TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik Sullivan / Knöppel http://page.math.tu-berlin.de/~sullivan/L/11W/DG2/ WS 11

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 7

(preparation for the test)

Exercise 1

Let real projective space \mathbb{RP}^n be the quotient of $\mathbb{R}^{n+1} \setminus \{0\}$ by the equivalence relation

$$(y_1,\ldots,y_{n+1})\sim (\lambda y_1,\ldots,\lambda y_{n+1}),$$

for any non-zero real number λ . Let $[y_1 : \cdots : y_{n+1}]$ denote the equivalence class of (y_1, \ldots, y_{n+1}) . Consider the maps

$$\phi_i \colon V_i := \{ [y_1 : \dots : y_i : \dots : y_{n+1}] \mid y_i \neq 0 \} \rightarrow \mathbb{R}^n, \ [y_1 : \dots : y_i : \dots : y_{n+1}] \mapsto rac{1}{y_i} (y_1, \dots, \hat{y_i}, \dots, y_{n+1})$$

for all i = 1, ..., n + 1. Show that the collection $(\phi_i, V_i)_{1 \le i \le n+1}$ defines a smooth structure on \mathbb{RP}^n . Is \mathbb{RP}^n compact? What happens if one replaces the real numbers by the complex numbers? What is the dimension of \mathbb{CP}^n ?

Exercise 2

Show that \mathbb{RP}^1 and \mathbb{S}^1 are diffeomorphic.

Exercise 3

Let A be a real symmetric $n \times n$ matrix and $b \neq 0$. Show that

$$M := \{ x \in \mathbb{R}^n \mid x^T A x = b \}$$

is an n-1 dimensional submanifold of \mathbb{R}^n . If all eigenvalues of A are greater zero then M is diffeomorphic to \mathbb{S}^n .

Exercise 4

Let $f: M \to N$ be an embedding with f(p) = q. Show

- i) $f^*: C^{\infty}(q) \to C^{\infty}(q)$ is onto,
- ii) $f_*: T_p M \to T_q M$ is injective.

Exercise 5

On \mathbb{R}^3 consider the vector fields

$$X := x_3 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_3}, \quad Y := x_1 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_1}, \quad Z := [X, Y].$$

Compute the coordinate expression of Z and describe (in words, geometrically) the flows of all three vector fields.

Exercise 6

Let X be a vector field on \mathbb{S}^2 , which is never tangent to the equator $\mathbb{S}^1 := \mathbb{S}^2 \bigcap (\mathbb{R}^2 \times \{0\})$. Show that the integral curves of X intersect the equator at most once.

Exercise 7

We consider functions P, Q defined on \mathbb{R}^4 and coordinates x, y, u, v. Let

 $\omega_1 := dx - Pdu + Qdv, \omega_2 := dy - Qdu - Pdv.$

Show that $\omega_1 = \omega_2 = 0$ defines a two-plane distribution. Determine the conditions on P and Q under which this distribution is completely integrable.

Exercise 7

Let $i: \mathbb{S}^3 \to \mathbb{R}^4$ denote the inclusion map

- i) Show that for every $p \in \mathbb{S}^3$ the kernel of the map $i^* \colon T_p^* \mathbb{R}^4 \to T_p^* \mathbb{S}^3$ equals $\lambda (x_1 dx_1 + x_2 dx_2 + x_3 dx_3 + x_4 dx_4), \lambda \in \mathbb{R}$.
- ii) Prove that the restriction $i^*\sigma$ of

$$\sigma = x_1 dx_2 - x_2 dx_1 + x_3 dx_4 - x_4 dx_3$$

to \mathbb{S}^3 is nowhere zero.