Technische Universität Berlin Berlin Institut für Mathematik Mathematical School Sullivan / Knöppel http://page.math.tu-berlin.de/~sullivan/L/11W/DG2/ WS 11

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 5

(Lie bracket)

due 23.11.2011

5 points

Exercise 1

Let $X, Y \in \mathfrak{X}(\mathbb{R}^2)$ be given by

$$X = y rac{\partial}{\partial x}, \qquad Y = rac{\partial}{\partial y}.$$

Find the flow with infinitesimal generator X and use it to calculate $L_X Y$ from the definition. Compare with [X, Y] calculated directly. Do the same with the roles of X and Y exchanged.

Exercise 2

Suppose (U, ϕ) is a coordinate neighborhood on $M, X, Y \in \mathfrak{X}(M)$, and E_1, \ldots, E_n the corresponding coordinate frames. Note that $[E_i, E_j] = 0$ on U. If $X = \sum_i \alpha_i E_i$ and $Y = \sum_j \beta_j E_j$ on U, then show that

$$[X,Y] = \sum_{i,j} \left(\alpha_i \frac{\partial \beta_j}{\partial x_i} - \beta_i \frac{\partial \alpha_j}{\partial x_i} \right) E_j$$

on U.

Exercise 3

Show that $(L_X Y)_p$ depends on the fact that we use vector fields, i.e. if X, \tilde{X} agree at the point p but are not identical vector fields, then $(L_X Y)_p$ may differ from $(L_{\tilde{X}}Y)_p$.

$$X = y \frac{\partial}{\partial x}, \qquad Y = \frac{\partial}{\partial y}.$$

5 points

5 points