Exercise Sheet 3

Exercise 1: Curves of finite total curvature in \mathbb{R}^3. (4 pts)

Find an explicit example of a curve of finite total curvature in \mathbb{R}^3 whose projection to the xy-plane has infinite total curvature. In particular, find a sequence of points $p_k = (x_k, y_k, z_k)$ approaching $p_0 = (0, 0, 0)$ such that the “infinite polygon” p_1, p_2, \ldots, p_0 has finite total curvature but its projection does not.

Exercise 2: Cauchy-Crofton formula. (4 pts)

1. For $k < d$ prove the following analog of the Cauchy-Crofton formula:

 There is some constant c_k^d such that given any curve γ in \mathbb{R}^d, its length is c_k^d times the average length of its projections to k-planes.

2. Find c_1^3 and c_2^3.

(Note: for $j < k < d$ we have $c_j^d = c_j^k c_k^d$, by projecting a curve in \mathbb{R}^d first to a k-plane and then to a j-plane.)

Exercise 3: Closed convex curve with constant width. (2 pts)

Let γ be a closed convex curve of constant width d. Prove that the length of γ is πd, just as for a circle.

Due: Tutorial on 11.05.10