear
interpolated line congruence (10.2), (10.3) are straight lines within each face.

Proof. Let («, ) be a torsal direction at (ug,vp), i.e. the vectors as, e, e are
linear dependent at this point, where

(u,v)(t) = (ug,v0) + t(c, B). (10.4)

Computing the derivative using (10.3) on the line (10.4) we obtain that the
vectors

a0+ a;kp, €ij 0 + eixB, €+ €ijUp + €ikVo + t(eija + eirf) (10.5)

are linearly dependent for all ¢ if they are linearly dependent at the starting
point ¢ = 0. This implies that (10.4) is a torsal line. O
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Figure 10.4. Torsal directions are straight lines within each face. Parsing over
an edge from one triangle to another there are two torsal directions to continue.
One chooses the one with minimal deviation.

Corollary 10.2 (torsal planes on simplicial surfaces). The developable surfaces
in the linear interpolated line congruence (10.2), (10.3) corresponding to the
straight torsal lines within a face are contained in a plane (which we call torsal
plane).

10.2.1 Discrete normal congruences over simplicial surfaces

Let us interprete e : V(A) — R? as a generalized Gauss map of the simplicial
surface A with vertices a : V(A) — R3.

This notion is however too generel, the Gauss map is neither unit nor orthogonal.
To come closer to the smooth theory we introduce discrete normal congruences
that are more special and have additional nice properties.

Definition 10.1 (normal line congruence of a simplicial surface). A congruence
L defined by a piecewise-linear correspondence of two simplicial line congruences
A and B is called normal, if the torsal planes in the barycenter of corresponding
faces are orthogonal.

We project a;, b; to the plane O orthogonal to the line connecting the

barycenters. The resulting vertices are denoted by @;, b;, €; = b; — a;.

Figure 10.5. Two corresponding faces with the plane O orthogonal to the line
connecting the barycenters.

Proposition 10.3 (normal congruence from two simplicial surfaces). Two sim-
plicial surfaces A and B define a normal congruence if and only if for each pair
of corresponding faces we have

<Eij,5¢k> = <Eikygij>
where @;j = a; — G, Eij = Bj —b;. This is equivalent to
(@ij, €ix) = ik, €j) (10.6)

where €;; = €; — €. It is sufficient that it holds for at least one choice of
1#j#k.

Proof. Use the common image of barycenters as the origin of the coordinate
system. There is a linear map a which maps @; + b; (i = 1,2,3). The torsal
planes of the congruence intersect our auxiliary plane in the eigenspaces of «.
So orthogonality of the torsial planes means « is symmetric

(x,a(y)) = {a(x),y)

which is exactly what is stated. O
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10.2.2 Curvature via Steiner’s formula

We compare the areas not of corresponding faces A = ajasas and A’ = bbb
where b; = a; + te; but their projections to the plane O. The quotient for the
corresponding areas is

[Eijagik] . t[aij,éik] + [€ij, @ik 2 [€ij, €ir]
[@ij, @ik ] [@ij, Qik] [@ij,aij]

Definition 10.2. Let A and B be two simplicial surfaces, combinatorically

equivalent with vertices {a;}, {b;}, e; == b; — a;, defining a normal line congru-

ence, i.e. (10.6) is satisfied. Let O be the plane orthogonal to the line connecting

the barycenters of Aa;a;ar and Ab;b;by and eg == %(bz +b;+bi)— %(ai +a;+ag)

be a vector orthogonal to O.

Then the mean and Gaussian curvature at the face Aa;ajay are defined as
[eij7eik760] 1 [aij,eik,eo] + [eij7aik,eo]

K= ———a, H=—3 10.7
[aij, air, o] 2 [aij, aik, €o] (10.7)

Remark 10.2. [a,b] = [a,b, eq]

Principal curvatures k1, ko are defined through their symmetric functions
1
H = 5(:“&1 + Hg), K = k1Ko,

i.e. as reciprocal of the real zeros of the quadratic polynomial
1—2Ht + Kt = (1 — k1 t)(1 — kat).

For normal congruences these zeros are always real. It is easy to check that
the corresponding condition H? > K is equivalent to the existence of torsal
directions at the barycenter. The latter are defined as (orthogonal) prinicipal
directions.

Let (u,v) = a(u,v) be a smooth surface M in R? with the Gauss map e(u, v),
ie. el ay,ay, lef =1. Themap A : T,M — T, M of the tangent plane at p € M
to itself defined via da —?* —de is called the shape operator. In coordinates it
is given by a 2 x 2 symmetric matrix. Its eigenvectors and eigenvalues define
(orthogonal) principal directions and principal curvatures respectively.

In the setup of discrete normal congruences the shape operator is defined
exactly in the same way. It is a linear map A : O — O (of the plane O orthogonal
to ep) which maps the edges of a to the reversed corresponding edges of e:

A(Eij) = —€jj.

Proposition 10.4. FEigenvectors of the shape operator A indicate the (orthog-
onal) principal directions. The eigenvalues of A are the principal curvatures.

Proof. By construction
1

where a: O — O is the map from the proof of Proposition 10.3. The claim
about eigenvectors follows.
To prove the claim about the eigenvalues use the formulas

det(A(z), Aly)) A — det(A(z),y) + det(z, A(y))

det A =
° det(r,y) det(z, y) ’




10 LINE CONGRUENCES OVER SIMPLICIAL SURFACES 113

where x,y € R? is an arbitrary basis of R? and (z,y) is the matrix with colums
x and y. Substituting x = @;;, y = @, we obtain formulas (10.7) for

H= %trA, K =detA.

O

Remark 10.3. In computer graphics applications one usually starts with a line
congruence which is not far from normal. For example, one can take the normals
at vertices that are area weighted averages of face normals. One can improve
the corresponding line congruence making it “more normal” (or normal) by
optimization of e (and of a).
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11 Polyhedral surfaces with parallel Gauss map

[BS09] Alexander I. Bobenko and Yuri B. Suris. Discrete Differential Ge-
ometry: Integrable Structure. Vol. 98. Graduate Studies in Mathe-
matics. American Mathematical Society, 2009. 1SBN: 0-8218-4700-7.

We consider parallel polyhedral surfaces defined as discrete surfaces with
parallel corresponding edges. Polyhedral surfaces parallel to a given surface
build a vector space. Given two parallel surfaces f and f* , the formula f; =
tf*t + (1 —1t)f gives an interpolating family of parallel surfaces. The difference
surface n = f1 — f is also parallel to both f™ and f and the above-mentioned
one-parameter family of parallel surfaces can be seen as built from the surface
f and its “generalized Gauss map” n:

fi=f+tn, teR.

The surface f* is called an offset of f or Combescure transform of f.
A special case of polyhedral surfaces are Q-nets.

Definition 11.1 (Q-net and torsal line congruence). A @-net is a quad-surface
(i.e. a surface with quadrilateral faces) with planar faces.
A torsal line congruence is a map

1:V(D)—> L

of vertices of a quad-graph D to the space of lines such that each two lines
corresponding to an edge of D are coplanar.

A pair f: V(D) > R3 1: V(D) — L of a Q-net with a torsial line congru-
ence such that the lines pass through the corresponding vertices f (i) € I(¢) can
be interpreted as a quad-surface with a generalized Gauss map.

The above mentioned one-parameter family of parallel discrete surfaces can be
interpreted as a Q-net with a line congruence where the directions of the lines
are given by the generalized Gauss map n : V(D) — R3.

11.1 Polygons with parallel edges and mixed area

We start with a theory of polygons with parallel edges (recall that such polygons
build faces of parallel surfaces). Let

vi,...,vx € RPY = S1/{+1}

be a sequence of tangent directions of a k-gon P = (p1,...,pr) in a plane;
Pi+1 — pi || vi. Denote by P(v), v = (v1,...,vx), the space of k-gons with
edges parallel to vy,...,v,. The polygons are not supposed to be convex nor
embedded. They may have degenerated edges. P(v) is a k-dimensional vector
space. Factoring out translations (for example, normalizing p; = 0), we obtain
a (k — 2)-dimensional vector space P(v).

Let A(P) be the oriented area of the polygon P. The oriented area of a

k-gon with vertices p1,..., Pk, Prr1 = p1 is equal to
1 &
A(P) = D) Z[pupiﬂ],

i=1
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where [a,b] = det(a,b) is the area form in the plane. For a quadrilateral P =

(p1,p2,p3,ps) with oriented edges a = pa — p1, b = p3 — p2, ¢ = ps — p3,
d = p1 — p4, we have

A(P) — %([a,b] + (e, d)).

The oriented area A is a quadratic form on the vector space P(v). Its corre-
sponding bilinear symmetric form A(-,-) is of central importance for the follow-
ing theory.

Definition 11.2 (Mixed area). Let P and @ be two k-gons with parallel corre-
sponding (possibly degenerated) edges. Their mixed area is given by the bilinear
symmetric form

A(P.Q) = L(A(P + Q) ~ A(P) ~ AQ))

The area of a linear combination of two polygons is given by the quadratic
polynomial
A(P +tQ) = A(P) + 2tA(P, Q) + t*A(Q). (11.1)

We have a sort of scalar product A(:,-) on the space of polygons with parallel
edges.

We call the space P(v), v = (v1,v2,v3,v4) (and all the quadrilaterals in
this space) nondegenerate if every two of its consecutive tangent directions are
different, v;,1 # v;. The signature of the area form A : 75(1)) — R depends on
the quadruple v = (v1,v2,v3,v4) € (RP})* and can be also characterized in
terms of the quadrilaterals in P(v).

Theorem 11.1 (Signature of the area form). Let P(v), v = (v1,vo,vs,v4) be
a nondegenerate space of quadrilaterals with consecutive edges parallel to the
tangent directions vi, v, vs, vy € RPY = SU/{+T1}, and let P € P(v) be a
quadrilateral with nonvanishing edges. The area form A : P(v) — R is indefinite
(resp. definite) if and only if all vertices of P are extremal points of their convex
hull (resp. one of the vertices of P lies in the interior of the convex hull of the
other three vertices).

more cases: A = 0 and all concave vertices...
“proof” in caption

Figure 11.1. Left: The signature of the area form is indefinite; the vertices of
the polygons lie on the boundary of their convex hull. Right: The signature of
the area form is definite; for any quadrilateral of the family one vertex is in the
interior of the convex hull of the other three.

11.2 Curvatures of a polyhedral surface with parallel Gauss
map

Consider a polyhedral surface f equipped with a congruence of lines such that
every vertex has a line passing through it and the lines assigned to adjacent
vertices are coplanar. Our main example is a Q-net f: V(D) — R? with a
line congruence [ : V(D) — L such that f(u) € l(u) for all u € V(D). Let
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n: V(D) — R? be the corresponding generalized Gauss map. If [ is simply
connected, then the net n is determined up to a constant factor and is fixed as
soon as the length of the normal at one vertex is prescribed.

Theorem 11.2 (Parallel surface area). The area of the parallel surface f; =
f +tn obeys the law

A(fe) = Y(1 —2tHp + 2K p) A(f(P)),
P

where

A(f(P),(P)) - p _ A(P))
A(f(P)) 7 A(f(P))

Here the sum is taken over all (combinatorial) faces P, and f(P) and n(P) are
the corresponding faces of the surface f and its generalized Gauss map n.

Hp = — (11.2)

Proof. Since the corresponding faces and edges of discrete surfaces f and n are
parallel, the claim follows from formula (11.1). O

Having in mind Steiner’s formula, we come to the following natural definition
of the curvatures in the discrete case.

Definition 11.3 (Mean and Gaussian curvatures of polyhedral surfaces). Let
(f,n) be two parallel polyhedral surfaces. We consider n as the generalized
Gauss map of f. The functions Hp and Kp on the faces given by (11.2) are
the mean and the Gaussian curvature of the pair (f,n), i.e. of the polyhedral
surface f with respect to the Gauss map n.

Note that, as in the smooth case, the Gaussian curvature is defined as the
quotient of the areas of the Gauss image and of the original surface. Since for
a given polyhedral surface with a line congruence the map n is defined up to a
common factor, the curvatures at the faces are also defined up to multiplication
by a constant.

The principal curvatures k1, ko at the faces are naturally defined using the
formulas H = %(m +k9) and K = k1kq as the zeros of the quadratic polynomial

A(fe) = (1 —2tH + P K)A(f) = (1 — tk1)(1 — tra) A(f).

Definition 11.4 (Principal curvatures of Q-nets). Let (f,n) : V(D) — R? x R3
be a Q-net with a generalized Gauss map. Assume that the area forms A : P — R
are indefinite for all the faces f(P). Then the functions x1, k2 of (11.2) are real-
valued and are called the principal curvatures of the pair (f,n).

The results of the previous section imply that the principal curvatures exist
for quadrilateral faces with vertices on the boundary of the convex hull. In
particular, for a circular net, principal curvatures exist for any Gauss map.

11.3 Dual quadrilaterals

Investigating the minimal surface condition H = 0 in the case of quad-surfaces
with parallel Gauss-map leads us to the notion of dual quadrilaterals.
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Definition 11.5 (dual quadrilaterals). Two quadrilaterals P, @) with parallel
corresponding edges are called dual if their mixed area vanishes, i.e.

A(P,Q) = 0.
We write Q = P*.

Proposition 11.3 (Dual quadrilaterals via mixed area). Two quadrilaterals
P = (p1,p2,p3,04) and Q = (q1, g2, s, qs) with parallel corresponding edges are
dual if and only if their non-corresponding diagonals are parallel, i.e.

(p1p3) || (q2qs) and  (p2pa) || (q1g3)-

Proof. Denote the edges of the quadrilaterals P and Q as in Figure 11.2. Formula
(11.1) implies that the area of the quadrilateral P + ¢@Q is given by

A(P +1tQ) = ([a + ta™, b+ tb*] + [c + tc*,d + td*]).

Identifying the linear terms in ¢ and using the identity a +b+ c+d = 0, we get

Figure 11.2. Dual quadrilaterals.

4A(P, Q) = [a,b*] + [a*,b] + [c,d*] + [¢*, d]
=la+b,0*] + [a*,a + b] + [c+ d,d*] + [¢*,c + d]
= [a+b,b* —a* — d* + c*].

Vanishing of the last expression is equivalent to the parallelism of the non-
corresponding diagonals, (a + b) || (b* + ¢*). O

Remark 11.1. If two non-corresponding diagonals of two quadrilaterals with
parallel edges are parallel then the other non-corresponding diagonals are also
parallel.

Proposition 11.4 (Existence and uniqueness of the dual quadrilateral). For
any planar quadrilateral (A, B,C, D), a dual one exists and is unique up to
scaling and translation.

Remark 11.2. Let P be a non-degenerate vector space of quadrilaterals with
edges parallel, factorized by translations such that P = (A, B,C, D) € P.

Then dimP = 2 and A(-,-) defines a non-degenerate bilinear form on P. So
dim{P}+ = 1, i.e. there is P* € P with A(P, P*) = 0, unique up to scaling.
Despite this simple argument we proceed in a computational proof, since the
obtained formulas will be useful later.

Proof. Uniqueness of the form of the dual quadrilateral can be argued as follows.
Denote the intersection point of the diagonals of (A, B,C,D) by M = (AC) n
(BD). Take an arbitrary point M* in the plane as the designated intersection
point of the diagonals of the dual quadrilateral. Draw two lines [; and /5 through
M* parallel to (AC) and (BD), respectively, and choose an arbitrary point on
I to be A*. Then the rest of construction is unique: draw the line through
A* parallel to (AB); its intersection point with I; will be B*; draw the line
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through B* parallel to (BC); its intersection point with lo will be C*; draw the
line through C* parallel to (C'D); its intersection point with I; will be D*. Tt
remains to see that this construction closes, namely that the line through D*
parallel to (DA) intersects I at A*. Clearly, this property does not depend on
the initial choice of A* on [y, since this choice only affects the scaling of the dual
picture. Therefore, it is enough to demonstrate the closing property for some
choice of A*, or, in other words, to show the existence of one dual quadrilateral.
This can be done as follows.

Figure 11.3. Existence of the quadrilateral.

Denote by e; and e; some vectors along the diagonals, and introduce the
coefficients «, ..., 6 by

m:ael, MB):ﬁ@Q, Mif:fyel, Mﬁ:&ig,

so that
@:Beg—ael, B7=’yel—ﬂeg,
C'—D)=5egf’yel, m=a617562.
Construct a quadrilateral (A*, B*, C*, D*) by setting
T T T )

Its diagonals are parallel to the noncorresponding diagonals of the original
quadrilateral, by construction. The corresponding sides are parallel as well:

A*B* = —161 + l62 = iA—B),
B a ap

e 1 1 1
B*C = _562 + Bel = 7?,

By
11 1
C*D* = ——e1 + —eg = 7@,
) ~ 6
1 1 1
DA = ey s le = LR
o 0 oo
Thus, the quadrilateral (A*, B*, C*, D*) is dual to (A, B,C, D). O

11.4 Koenigs nets

For a quad-surface f : S — R with quad-graph S and planar faces there exists
a dual quad for every single quad of f, unique up to scaling and translation. Do
they constitute a surface?

We characterize locally dualizable quad-surfaces.

Definition 11.6 (Koenigs net). A quad-surface f : S — RY with planar faces
is called a discrete (local) Koenigs net if each vertex star of quadrilaterals admits
a dual vertex star of quadrilaterals, i.e. corresponding quads are dual.

Remark 11.3.
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» If S is simply-connected we can define a surface f* : S — RY such that all
corresponding quads of f and f* are dual. f* is called the Christoffel dual
of f.

» If S is not simply-connected the Christoffel dual f* can be defined on the
universal cover S of § such that all corresponding quads of f: S — RN and
f*:S - RY are dual.

Assume that the quad-graph S is bipartite (black and white vertices).
On each quad (A, B,C, D) we have an oriented black diagonal (connecting the
two black vertices), say AC. Denoting the intersection point of the diagonals
by M we introduce the quotient of oriented lengths

where [(-) is the oriented length on the line (AC') with any chosen orientation.*?

Note that
q (m)

(31¢)
We have introduced a multiplicative one-form

q:F)b—ﬂR

1(@1) - ) ().

on the black oriented diagonals and define it in the same way on the white
oriented diagonals
q: E)w — R.

Theorem 11.5 (Algebraic characterization of discrete Koenigs nets). A quad-
surface f:S — RN with planar faces is a discrete Koenigs net if and only if
the multiplicative one-forms q : E)b — R and q: E)w — R are closed, i.e. for
any elementary cycle v of oriented diagonals (black or white) surrounding one
vertex the product of all quantities q along this cycle is equal to one:

[Ja@=1

eey

Proof. Consider a vertex star of n quadrilaterals and suppose that there is exists
a corresponding piece of a dual surface.

For i = 1,...,n denote the oriented lengths of the diagonal segments of the i-th
quad by «;, 8;,7i,0; as depicted in Figure 11.4.

Figure 11.4. Closeness of the multiplicative one-form ¢ on a Koenigs net.

The dual quadrilaterals are uniquely determined up to scaling factors A1, ..., A,.
We recall from the proof of Proposition 11.4 that

O X} = As -0X;

a;;

40Note that the quotient of oriented lengths does not depend on the choice of the orientation
on the line.
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which comes from dualizing the i-th quad and

—=2 A —
O*X* = "L OX,
Qi+1Biv1
which comes from dualizing the (i + 1)-th quad, where all indices are to be take
modulo n.
So f Koenigs (locally around the given vertex) if and only if
Aiv1  Qip1Bit1

= 11.
i a;d; (11.3)

holds for alli =1,...,n
Suppose f is Koenings. Then for the product over all quadrilaterals we obtain.

n

=T -5 - e (Rx)

’L

Conversely suppose
n

[To(X¥iri) = ]ﬁ[g— = (11.4)
i=1

i=1
We fix A\ arbitrarily and define Ao, ..., A, by using (11.3) for i =1,...,n — 1.
Then (11.4) ensures that (11.3) holds cyclicaly, i.e. also for i = n. O

Remark 11.4. n = 3 neighboring quadrilaterals are Koenigs if

q(AB)q(BC)q(CA) =

Figure 11.5. Three neighboring quads with [[¢g = —1. Can they be dualized
together?

In a configuration like Figure 11.5 (convex non-overlapping quads) we can only

achieve
4(AB)q(BC)q(CA) = -1

In this case the vertex star can still be dualized considering a double covering.

Theorem 11.6 (Geometric characterization of Koenigs nets in terms of in-
tersection points of diagonals). Let f:S — RY be a quad-surface with planar
faces. For a vertex f denote its neighbors by fi,..., fn and the intersection
points of the diagonals by My, ..., M,. If fi,...,f, are in general position,
then f is Koenigs if and only if My, ..., M, lie in an (n— 2)-dimensional affine
subspace.

Proof. Generalized Menelaus theorem. O
Remark 11.5.

» We see that Koenigs nets belong to projective geometry, i.e. the property of
being Koenigs is preserved by projective transformations.

» n = 3 neighboring quads are Koenigs if M7, Ms, M3 are colinear.
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» n = 4 neighboring quads are Koenigs if My, My, M3, M, are coplanar.

» Note that for n points to be in general position the dimension of the ambient
space has to satisfy N > n — 1.
So for the standard case of S = Z2 we are fine with N = 3.

Theorem 11.7 (Geometric characterization of Koenigs nets in terms of ver-
tices). Let f: — RN be a quad-surface with planar faces and vertex-stars of
full dimension (i.e. fi— f,i=1,...,n are linear independent).

Then f is a discrete Koenigs net if and only if any vertex f and its n next-
neighbors f; i1 lie in a (n — 1)-dimensional affine subspace V.< RN, not con-
taining some (and then any) of the vertices fi1,..., fn.

Proof.
(=) Let f be Koenigs. Then

Ve=f+ Span{mu=1,...,n}=f+ Span{]Wﬂi:l,...,n}

is (n — 1)-dimensional as follows from Theorem 11.6.
Suppose f1 € V. Then f15 € V implies fo € V. So eventually f1,..., f, e V.
Since also f € V this contradicts that the vertex star has full dimension.

(<) Let V be (n — 1)-dimensional. The affine space W spanned by fi,..., f, is
also (n — 1)-dimensional. They both lie in the n-dimensional space spanned
by the vertex star. The intersection of two (n — 1)-dimensional spaces in a
n-dimensional space is generically (n — 2)-dimensional. So

M, eV W
lie in an (n — 2)-dimensional. So Theorem 11.6 implies that f is Koenigs.
O
Remark 11.6.

» Note that the restriction on the ambient dimension is even higher for this
characterization. We need n linear independent vectors, so N > n.
In the standard case of S = Z? this means N > 4.

» For the case of high valence and low ambient dimension one has to develop
special “projected” conditions.

Remark 11.7. One can generalize Koenigs nets f:Z? — RY to f:Z™ — RN
such that all Z2 sublattices are Koenigs to obtain a discrete intgrable system.

11.5 Minimal and CMC quad-surfaces with parallel Gauss-
map

For a pair (f,n) of a quad-surface f : S — RY with planar quads and parallel
Gauss map n : S — R”Y we had defined its mean and Gaussian curvature by

LA AU
E=am "= Agn




11 POLYHEDRAL SURFACES WITH PARALLEL GAUSS MAP 122

as functions on the faces.
We use this to define minimal and constant mean curvature surfaces by

(f,n) minimal 1= H =0
(f,n) CMC :< H = const.

and are now in a position two characterize these in the case of quad-surfaces.

Theorem 11.8. Let f: S — RN be a quad-surface with planar quads and par-
allel Gauss map n: S — RN . Then

(f,n) minimal < f Koenigs and n = f*
(f,n) CMC with H = Hy # 0 < f Koenigs and n = (f* — f)Hy

Proof. The statement about minimal surfaces follows immediately from our def-
initions.
Let Hy # 0. Then
H = Hy < A(f,n) + HoA(f. f)
< A(f,n+ Hof) =0
1
@A(f,f—kion)zo
1
* -
< ff=f+ Hon
<> n = Ho(f* - f)

O

Corollary 11.9. Let (f,n) be a quad-surface with planar quads and parallel
Gauss map and constant mean curvature Hy # 0.
Then the parallel surface f + H%,” is dual to f and the parallel surface f + ﬁn

has constant Gaussian curvature K = 4H{.

Proof. Tt only remains to show that the mid-surface f + ﬁn with Gauss map
n satisfies K = 4HZ = const.

A<f+2;10n> !

1 1

1 1 1

1 1 1
So 4
K= SO

A(f+ﬁn)
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We see that any discrete Koenigs net f can be extended to a minimal or to
a constant mean curvature Q-net by an appropriate choice of the Gauss map n.
Indeed,

(f,n) is minimal for n = f*;

(f,n) has constant mean curvature for n = f* — f.

However, n defined in such generality can lead us too far away from the smooth
theory. It is natural to look for additional requirements which bring it closer to
the Gauss map of a surface. In the smooth case, n is a map to the unit sphere.
The following three discrete versions of this fact are natural to consider:

(1) n is a polyhedral surface with all vertices on the unit sphere S?. This
implies that all faces of the Q-net n are circular. This condition holds also
for any parallel surface. In particular, f is also a circular net.

(2) n is a polyhedral surface with all faces touching the unit sphere S2. This
implies that for any vertex p there is a cone of revolution with the tip
p touching all faces of n incident to p. This property holds true for any
parallel surface. In particular, f is also a conical net.

(3) n is a polyhedral surface with all edges touching the unit sphere S?. Poly-
hedra with this property are called Koebe polyhedra. For any vertex p, all
edges incident to p lie on a cone of revolution with the tip p. Also this
property holds true for any parallel surface, in particular for f. Such nets
are called nets of Koebe type.

The implementation of these additional requirements into the theory makes
it more intriguing.

11.6 Koebe polyhedra

combinatorics — geometry

Theorem 11.10 (Strong Steinitz, existence of Koebe polyhedra). For every
strongly regular cell-decomposition (polytopal cell-decomposition) of the sphere,
there is a combinatorial equivalent polyhedron with edges tangent to a sphere.
This polyhedron is unique up to projective transformations that fix the sphere.
There is a simultaneous realization of the dual polyhedron such that correspond-
ing edges of the dual and the original polyhedron touch the sphere at the same
points and intersect orthogonally.

Figure 11.6. From combinatorics to a geometric realization of a Koebe polyhe-
dron

» Is the Koebe polyhedron dualizable?

Combining the Koebe polyhedron and its dual we obtain a quad-graph with
faces touching the sphere.
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Figure 11.7. Combining a Koebe polyhedron and its dual to obtain a quad-
graph.

The touching points are the intersection points of the diagonals. These
intersection points lie on circle, so in particular they are coplanar.
We obtain a quad-surface n which is conical and Koenigs. So the dual surface
f = n* is a discrete minimal surface of conical type.

11.6.1 Koebe polyhedra and circle patterns

A Koebe polyhedron constitutes a circle packing on the corresponding sphere.

Figure 11.8. Circle packing of a Koebe polyhedron.

Remark 11.8. We can map this circle pattern conformally to the plane by stere-
ographic projection (circles are mapped to circles while tangency is preserved).

Connecting the centers of touching circles by edges we obtain the tangency
graph % of the circle packing.

Figure 11.9. Tangency graph of a circle packing.

The circle packing of the dual Koebe polyhedron is orthogonal to the first
at intersection points.
Together we obtain an orthogonal circle pattern.

Theorem 11.11 (Strong Steinitz, circle pattern formulation). For any strongly
reqular cell-decomposition ¥ of S? there exists a pair of circle packings (or equiv-
alently an orthogonal circle pattern), such that ¥ is the tangency graph of the
first circle packing, the dual cell-decomposition is the tangency graph of the sec-
ond circle packing and the circles of both circle packings intersect orthogonally
in their common tangency points.

This pair of circle packings is unique up to Mdébius transformations.

For a circle packing with the tangency graph X being a triangulation there
always is an orthogonal circle pattern.
So it is unique up to Mobius transformation on its own.

Figure 11.10. Three touching circles. The circle through the touching point is
orthogonal to all three circles: Map one touching point to infinity by a Mdbius
transformation.

Theorem 11.12 (Strong Steinitz, triangulation). For any triangulation ¥ of
S? there is a circle packing such that ¥ is its tangency graph.
This circle packing is unique up to Mdébius transformations.
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Mapping an inner point of one of the circles on S? to infinity*! all the other
circles get mapped inside the image of this circle.
We obtain a circle packing inside a disc.

Figure 11.11. Circle pattern on S? — circle pattern in a disc.

Theorem 11.13 (Strong Steinitz, triangulation, disc version). For any trian-
gulation ¥ of the disc there is a circle packing in the unit disc D' such that
circles correspond to vertices, two circles touch if and only if the correspond-
ing vertices are adjacent and the circles corresponding to the boundary vertices

touch S' = 0D*.
This circle packing is unique up to Mébius transformations of D?.

410r applying a stereographic projection with north-pole in an inner point of a circle.
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12 Willmore energy

12.1 Smooth Willmore energy

Let M be a surface in R? without boundary. Its Willmore energy is defined to

be )
W(M) = 7f (k1 — Kg)?dA
4 M

where dA is the area element of M and k1, ko are the principal curvatures.
We list some important properties of the Willmore energy of a closed surface.

(i) W=0and W =0 < M is a sphere
(i) (k1 — K2)%dA is M&bius invariant.

(iii) (k1—k2)? = (k1+ko)—4K = k3 +Kk3—2K where K = kik2 is the Gaussian

curvature. Since the total Gaussian curvature §, KdA = 27y (M) is
a topological invariant for closed surfaces the following functionals are
equivalent.

JM(F” — rp)2dA ~ fM(m +i2)2dA ~ JM(F@ _ k2)dA

But the geometric meaning of minimizing each of them is different.
» §,,(k1 — K2)?dA ~ as round as possible
» §, (k1 + k2)?dA =4f, H?dA ~» as minimal as possible
» §,, (k1 — k3)dA ~ as planar as possible

(iv) Consider the Willmore energy W (r, R) of all tori of revolution with radii
0 < r < R. Then Willmore energy depends only on the quotient % and is

minimal if and only if § = /2. The resulting torus is called the Clifford
torus.

We are going to discretize the first two properties.

12.2 Discrete Willmore energy

Definition 12.1 (discrete Willmore energy). Let S be a simplicial surface in
R3. Then we define the discrete Willmore energy of S at the vertex v € V to be

W(v) = Z Ble) — 2w

where [(e) is the intersection angle of the circumcircles of the two triangles
adjacent to e as depicted in Figure 12.1.
If S is closed we define

W)= 3 N W) = Y fle) V]
veV eeE

Remark 12.1.

» Note that the triangles do not get unfolded and the angle 8 between the
circumcircle is measured in space.
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» The definition of the discrete Willmore energy is obviously Mobius invariant.

Figure 12.1. Intersection angle of circumcircles from the definition of discrete
Willmore energy.

Consider a vertex v € V of valence n with angles 1, ..., 8, between the adjacent
circumcircles. We want to investigate whether the sum of these angles > | §;
can be less than 2.

Consider a Mo6bius transformation that maps v — oo. Then the circumcircles
become lines outlining which constitute a (not necessarily planar) n-gon in R3
with exterior angles ;.42

Figure 12.2. Mapping the circumcircles around a vertex v to a (not necessarily
planar) polygon.

Lemma 12.1. Let P be a (not necessarily planar) n-gon in R® with exterior
angles P, ..., Bn. Choose any point P € R3 and connect it to all vertices of P.
Let aq, ..., a, be the angles of the triangles at the tip of the resulting pyramid.

Then . .
Z Bi = Z o
i=1 i=1

and the equality holds if and only if P is planar and convex and P lies inside of
P.

Figure 12.3. Pyramid with tip P build on top of a (not necessarily planar)
n-gon in R3.

Proof. For the enumeration of the angles aj,...,a, we refer to Figure 12.3
while introducing the additional angles 71, ...,v, and 1, ...,d, at the sides of
the pyramid. So for all ¢ we have a; + v; + §; = 7 from which we get

NgE

(’yz—l—é)—mr—ZaZ

i=1

.
I
—_

and §; + ;41 + Biy1 = 7 from which we get

i%—&-é —mr—Zﬁl

Together we obtain the desired inequality.

Additionally 6; + v;41 + 8i+1 = 7 if and only if the corresponding vertex star is
planar and the angles do not overlap. In the sum this means planarity and P
lying inside of P. O

42We note that if the circumcircles lie on a sphere we can choose the Mdbius transformation
in such a way that the resulting n-gon is planar and hence W (v) = 0.
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Corollary 12.2. At each vertex v € V the discrete Willmore energy satisfies
W(v) =0

Proof. Consider the corresponding n-gon P as obtained from a Md&bius trans-
formation.
If P is a planar, convex polygon, choose P inside P. We obtain

i ﬂz = i o; = 2
i=1 i=1

If P is non-planar, choose P in the convex hull of the vertices of P. Then we

have
n n
6> Ya <o
i=1 i=1

since the “pyramid” with tip P constitutes a vertex star of a polyhedral surface
with negative Gaussian curvature. O

Remark 12.2. So W(S) =0 <« W(v)=0forallveV.
We are now prepared to proof the discrete analog of property (i) of the
smooth Willmore energy.

Theorem 12.3. Let S be a closed simplicial surface. Then
W(S)=0

and equality holds if and only if S is a convex polyhedron inscribed in a sphere,
i.e. a Delaunay triangulation of S2.

Proof. From our previous considerations we immediately get

W(S) = % S W) =0
veV

So only the claim about the equality remains to show.

(<) Let S be a Delaunay triangulation of S2.
In particular each vertex star lies on a sphere. Then W(v) = 0 at every
vertex ve V.

(=) Let W(S) =0.
Then W (v) = 0 at every vertex v € V. So the star of each vertex v lies on a
sphere S, and is Delaunay.
Consider two adjacent vertices v; and vs. Then the corresponding spheres
Sy, and S, share two circles (the circumcircles of adjacent to the edge
(v1v2)) and therefore coincide.
So all spheres S, coincide and all edges are Delaunay.

Figure 12.4. If two neighboring vertex stars have W(vi) = W (v2) = 0 they lie
on the same sphere.

12.3 Inscribable and non-inscribable simplicial spheres



129

Part II1
Appendix

A The Heisenberg magnet model

We have seen the Heisenberg flow playing an important role in the characteri-
zation of elastica (in the smooth and in the discrete case, see Section 4).
The Heisenberg flow (3.4) as it acts on the tangent vectors

(}tT — (at,‘y)/ _ (7// x 7/)/ — "Y’” x ’Y’ — T/I X T (A.l)

is also obtained as the equation of motion in the continuous Heisenberg magnet
model also known as the continuous Heisenberg chain.

Although later seen to be a rather naive discretization the following discrete
model might motivate the continuous Heisenberg chain. Consider a system of
N classical spins Sy, = (S}, 52, 57) € S? on a (closed) chain, i.e. S:Zy — S?.
We introduce isotropic nearest neighbor interactions by defining the Hamilton
function

N
H(Sy, ..., 8n) = =7 > (S, Siv),
i=1
with interaction coefficient J # 0.3 So a configuration with many aligned
neighboring spins has low energy while a configuration with many anti-parallel
next neighbors has high energy. To make each spin behave like a magnetic
momentum we introduce an angular momentum-like Poisson structure by the

following relations:
{Sg, 87 = > 075,87
¥

for o, 8 = 1,2,3, 4,5 = 1,..., N, where 5?;5 and d;; are the Levi-Civita and
Kronecker symbols.
Let us compute the time flow of this Hamiltonian system.

0S¢ = {SP Hy = —J ) {SP, 87871}

7,8
With
{85,877} = {87, S7}S] 1y + 87 {S7, 8711}
= D (e*P6,;87 571 +e°76; 51157 SY)
>
we obtain
oSy = =7 ) e ST (S7y + 87y,
By
so for the spin vectors .S;
0rS; = {Sl,H} =JS; x (Si+1 + Si—l)- (AQ)

43Notice that we introduced periodic boundary conditions when setting N + 1 = 1.
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Uniformly refining the chain on the interval [0, N| while keeping the length
of the spins unit, the smooth limit is a continuous chain of spins S : [0, N] — S?
with periodicity S(z + N) = S(x).
Introducing appropriate scaling the smooth limit of the equations of motion
(A.2) is
oS =JS x 5", (A.3)

which is the Heisenberg flow as seen in (A.1) with J = —1. A corresponding
Hamilton function is

J (F , 2
HIS) =5 | [|$@)] dw,
0
with Poisson structure given by

{5%(2),8%(y)} = 2, 6(z — y)S (2),

where ¢ denotes the delta-distribution.
These all are smooth limits of the discrete equations above.
Indeed, let us start with the Hamilton function. Taking x = €i we get

(8i, Siv1) = (S(x),5(z +¢€))
= (S(2), S(r),8'(x) + 525" (x) + o(c?))
g %52<S(a§), S"(2)) + o(22).
From the orthogonality of S(z) and S'(z) we get
0= L5, 5w = |50 + (5. 5",
Altogether while replacing H by H + N we obtain**
H= gzsgz HS’(:E)||2 + o(e?)
B %EJ”S'(@HQ dx + o(e).

So we have to scale the Hamilton function by é upon taking the limit.
The scaling of the Hamilton function corresponds to replacing the equations of
motion (A.2) by

1
0eS; = {Si, 5H} = gsi X (Sit1+ Si-1).

So we get

2S(x) = gsm x (S +¢) + S(z — €))

_ gs(z) x (25(2) + €25 (z) + o(c?))

= JeS(x) x 8"(z) + o(e),

44 Already knowing the result we might get this immediately from observing

1 1
1—{8;,Sit1) = §<Si+1 —8i,8i11—Si) = §€2 HS,(QC)HQ + o(e?).
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which still needs rescaling to get a non-trivial limit. Since the Hamilton function
is already fixed this can be achieved by rescaling the time. Replacing t by et we
obtain (A.3).

The limit of the Poisson structure can be obtained similarly.

Remark A.1. The continuous Heisenberg chain is integrable, see e.g. [FT87].
In Proposition 3.2 we see that the discrete flow (A.2) does not commute with
the tangent flow which indicates that the naive discrete model we used to mo-
tivate the continuous Heisenberg chain might actually not be an appropriate
discretization rather than (3.14) which is discrete integrable.

With the notation from this chapter this is

Sk+1 Sk—1 )
0 Si = 2JSZ X + ,
' (1 + Sk+1,8k) 1+ {(Sk, Sk—1)

which is associated with the Hamilton function
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B Exercises

B.1 Curves and Curvature

Exercise B.1 (Planar curves). Let v : I — R? be a smooth regular curve.
Prove the following statements:

1. If ¢ : J — [ is a monotone increasing diffeomorphism, then the curve
4 = v o ¢ has curvature kK = Kk o .

2. Let (Tp, No) be the orthonormal frame of the arc-length parametrized
curve vy at tg. Then the curve can locally be written as a graph in the
following form:

1
’}/(to + ]’L) = V(to) + hTy + il‘i(to)hQNo + ’I"(h),

with limy,_o7(h)/h? = 0.

3. Consider the family of circles Cy, (A # 0) tangent to (the tangent of) the
curve vy at a point y(tg) given by

Cx = {z e R?| |z — (v(to) + ANo)|* = A},

where Nj is the normal to the curve at v(tg). Let k : I — R be the
curvature function of v and ¢y such that «’(tg) # 0. Show that for there
exists a neighborhood of ¥(to) in R? such that the circle Cy lies on one
side of the curve if and only if A # 1/k(to).

Exercise B.2 (Curvature of an ellipse). Consider an ellipse in R? given by the

,7,‘2

equation 5 + %—j = 1 with a,b > 0. Let [ be the line connecting the points (a,0)
and (0,b). Then the line through (a,b) perpendicular to [ intersects the z- and
the y-axis in the points P, and P,, respectively. Show that the curvature of the
ellipse at (a,0) is 1/(a — P,) and at (0,b) is 1/(b — P,), i.e. the P, and P, are

the centers of the osculating circles at (a,0) and (0, b), respectively.

(0,b)

z

)

/

Exercise B.3 (Oriented area of a bounded region). Let A be a simply connected
bounded region in R? with boundary curve v : [0, L] — R?. Show

L
area(A) = %L det(y(t),~'(t))dt.
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Exercise B.4 (Lagrange multipliers and calculus of variations). For plane
curves v consider the integral

AG) =5

5 J det(~y,~")ds.

50

1. Calculate the variation equation of A for variations 7; of an arclength
parametrized ~y.

2. Show %|t:0A(~yt) = 0 for all variations with fixed endpoints and fixed
length if and only if v has constant curvature x # 0.

Exercise B.5 (Hyperbolic geodesics in the halfplane model). For curves v :
[s0,81] = HZ = {(}!) : @2 > 0} consider the hyperbolic length:

. <% \/<7 v')ds.

Show for an arclength parametrized curve - that

51

Ly(y) =

d
—|t=0L =0
dt li=oLmr (7t)
for all variations 7; of v with fixed endpoints, if and only if
(v,ea)kN — (T, ea)T + e3 = 0.

Deduce that " = 0. (Hint: Scalar multiply the previous equation with N.)
Show further:

1. If kK = 0, then ~ lies on a vertical line.
2. If K # 0, then ~ is an arc of a circle with center on the ej-axis.

Exercise B.6 (Schwarzian derivative and reparametrization). Let v : I — C
be a plane curve.

1. Let ¢ : I — I be a diffeomorphism. Show
2
Syop = (Sy00) ¢~ + .

2. Show that S, is real if and only if v is a parametrization of a circle or a

line.
(Hint: What is the Schwarzian derivative for curves parametrized by ar-
clength? )

Exercise B.7 (Schwarzian derivative and Moebius transformations.). 1. Show

that if [c] : T — CP is a curve of the form c(s) = (%7 with ad —be = 1,
then S. = 0.

2. Show that if S, = 0 for a normalized lift ¢ of a curve [c] : I — CP!, then

c(s) = (ZSSIZ) with ad — be = 1.

Exercise B.8 (Discrete cycloid). Suppose a regular n-gon in R? rolls in one
direction on the z-axis. Let ... <t_; < tg <t; < ... be the sequence of times
when an edge of the polygon lies flat with one edge on the z-axis. A discrete
cycloid is a discrete curve 7 : Z — R2 such that 74 is the position of a particular
vertex at time £;.
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1. Find a formula for the discrete cycloids (preferably using complex num-
bers).

2. Draw a picture for n = 3,5, 6.
3. Are they regular discrete curves by the definition from the lecture?

Exercise B.9 (Evolute of the discrete cycloid). Now let n be odd and con-
sider the osculating edge circles defined in the lecture, i.e. circles touching three
consecutive edges. The discrete (edge) evolute is the curve consisting of these
centers.

1. Show that the discrete (edge) evolute of the discrete cycloid is a translate
of the original curve — another discrete cycloid. How do you deal with the
singular points?

This is a beautiful analog of the smooth fact that the evolute of a smooth cycloid
is a cycloid as well.

B.2 Flows on curves

Exercise B.10 (Conserved quantities of mKdV-Flow). Let v : [0,L] — C be a
closed curve parametrized by arclength with unit tangent vector 7" and normal
N.

Show that the mKdV-flow 4 = %/12T + k'N preserves the total squared

)

curvature 3 §; K7 (s)ds.
Exercise B.11.

1. Show that for I = [1,...,n] and I = Z,, the set C;® is open and dense in

(RM)™. In particular C;°® is a nN-dimensional sub-manifold.

Hint: Express the regularity condition in terms of a continuous map on (RN)™.

2. Show that ¢, is an N +n(N —1)-dimensional and C3'¢ an (n+1)(N —

1)-dimensional sub-manifold of (R™)".

3. How about C;***"“?

Exercise B.12 (Tangent flow). Which arc-length parametrized discrete curves
in the plane are just translated by the tangent flow? Which are rotated?
Which arc-length parametrized discrete curves in R? are translated by the

Heisenberg flow given by

0 Ty x Th—q

Zy=—EZ Tkl 9

or 1 +<Tk7Tk,1>
Exercise B.13 (Commuting flows). Consider the discrete Heisenberg and the
discrete tangent flow given by:

Ty x T and Oy Ty + Tk

Tk 2 Tkl = ——o Tkl
L+ (T, Ti—1) ' 1+ (T, Te—1)

Show that these flows commute, i.e.,

51% =

020tk = 0t0xVk,

where x and t are the flow parameters of the Heisenberg and the tangent flow
respectively.
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B.3 Elastica

Exercise B.14 (Equivalent functionals on discrete curves). For an arc-length
parametrized discrete curve 7 : {0,...,n} — R? let

n—1 2
K
Si(7) = D] log(1+ ),
=0

n—1

Sa(v) = D log(1 + (T, T;-1)),
i=0
n—1

S3(7y) = Z log |T; + T;—1],
i=0
where T = ;11— is the tangent vector and x; = 2tan £ (with ¢; the bending
angle at vertex «;) is the discrete curvature. Show that these functionals have
the same critical curves (regardless which variations are allowed).

Exercise B.15 (Discrete rods). A discrete rod can be characterize through the
property that evolves by an Fuclidean motion under a linear combination of
Heisenberg and tangent flow.

Write down the corresponding equation.

Exercise B.16 (Quaternionic calculations). Show that for p,q € H the conju-
gation and absolute value fulfill

pg=¢q-p and |pq| = |p||q|.

Let z,y € ImH =~ R3. Show

2 2
L oz = —|af = —[a]

2. (w,y) = —5(vy +yz)
3.z xy=3(ay —yx)
4 zllyerzy=yrx Ly ry=—yx.
Suppose v € ImH =~ R? and |v| = 1. Show that for s,t € R,
1. e = cost + (sint)v

9. etvesv = elt+s)v
3. Letv = velv = ety

where e? is defined (as usual) by the power series e? = > L ¢

Exercise B.17 (Flow of Euclidean motions). Let ®; be the flow induced by
the smooth time dependent vector field

olt,) = alt) x x + b(t)

on R3. This means that for each ¢, ®; is a map R3 — R3, ®; is the identity,

and for all z and ¢ J
pn Dy () = a(t) x D(z) + b(?).

Show that for each ¢, the map ®; is an Euclidean motion (i.e. ®; is an isometry
of R? with respect to the standard Euclidean scalar product).
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Exercise B.18 (Quaternions and M&bius Transformations). Sphere inversion:
Consider a sphere with center ¢ € R? and radius R > 0 given by

S.r={reR3||z—c| =R}
The inversion in S, maps z € R® U {00} to 2/ € R® U {0} such that:
» c— o and © — ¢,
» x and 2’ lie on the same ray emanating from ¢, and
>z —cffa’ —c] = R2.

The group of Mobius transformations of R? is generated by reflections in
hyperplanes and inversions in spheres. R3 may be identified with the imaginary
quaternions ImH.

1. Describe reflection in a hyperplane and inversion in a sphere using quater-
nions.

2. Let q1, 92, q3,q4 € ImH. The quaternionic cross ratio is defined as follows:

cr(q, 42,93, 94) = (1 — @2)(q2 — 3) (g3 — qu)(qs — q1) .

Show that the absolute value of the cross ratio is invariant with respect
to Mdbius transformations.

Exercise B.19 (Characterization of commuting rotations in R?). Show that
two rotations of R? (which fix the origin and are not the identity) commute if
and only if either their axes are the same or they are 180° rotations around
orthogonal axes.

B.4 Darboux transforms

Exercise B.20 (mKdV-Flow of the Darboux Transform of the straight line).
Consider the Darboux transform «(¢) = (¢ — 2tanh(¢), COSQW) of the straight

line given by ¢ — (¢,0).

1. Calculate the curvature  of .

2. Show that $k2T + K’'N =T — (}).
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3. Show that if (¢, s) is the curve evolving according to the mKdV-flow
4 = 1k*T + £'N with initial values v(0,s) = y(s), then

1
v(t,s) =v(s+t) — t(0>.
Deduce that v is an elastic curve.

Exercise B.21 (Tractrix). Consider a triangle A(A;42A43) in R?, and let Pja,
P»3, P3; be some points on the lines (A1As), (A243), (AsAy), different from
the vertices A; of the triangle. Denote by Q12 the intersection point of the line
(AlAQ) with (P23P31).

Show that

(A1, Pr2) [(Ag, Pa3) 1(As, Ps1)
[(Pi2,A2) (Pa3, A3) (P31, Ar)

= —cr(Aq, Pia, Az, Q12).

Exercise B.22 (Mébius Transformations). Let f: CP' — CP! be an orienta-
tion preserving Mobius transformation, i.e., a map of the form

az+b
cz+d

fz) =
with a,b,¢,d € C and ad — be # 0. Then the following are equivalent
» f maps the unit disc to the unit disc.
»a=dand b=_¢.

> (‘Z Z) € SU(1,1), the group of special unitary matrices for the Hermitian
scalar product C? x C? — C with signature (1,1)

(v, w) = Dywy — Towy for v,w e C2.

Exercise B.23 (Types of M&bius transformations). Let f : CP! — CP! with
fz) = % with a,b,c,d € C and ad — bc = 1 that maps the unit disc to the
unit disc. In how far do the fixed points of the Md&bius transformation depend
on the trace a + d of f?7 Show

1. If |a + d| = 2 then f is either the identity or has one fixed point on the
boundary of the disc (parabolic motion).
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2. If |a + d| > 2 then f has two fixed points on the boundary of the unit disc
(hyperbolic case).

3. If |a + d| < 2 then f has one fixed point outside and one inside the unit
disc (elliptic case).

Exercise B.24 (Darboux transformation and tractrix). Let v : I — R? be a
smooth curve. Show that the following two statements are equivalent:

1. %4 is a Darboux transform of ~.
2. 7 := 1(y+7) is a tractrix of 7.

Exercise B.25 (Darboux transforms). Let v : I — C and 4 : I — C be two
regular curves with |y — 4| = 2r > 0.

Show: # is a Darboux transform of v if 7T = S?, where T = v/|7|, T = %/|3/,
and S = (§ —v)/2r.

Exercise B.26 (Permutability: parallelogram case). Let v : I — C be a regular
curve and 1 = v + 2r1S; and 2 = v + 2reSs (51 # £52) be two Darboux
transforms of v at distance 2r; in direction S; and at distance 2ry in direction
So, respectively.

Show: 4 = v1 + 2r2S2 = 72 + 2r1.57 is a Darboux transform of v; and s if
and only if v has constant curvature. The curvature of + is

1 1
Ko = Hsm(al) = Esm(ag),

where a; and as are the angles between T'(¢g), and Sy (o) and S3(tg), respec-
tively. (v lies on a circle with radius 1/xg).

T .
71 — v
T
2r151 | \

T
27’252 2

Y Y2

T

Exercise B.27 (Darboux transforms and signed area). Let v : {0,...n} — R?
be a discrete planar curve and let p € R? be any point. The total signed area of

the triangles (p, vk, Ye+1) is
=
P §Zdet V=P Vwtr1—P)-

Suppose 7 is a Euclidean Darboux transform of v and both are closed discrete
curves. Show that A(p,~v) = A(p, 7).
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Exercise B.28 (Permutability of Darboux transforms). For z1,zo € C with
z1 # 22 and g € C\{0, 1} let

1 —(Z2 — 21)
Lzyzag = <_# 1 :

(22—21)
Show that
LZl,le,thLZ,Zl,qz = L22,212,Q2L2,22y¢h

if and only if

q2

cr(z, 21, 212, 22) = —,
q1
A _ (a=b)(c—=d)

where the cross ratio is defined by cr(a,b,c,d) = = (i=a) -
Exercise B.29 (Permutability theorem and circles). Consider seven points
z, 21, %2, 23, 212, 213, 223 in C such that z, z;, 25, 2z;; for i # j and {4, j} < {1,2,3}
lie on a circle. Show that the three circles through z;, 25, z;, with {3, j, k} =
{1, 2,3} intersect in one point.

Exercise B.30 (Closed Mébius Darboux transforms). Discuss closed Darboux
transforms 7 of a regular discrete curve « of period three with constant cross-
ratio ¢, i.e.,

(Ve Vet 1, Vo1, T) = G-
Is it possible to restrict to a equilateral triangle?

B.5 Abstract discrete surfaces

Exercise B.31 (Gluing a torus). It is easy to cut up a torus to get a quadri-
lateral with opposite edges identified (see figure below, left).

1. A torus can also be cut up so that one gets a hexagon with opposite edges
identified. How? (Draw a picture.)
Hint: The six vertices of the hexagon corrspond to how many vertices on the torus?

2. A genus 2 surface can be cut up so that one obtains an octagon with
opposite edges identified. How? (Draw a picture.)
Hint: Try to visualize how you get a genus 2 surface by glueing opposite sides of an
octagon. Start with the top and bottom edges, then glue the left and right edges.

Exercise B.32 (Strongly regular cell decompositions). A 3-dimensional convex
polytope is the bounded intersection of finitely many half-spaces or the convex
hull of finitely many points. If P is full dimensional, then it is a topological
3-ball and its boundary 0P is homeomorphic to a 2-sphere.
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1. Show that the vertices, edges, and 2-faces of (the boundary of) a convex
polytope P always determine a strongly regular cell decomposition of the
boundary of P.

2. Give an example of a discrete sphere, i.e., a discrete surface homeomorphic
to a 2-sphere, such that the corresponding cell decomposition is regular,
but not strongly regular.

B.6 Polyhedral surfaces and piecewise flat surfaces

Exercise B.33 (Discrete Gauss curvature). 1. Show that a convex polyhe-
dron has positive Gauss curvature at every vertex.

2. Give an example of a non-convex polyhedron with positive Gauss curva-
ture at every vertex to show that the converse is not true.

Exercise B.34 (Straight curves on a polyhedral surface). Let S be a polyhedral
surface with vertices V. For each point P € S\V, there is a neighbourhood which
is isometric to an open disc in R2. (For points in the interior of a 2-face this is
trivial, for points in the interior of an edge one just has to "unfold“ along the
edge). Let v be a curve in S\V. The curve « is called straight, if all images of
~ under the above described isometries are straight line segments.

1. Express in terms of angles how ~ crosses the edges of S.

2. Find a polyhedral surface S which contains two points P and @, such that
there are infinitely many straight lines between P and Q.

Exercise B.35 (Simplical faces and simple vertices of a convex polyhedron).
Show that every convex polyhedron has a triangle face or a vertex of degree 3 (or
both). Even stronger: Show that the number of triangle faces plus the number
of vertices of degree 3 is at least eight, so there are at least four triangle faces
or four vertices of degree 3.

Hint: Use Euler’s polyhedron formula and double counting of the edges.

Exercise B.36 (Normal shifts of smooth surfaces). Let f : R? 2 U — R3,
(x,y) — f(x,y) be a parametrized surface patch with Gauss map N : U — S2.
Suppose that f is parametrized by curvature lines. This means that

Oz N = —K1 0z f, OylN = —Ko 0y f,

where k1 and k9 are the principal curvature functions. Show that the parallel
surfaces

fo(z,y) = fz,y) + pN(z,y)
(with p € R small enough)

1. have the same Gauss map,
2. are also parametrized by curvature lines, and
3. their principal curvatures k1,, K2, satisfy

1 1
Rip Kj
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Exercise B.37 (Triangle inequality for face areas). Let P = R?® be a compact
convex 3—dimensional polyhedron with n faces Fi,..., F,. Show that

area(F}) < 2 area(F;).
i=2

Exercise B.38 (Minkowski’s theorem in dimension 2). Let v4,..., v, be pair-
wise different unit vectors in R? such that span{vi,...,v,} = R? and let
1,...,¢n € (0,+00) be such that >, ¢,z = 0. Show that there exists a
unique convex n—gon with edge lengths ci,...,c, and corresponding outward
unit normals vy, ..., .

Exercise B.39 (Minkowski’s formula for smooth surfaces). Let M < R3 be a
closed smooth surface, and let v be the field of outward unit normals to M.

Show that
f vdarea = 0.
M

(Hint: apply the divergence theorem to a constant vector field.)

Exercise B.40 (Monotonicity of the total mean curvature wrt edge lengths).
Let S(t) be a smooth family of compact convex 3—dimensional polyhedra with
the same combinatorics. Assume that the length of each edge is a monotone
increasing function in ¢. Show that

tl > tg = TM(S(tl)) > TM(S(tQ)),

where T'M is the total mean curvature. How can the assumption on the mono-
tonicity of edge lengths be modified in the case of non-convex polyhedral sur-
faces, so that the same conclusion holds?

B.7 Discrete cotan Laplace operator

Exercise B.41 (Geometric interpretation of cotan Laplacian). Let f : G — R?
be a planar simplical surface. Consider two triangles sharing the edge [z;, z;]
as shown in the picture below.

Give a geometric intepretation of the vector

1
§(cot a;j + cot ayi) (f(zi) — flxj)).
Hint: Consider circumcircle centers.

Exercise B.42 (Cotan Laplacian of planar immersions). Let f: G — R? be a
planar simplical surface. Show that the discrete Laplace operator

AN = > wllza])(f(@) - fla)))

edges [z,z;]
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(cot a5 +cot avj;) vanishes at internal vertices

with cotan weights w([z;, z;]) = %

of f (notation see above).

Exercise B.43 (Negative cotan—Laplace). Are there triangulations of a com-
pact polyhedral surfaces without boundary, such that all cotan-weights are neg-
ative?

Exercise B.44 (Area Gradient). Let S be a simplicial surface with an embed-
ding f: S — R". Consider a vertex = and the triangles 7; containing vertex x
labeled in cyclic order. Denote the edge opposite to x in T; by a;.

f(x)

Further let J; be the rotation in the plane containing 7T; by 5. Then the gradient
of the area functional A defined in the lecture is

n
Z Jias,
i=1

VA(z) =

DN | =

where a; = f(zi41) — f(x).

Exercise B.45 (Area minimal surfaces.). Consider the simplicial surface shown
in the picture below with coordinates:

D
P
C

S

Show that there exist positive u, v, h € R such that the surface is minimal with
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respect to the area functional.
Hint: It suffices to analyze the gradient of the area functional for suitable h. You may use

your favorite computer algebra tool for tedious computations.

B.8 Delaunay tessellations

Exercise B.46 (Delaunay edges I). Let ABD and DBC be two adjacent tri-
angles in the plane as in the figure below. Let o and v be the angles opposite
the common edge BD. Show that C lies outside the circumcircle of triangle
ABD if and only if cot a + coty > 0.

Exercise B.47 (Declaunay edges II). Are there triangulations of a compact
polyhedral surface without boundary, such that all edges of the triangulation
are not Delaunay edges?

Exercise B.48 (Delaunay edges III). Consider the Delaunay tesselation of the
vertices of a convex quadrilateral (1,2,3,4). Show that the diagonal (1,3) is
a Delaunay edge if and only if r1r3 < rory, where r; is the distance from the
vertex ¢ to the intersection point of diagonals.

2
%\
318 o 1
\V
4

Exercise B.49 (Delaunay-Voronoi quad tessellation). Consider a finite point
set in the plane and its Voronoi and the Delaunay tesselation. Show that both
are strongly regular cell decompositions.

Further consider the Delaunay-Voronoi quad tessellation, where the quad-
cells are defined by joining the corresponding edges of Voronoi (dotted) and
Delaunay (dashed) tesselation:
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Show that these quadrilaterals together with the edges and vertices define a
strongly regular cell decomposition.

Exercise B.50 (Edge flipping algorithm). Given a geodesic triangulation of
the vertices of a polyhedral surface, by flipping an edge one obtains another
geodesic triangulation with the same number of vertices, edges, and faces. Suc-
cesive flipping of non-Delaunay edges produces a Delaunay triangulation of the
polyhedral surface. Show that every non-Delaunay edge can be flipped. (Note
that on a polyhedral surface edges and/or vertices of adjacent triangles in a
geodesic triangulation may coincide.)

Exercise B.51 (Delaunay property). Consider the functional «(T") that assigns
to a triangulation 7' its minimal angle. Show that the Delaunay triangulation
maximizes this functional.

Exercise B.52 (Harmonic index). Show that equilateral triangles minimize the
harmonic index.

Exercise B.53 (Infinitely many triangulations). Give an example of a polyhe-
dral surface with infinitely many triangulations with the same combinatorics.

B.9 Line congruences over simplicial surfaces

Exercise B.54 (Torsal directions of line congruences). Consider two triangles
{a;} and {b;} for i = 1,2,3 in R3. Via linear interpolation on the two triangles
we obtain a line congruence £. Show that if torsal direction curves exist, they
are straight lines on each triangle, i.e., if you consider a line through a point
in the triangle in direction of a torsal direction, then the there exists a torsal
direction which is constant along this line.

b3

by

ba

as

ai
as



B EXERCISES 145

Exercise B.55 (Trivial line congruence). Consider two combinatorially equiv-
alent triangulated surfaces {a;} and {b;} and the line congruence £ obtained
by linear interpolation. Show that if all the edges of the mesh {a;} are torsal
directions, then all lines at the vertices of the congruence £ pass through one
point or are parallel.

Under which additional assumption on the meshes {a;} and {b;}, do all the
lines of the congruence L satisfy the above condition?

B.10 Polyhedral surfaces with parallel Gauss map

Exercise B.56 (Oriented area of a k-gon). Consider directions V' = {[v1], ..., [vi]}

in RP! and the corresponding (k — 2)-dimensional vector space P (V') of k-gons
with parallel edges factored by translation. Show that the oriented area

1 k
=3 Z det(pi, pit1),

for is a quadratic form on P(V).

Exercise B.57 (Area form of quadrilaterals). Consider the two dimensional
vector space of quadrilaterals P(V) with directions V' = {[v1],...,[v4]} in RP?,
such that [v;] # [V(;41) mod 4] for i =1,...,4. Let P e P(V) be a quadrilateral
with nonvanishing edges.

1. Show that cr([v1], [ve], [vs], [va]) < O if and only if one of the vertices of
P lies in the interior of the convex hull of the other three. Show further
that this is equivalent to the oriented area form A being definite (positive
or negative).

2. Show that cr([v1],[v2], [vs],[va]) > 0 if and only if the vertices of the
quadrilateral lie on the boundary of the convex hull of the vertices. Show
further that this is equivalent to the oriented area form A being indefinite.

Exercise B.58 (Area form of quadrilaterals). Show that the area form A : P(v)
is indefinite (resp. definite) if and only if the cross-ratio g(vq,vs,v3,v4) > 0
(resp. ¢ < 0).

Exercise B.59 (Area form of quadrilaterals). Show that if a crossed quadri-
lateral ABCD has signed area 0, then the diagonals AC' and BD are parallel.

Exercise B.60 (Dual quadrilaterals). Let @ and Q* be two quadrilaterals in
the complex plane C which is identified with R?. Denote the directed edges
of Q by a,b,c,d € C in cyclic order and assume that they are parallel to the
corresponding edges of Q*, so that a* = aa, b* = Bb, c* = ve¢, and d* = dd for
some «, 3,7,0 € R.

1. Show that (o —d)a+ (8 —0)b+ (v —d)c = 0 and calculate (6 — «)(a +b)
in terms of b and c.

2. Show that the two quadrilaterals are dual to each other if and only if
ay = fé.

—- R
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3. Deduce that two quadrilaterals with parallel edges are dual in C if their
complex cross-ratio

(21 — 22)(23 — 2a)
(22 — 23)(24 — 21)

CT(21722,23,Z4) =

with z; € C is the same.



References

[BIOS] Alexander I. Bobenko and Ivan Izmestiev. “Alexandrov’s theorem,
weighted Delaunay triangulations, and mixed volumes”. In: Annales
de UInstitut Fourier 58.2 (2008), pp. 447-505. DOI: 10.5802/aif .
2358.

[BSO7] Alexander I. Bobenko and Boris A. Springborn. “A Discrete Laplace-
Beltrami Operator for Simplicial Surfaces”. English. In: Discrete
and Computational Geometry 38.4 (2007), pp. 740-756. 1SSN: 0179-
5376. DOI: 10.1007/s00454-007-9006-1.

[FT87) Ludwig D. Faddeev and Leon A. Takhtajan. Hamiltonian Methods
in the Theory of Solitons. English. Springer Series in Soviet Mathe-
matics. Springer Berlin Heidelberg, 1987. ISBN: 978-3-540-69843-2.
DOI: 10.1007/978-3-540-69969-9.

[FW99] George K. Francis and Jeffrey R. Weeks. “Conway’s ZIP Proof”. In:
The American Mathematical Monthly 106.5 (May 1999), pp. 393
399. URL: http://www. jstor.org/stable/2589143.

[Hof08] Tim Hoffmann. Discrete Differential Geometry of Curves and Sur-
faces. Vol. 18. COE Lecture Note. Faculty of Mathematics, Kyushu
University, 2008.

[MS91] Howard Masur and John Smillie. “Hausdorff Dimension of Sets of
Nonergodic Measured Foliations”. In: Annals of Mathematics 134.3
(Nov. 1991), pp. 455-543. 1sSN: 0003-486X. DOI: 10.2307/2944356.

[PP93] Ulrich Pinkall and Konrad Polthier. “Computing discrete minimal
surfaces and their conjugates”. In: Experiment. Math. 2.1 (1993),
pp. 15-36. URL: http://projecteuclid.org/euclid.em/1062620735.

[Sec] Stefan Sechelmann. Homepage. URL: http://www.sechel.de.


https://doi.org/10.5802/aif.2358
https://doi.org/10.5802/aif.2358
https://doi.org/10.1007/s00454-007-9006-1
https://doi.org/10.1007/978-3-540-69969-9
http://www.jstor.org/stable/2589143
https://doi.org/10.2307/2944356
http://projecteuclid.org/euclid.em/1062620735
http://www.sechel.de

	Introduction
	I Discrete Curves
	Curves and curvature
	Basic definitions
	On the smooth limit
	Discrete curvature from osculating circles
	Vertex osculating circle
	Edge osculating circle
	Osculating circle for arc length parametrized curves


	Flows on curves
	Flows on smooth curves
	Local geometric flows
	Arc length preserving flows

	Flows on discrete arc length parametrized curves
	Tangent flow
	Heisenberg flow


	Elastica
	Smooth elastic curves
	Quaternions and Euclidean Motions
	Euclidean motions in R3

	Discrete elastic curves
	Moving frames and framed curves
	The Lagrange top

	Smooth elastic rods
	Discrete elastic rods

	Darboux transforms
	Smooth tractrix and Darboux transform
	Discrete Darboux transform
	Cross-ratio generalization and consistency
	Darboux transformation and tangent flow


	II Discrete Surfaces
	Abstract discrete surfaces
	Cell decompositions of surfaces
	Topological classification of compact surfaces

	Polyhedral surfaces and piecewise flat surfaces
	Curvature of smooth surfaces
	Steiner's formula

	Curvature of polyhedral surfaces
	Discrete Gaussian curvature
	Discrete mean curvature

	Polyhedral Metrics

	Discrete cotan Laplace operator
	Smooth Laplace operator in RN
	Laplace operator on graphs
	Dirichlet energy of piecewise affine functions
	Simplicial minimal surfaces (I)

	Delaunay tessellations
	Delaunay tessellations of the plane
	Delaunay tessellations from Voronoi tessellations
	Delaunay tessellations in terms of the empty disk property

	Delaunay tessellations of piecewise flat surfaces
	Delaunay tessellations from Voronoi tessellations
	Delaunay tessellations in terms of the empty disk property

	The edge-flip algorithm
	Dirichlet energy and edge-flips
	Harmonic index

	Discrete Laplace-Beltrami operator
	Simplicial minimal surfaces (II)

	Line congruences over simplicial surfaces
	Smooth line congruences
	Normal line congruences

	Line congruences defined over simplicial surfaces
	Discrete normal congruences over simplicial surfaces
	Curvature via Steiner's formula


	Polyhedral surfaces with parallel Gauss map
	Polygons with parallel edges and mixed area
	Curvatures of a polyhedral surface with parallel Gauss map
	Dual quadrilaterals
	Koenigs nets
	Minimal and CMC quad-surfaces with parallel Gauss-map
	Koebe polyhedra
	Koebe polyhedra and circle patterns


	Willmore energy
	Smooth Willmore energy
	Discrete Willmore energy
	Inscribable and non-inscribable simplicial spheres


	III Appendix
	The Heisenberg magnet model
	Exercises
	Curves and Curvature
	Flows on curves
	Elastica
	Darboux transforms
	Abstract discrete surfaces
	Polyhedral surfaces and piecewise flat surfaces
	Discrete cotan Laplace operator
	Delaunay tessellations
	Line congruences over simplicial surfaces
	Polyhedral surfaces with parallel Gauss map



