Technische Universität Berlin Berlin Institut für Mathematik Mathematical School Sullivan / Knöppel http://page.math.tu-berlin.de/~sullivan/L/11W/DG2/ WS 11

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 6

(Frobenius theorem, tangent covectors)

due 30.11.2011

5 points

Exercise 1

Denote by gl(n) the space of all $n \times n$ matrices. Let U_0 be an open subset of \mathbb{R}^2 , $(x_0, y_0) \in U_0$, $C \in gl(n)$, and $P, Q: U_0 \to gl(n)$ smooth maps. Then the the initial value proble

$$rac{\partial g}{\partial x}=gP, \quad rac{\partial g}{\partial y}=gQ, \quad g\left(x_{0},y_{0}
ight)=C$$

has a gl(n)-valued si od of (x_0, y_0) if and only if

$$P_y - Q_x = [P, Q] := PQ - QP.$$

(This is known as the Maurer–Cartan lemma.)

Exercise 2

On \mathbb{R}^3 we consider the 1-form $\omega := xdy + dz$. Show that

$$E^{2} = \{ X \in \mathbb{R}^{3} \mid \omega \left(X \right) = 0 \}$$

is a 2-dimsional distribution which is not involutive.

Exercise 3

Determine the subset of \mathbb{R}^2 on which $\sigma_1 = x_1 dx_1 + x_2 dx_2$, $\sigma_2 = x_2 dx_1 + x_1 dx_2$ are linearly independent and find a frame field dual to σ_1 , σ_2 over this set.

$$rac{\partial g}{\partial x}=gP, \quad rac{\partial g}{\partial y}=gQ, \quad g\left(x_{0},y_{0}
ight)=C$$

$$rac{g}{x}=gP, \quad rac{\partial g}{\partial y}=gQ, \quad g\left(x_{0},y_{0}
ight)=C$$

mooth solution
$$g$$
 in a neighborho

$$\operatorname{em}_{-}$$

5 points