Technische Universität Berlin Berlin Institut für Mathematik School Sullivan / Knöppel http://page.math.tu-berlin.de/~sullivan/L/11W/DG2/

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 12

(geodesics, curvature forms)

due 1.2.2012

5 points

Exercise 1

Let the upper half plane be considered as a manifold covered by a single coordinate system $M = \{(x_1, x_2) \mid x_2 > 0\}$ with U = M and coordinates (x_1, x_2) . If $g_{ij}(x) = (x_2)^{-2} \delta_{ij}$, find Γ_{ij}^k and show that if suitably parametrized, the curves $x_1 = constant$ are geodesics.

Exercise 2

Show that two isometries $F_1, F_2: M \to M$ on a Riemannian manifold which agree at a point p and induce the same linear mapping from T_pM agree on a neighborhood of p.

Exercise 3

Define a connection on $M := \mathbb{R}^3$ by setting

$$\Gamma_{12}^3 = \Gamma_{23}^1 = \Gamma_{31}^2 = 1, \Gamma_{21}^3 = \Gamma_{32}^1 = \Gamma_{13}^2 = -1,$$

and all other Christoffel symbols to zero. Show that this connection is compatible with the Euclidean metric, but it is not symmetric. Compute the connection 1-forms ω_i^j and curvature 2-forms Ω_i^j with respect to the canonical orthonormal basis.

5 points

5 points

Mathematical WS 11