TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan **Geometry II** SS 09/10 Dott. Matteo Petrera http://www.math.tu-berlin.de/~sullivan/L/10S/Geo2/

Exercise Sheet 1

Exercise 1: Functions of bounded variation.

Let $f: [0,1] \to \mathbb{R}$ be a bounded real function. Give examples of functions f which are:

- 1. continuous but not of bounded variation (BV);
- 2. BV but not continuous;
- 3. regulated but neither BV nor continuous.

Exercise 2: The Schwarz lantern. Consider the unit cylinder $C := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, 0 \le z \le 1\} \subset \mathbb{R}^3$ of surface area 2π . The Schwarz lantern is an inscribed polyhedron, say $C_{m,n}$, depending on parameters m, n. We take m(n+1) vertices, a regular m-gon at each height k/n, but staggered so that the vertices at even levels are at angles $2\pi j/m$ while those at odd levels are at angles $\pi(2j+1)/m$. The polyhedron $C_{m,n}$ is built of 2mn congruent isosceles triangles.

- 1. Find the area of $C_{m,n}$ as a function of m, n;
- 2. Show that any limiting area greater than or equal to 2π can be achieved in some limit of $m, n \to \infty$.
- 3. Show that if the shapes of the triangles are bounded (say, if the angles are never smaller than some $\epsilon > 0$) as $m, n \to \infty$, then the area converges to 2π .

Due: Tutorial on 29.04.10

(6 pts)

(6 pts)