TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik Sullivan / Knöppel http://page.math.tu-berlin.de/~sullivan/L/11W/DG2/ WS 11

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 11

(curvature, geodesics)

due 25.1.2012

Exercise 1

5 points

For $k \in \mathbb{R}$, let $M_k := \{p \in \mathbb{R}^2 \mid 1 + k|p|^2 > 0\}$. Define a Riemannian metric on M_k by $g_k(p) := 4 (1 + k|p|^2)^{-2} g_0$, where g_0 denotes the canonical metric on \mathbb{R}^2 . Show that the sectional curvature on $(M_k; g_k)$ is constant and equal to k. Are these manifolds isometric to each other?

Exercise 2

Show that for any orthonormal basis F_1, \ldots, F_n at $p \in M$, the value of $S(X_p, Y_p) := \sum_{i=1}^n R(F_{ip}, X_p, Y_p, F_{ip})$ is independent of the choice of the orthonormal basis and that this formula defines a C^{∞} -tensor field S(X, Y). Verify that S(X, Y) = S(Y, X).

Exercise 3

5 points

5 points

Let $M := \{(x, y, z) \mid x^2 + y^2 = 1\} \subset \mathbb{R}^3$ with induced metric. Show that the geodesics on M are curves which have constant angle with the z-axis (i.e. helices, circles and straight lines). Find how many geodesics connect two given points p and q.