Exercise 1: Area of convex planar polygons. (6 pts)

Let \(p = (p_1, ..., p_n = p_0) \) be a convex planar polygon. Let \(\phi_i \) be the turning angle at \(p_i \) and let \(\ell_i = |p_{i+1} - p_i| \) be length of the \(i \)-th edge.

In lecture, we discussed an analog of the Heintze-Karcher inequality for \(p \): in terms of the curvature density \(\kappa_i \) along the \(i \)-th edge defined as \(\frac{\tan(\phi_i/2) + \tan(\phi_{i+1}/2)}{\ell_i} \), we bounded the area enclosed by \(p \) as follows:

\[
\text{Area}(p) \leq \sum_{i=0}^{n-1} \ell_i / \kappa_i.
\]

Show that we have equality here if and only if \(p \) has an inscribed circle (tangent to each of the \(n \) edges).

(Hint: the medial axis (or cut locus) of \(p \) is always a tree with \(n \) “leaf edges” along the angle bisectors at the vertices \(p_i \). Our estimate is sharp if and only if this tree has no internal edges, i.e. just one internal vertex.)

Exercise 2: Gauss curvature of one quarter of the unit ball. (6 pts)

Consider the set \(\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1, x \geq 0, y \geq 0\} \subset \mathbb{R}^3 \), which is one quarter of the unit ball. Find the Gauss curvature of its piecewise smooth boundary.

Exercise 3: Gauss curvature of a polyhedron. (6 pts)

Let \(v \) be a vertex of a regular icosahedron. Its five neighbors form a regular pentagon in a plane \(P \). Now reflect \(v \) (and the five incident triangles) across \(P \) to get a new (nonconvex) polyhedron (an “icosahedron with a dimple”).

1. What is the total Gauss curvature?
2. What is the total absolute Gauss curvature?

Due: Tutorial on 24.06.10