Technische Universität Berlin Berlin Institut für Mathematik Mathematical School Sullivan / Knöppel http://page.math.tu-berlin.de/~sullivan/L/11W/DG2/

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 8

(forms, exterior derivative, integration)

due 4.1.2012

Exercise 1

5 points

WS 11

Let $M = \mathbb{R}^3$. Determine which of the following forms are closed $(d\omega = 0)$ and which are exact ($\omega = d\theta$ for some θ):

- (a) $\omega = yz \, dx + xz \, dy + xy \, dz$,
- (b) $\omega = x \, dx + x^2 y^2 \, dy + yz \, dz$,
- (c) $\omega = 2xy^2 dx \wedge dy + z dy \wedge dz$.

If ω is exact, please write down the potential form θ explicitly.

Exercise 2

5 points

Let $\omega \in \Lambda^k(M)$ and $X_1, \ldots, X_{k+1} \in \mathfrak{X}(M)$. Show that

$$d\omega(X_1, \dots, X_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} X_i (\omega(X_1, \dots, \hat{X}_i, \dots, X_{k+1})) + \sum_{i < j} (-1)^{i+j} \omega([X_i, X_j], \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_{k+1})$$

(where the caret means that the term is omitted).

Exercise 2

Let b > a > 0. Denote by T^2 the torus in \mathbb{R}^3 obtained by rotating a circle of radius a in the xz-plane with center at (b, 0, 0) around the z-axis. Determine the volume form d vol corresponding to the induced metric with respect to suitable coordinates and use it to determine $vol(T^2)$.

5 points