TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan **Geometry II** Dott. Matteo Petrera http://www.math.tu-berlin.de/~sullivan/L/10S/Geo2/

Exercise Sheet 3

Exercise 1: Curves of finite total curvature in \mathbb{R}^3 .

Find an explicit example of a curve of finite total curvature in \mathbb{R}^3 whose projection to the xy-plane has infinite total curvature. In particular, find a sequence of points $p_k =$ (x_k, y_k, z_k) approaching $p_0 = (0, 0, 0)$ such that the "infinite polygon" $p_1, p_2, ..., p_0$ has finite total curvature but its projection does not.

Exercise 2: Cauchy-Crofton formula.

1. For k < d prove the following analog of the *Cauchy-Crofton formula*:

There is some constant c_k^d such that given any curve γ in \mathbb{R}^d , its length is c_k^d times the average length of its projections to k-planes.

2. Find c_1^3 and c_2^3 .

(Note: for j < k < d we have $c_j^d = c_j^k c_k^d$, by projecting a curve in \mathbb{R}^d first to a k-plane and then to a *j*-plane.)

Exercise 3: Closed convex curve with constant width. (2 pts)

Let γ be a closed convex curve of constant width d. Prove that the length of γ is πd , just as for a circle.

(4 pts)

(4 pts)

SS 10