Exercise Sheet 1
Due in tutorials on 27 October 2010

Exercise 1:
On any set \(X \) we can define the cofinite topology as follows. \(C \subset X \) is closed if and only if \(C = X \) or \(C \) is finite. Prove that this topology is well defined. Is \(X \) with this topology Hausdorff?

Exercise 2:
Let \(f : X \rightarrow Y \) be a continuous map between topological spaces. Prove that if \(X \) is compact, then \(f(X) \) is compact.

Exercise 3:
Give \(\{0, 1\} \) the discrete topology. On the product space \(X := \mathbb{R} \times \{0, 1\} \) we define the following relation:
\[
(x, a) \sim (y, b) \iff (x, a) = (y, b) \text{ or } x = y < 0
\]
Prove that \(X/\sim \) is the union of two open sets homeomorphic to \(\mathbb{R} \). Is it Hausdorff? (Motivate your answer.)

Exercise 4:
Let \(f : X \rightarrow Y \) be a map between topological spaces.
We say that \(f \) is open if for every open set \(U \subset X \), \(f(U) \) is open in \(Y \).
Similarly, \(f \) is closed if for every closed set \(V \subset X \), \(f(V) \) is closed in \(Y \).
For a continuous bijection \(f : X \rightarrow Y \), prove that the following conditions are equivalent:

1. \(f \) is a homeomorphism
2. \(f \) is open
3. \(f \) is closed