1 Aufgabe

Let \(M = \mathbb{R}^2 \) and \(\theta : \mathbb{R} \times M \to M \) be given by the formula
\[
\theta_t(x, y) = (x \cos t + y \sin t, -x \sin t + y \cos t).
\]

- Show that \(\theta \) is a globally defined action of \(\mathbb{R} \) on \(M \).
- Describe \(X \), the associated infinitesimal generator.
- Describe the orbits.
- Show explicitly that \(X \) is invariant with respect to \(\theta \), i.e., that \(\theta_t^*(X_{(x,y)}) = X_{\theta_t(x,y)} \).

2 Aufgabe

Let \(M = \mathbb{R}^2 \), the \(x, y \) plane, and \(X = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} \). Find the corresponding domain \(W \) and the local one-parameter action \(\theta : W \to M \).

3 Aufgabe

Consider the vector field \(X := x^2 \frac{\partial}{\partial x} \) on \(M := \mathbb{R} \). Find the local associated flow \(\theta \) and describe its domain \(W \).

4 Aufgabe

Let \(M = GL(2, \mathbb{R}) \) and define an action of \(\mathbb{R} \) on \(M \) by the formula
\[
\theta_t(A) := \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \cdot A, \quad A \in GL(2, \mathbb{R}),
\]
with the dot denoting matrix multiplication. Find the infinitesimal generator.