 WWW:
 Course information is online at
www.math.tuberlin.de/~sullivan/L/10W/DG2/
 Course work:
 weekly homework assignments,
one written test, oral final exam
 Textbooks:
 Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd Ed, Academic Press
Bröcker and Jänich, Intro to Differential Topology / Einführung in die Differentialtopologie, CUP / Springer
Kühnel, Differential Geometry / Differentialgeometrie, AMS / Vieweg
Warner, Foundations of Differentiable Manifolds and Lie Groups, GTM 94, Springer
Morgan, Riemannian Geometry: A
Beginner's Guide, 2nd Ed, A K Peters
Bishop and Goldberg, Tensor Analysis on Manifolds, Dover
Milnor, Topology from the Differentiable Viewpoint, U P Virginia
Spivak, Calculus on Manifolds, Benjamin/Cummings
Sharpe, Differential Geometry, GTM 166, Springer
 Outline:
 This is a first course in manifolds and global analysis, which will
present the basic tools for those interested in, or curious about,
differential geometry or global analysis, or those who want to apply
differentiial geometric methods in other areas such as PDE, topology,
mathematical physics, and dynamical systems.
The course will cover the following topics:
 Manifolds:
 Differentiable manifolds, implicit function
theorem, rank theorem, tangent spaces, tangent bundles, vector bundles.
 Calculus on manifolds:
 Vector fields, flows, Lie bracket,
Lie derivatives, Frobenius theorem.
 Differential forms:
 Differential forms, exterior calculus,
orientability, Poincaré lemma, deRham complex.
 Integration theory:
 Stokes' theorem.
 Riemannian geometry:
 Riemannian metrics, distance, first
variation and geodesics, Riemannian connection, curvature, connections
on vector bundles.
