TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan **Geometry I** Dott. Matteo Petrera WS 09/10 http://www.math.tu-berlin.de/~sullivan/L/09W/Geo1/

Exercise Sheet 3

Exercise 1: Hyperbolic circles.

Define the circle of radius r around point $c \in \mathbb{H}^2$ as

$$C_r(c) := \{ x \subset \mathbb{H}^2 \mid d(c, x) = r \},\$$

where $d(\cdot, \cdot)$ denotes the hyperbolic distance. Find the length of $C_r(c)$. (Hint: It is enough to consider circles with center (0, 0, 1). Why?)

Exercise 2: Orthogonal lines.

Let l_1 and l_2 be hyperbolic lines with unit normals n_1 and n_2 . Show that there exists a unique hyperbolic line l_3 such that $l_1 \perp l_3$ and $l_2 \perp l_3$ if and only if $|\langle n_1, n_2 \rangle| > 1$.

Exercise 3: Hyperbolic triangles.

Consider an hyperbolic triangle with sidelengths a, b, c and interior angles α, β, γ .

1. Prove the hyperbolic angle cosine theorem:

$$\cosh a = \frac{\cos \alpha + \cos \beta \cos \gamma}{\sin \beta \sin \gamma}.$$

2. Assume that $\gamma = \pi/2$. Prove the following formulas:

 $\cosh c = \cosh a \cosh b,$ (Pythagorean theorem) $\sin \alpha = \frac{\sinh a}{\sinh c}.$

Exercise 4: Scalar products.

- 1. Let $Mat_{m \times n}(\mathbb{R})$ be the space of $m \times n$ real matrices. By using the isomorphism $\operatorname{Mat}_{m \times n}(\mathbb{R}) \simeq \mathbb{R}^{mn}$ prove that the Euclidean scalar product on \mathbb{R}^{mn} induces a scalar product on $\operatorname{Mat}_{m \times n}(\mathbb{R})$ given by $\langle A, B \rangle = \operatorname{trace}(A^T B), A, B \in \operatorname{Mat}_{m \times n}(\mathbb{R}).$ Prove that $||AB||_{m,m} \leq ||A||_{m,n} ||B||_{n,m}$, where $||\cdot||_{m,n}$ is the norm induced by this scalar product on $Mat_{m \times n}(\mathbb{R})$.
- 2. Let ρ_P : Mat_{$n \times n$}(\mathbb{R}) \to Mat_{$n \times n$}(\mathbb{R}) be the transformation defined by $\rho_P(A) =$ PAP^{-1} , with $A \in Mat_{n \times n}(\mathbb{R})$ and $P \in O(n)$ (ρ_P is called *conjugation* by P). Prove that ρ_P is an isometry of $Mat_{n \times n}(\mathbb{R})$ with respect to the scalar product $\langle A, B \rangle =$ trace $(A^T B)$ from part 1.

(4 pts)

(4 pts)

(4 pts)

(6 pts)