Differentialgeometrie II Übungsblatt 1

October 24, 2008

Warning: "coordinate neighbourhood","coordinate system", "(local) chart" are synonymous. I might switch from one terminology to the other - that will have no particular significance.

1 S^1

As a first example of a smooth (1-dimensional) manifold, let's consider the circle. Let $S^1 \subset \mathbb{R}^2$ the set of points $\{(x, y)\}$ of the cartesian plane satisfying $x^2 + y^2 = 1$.

Choose a generic point $P = (x, y) \in S^1$ with $P \neq (0, 1)$. Draw a straight line intersecting (0, 1) and P. This line will intersect the X-axis at the point $(\frac{x}{1-y}, 0)$.

Let's define the map $\psi_+ : U_+ \to \mathbb{R}$ as $\psi_+(x,y) = \frac{x}{1-y}$, where $U_+ = S^1 \setminus \{(0,1)\}.$

The inverse $\psi_+^{-1} : \mathbb{R} \to U_+$ is given by the expression $\psi_+^{-1}(X) = (\frac{2X}{1+X^2}, \frac{-1+X^2}{1+X^2})$, with $X \in \mathbb{R}$. Thus U_+ and \mathbb{R} are isomorphic (as sets).

Furthermore both ψ_+ and ψ_+^{-1} are easily seen to be continuous (usual topology for \mathbb{R} and induced topology for S^1 as a subset of \mathbb{R}^2).

Thus ψ_+ establishes a homeomorphism between U_+ and \mathbb{R} , making the pair (U_+, ψ_+) a candidate for a coordinate neighbourhood.

Now consider the map $\sigma: S^1 \to S^1$ defined by $\sigma(x, y) = (-x, -y)$, which is a homeomorphism of the circle into itself.

Define $\psi_-: U_- \to \mathbb{R}$ as $\psi_- = \psi_+ \circ \sigma$, where $U_- = \sigma(U_+) = S^1 \setminus \{(0, -1)\}$. $\psi_-(x, y) = \frac{-x}{1+y}$.

The pair (U_-, ψ_-) is a candidate for a second coordinate neighbourhood. Notice that $U_+ \cup U_- = S^1$, so these two charts (if proven to be compatible) would be enough for establishing a smooth manifold structure on S^1 .

Consider the composite $\psi_{-} \circ \psi_{+}^{-1} : \mathbb{R} \setminus 0 \to \mathbb{R} \setminus 0$. Notice that $0 \in \mathbb{R}$ is out of the domain of definition, as ψ_{+}^{-1} sends 0 to (0, -1), and this is out of the domain of definition of ψ_{-} .

Composing the expressions for the two functions (or by easy geometric considerations) one finds that $\psi_{-} \circ \psi_{+}^{-1}(X) = -\frac{1}{X}$. This function (which is also its inverse) is easily seen to be smooth (remember that 0 is neither in the domain of definition nor in the image of the map).

Thus the two coordinate neighbourhood $(U_+, \psi_+), (U_-, \psi_-)$ define on S^1 a structure of C^{∞} (i.e., smooth) 1-dimensional manifold.

2 S^n

We can apply the same procedure for the n-sphere $S^n \subset \mathbb{R}^{n+1}$ with coordinate neighbourhoods $(U_+, \psi_+), (U_n, \psi_n)$, where now $U_+ = S^n \setminus \{(0, 0, \dots 1)\}, \psi_+ : U_+ \to \mathbb{R}^n, \psi_+(x_1, x_2, \dots x_{n+1}) = (\frac{x_1}{1-x_{n+1}}, \frac{x_2}{1-x_{n+1}}, \dots, \frac{x_n}{1-x_{n+1}})$ and U_- and ψ_- are defined analogously.

3 S^1 (again)

We look at S^1 from another point of view. Consider the set \mathbb{R}/\mathbb{Z} , i.e. the set of equivalence classes in \mathbb{R} with respect to the equivalence relation $x \sim x + a$, $x \in \mathbb{R}, a \in \mathbb{Z}$. For $x \in \mathbb{R}$ we denote with [x] the corresponding element in \mathbb{R}/\mathbb{Z} and say that $x \in \mathbb{R}$ is a representative of the class $[x] \in \mathbb{R}/\mathbb{Z}$. In other words $[\] : \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ is the quotient map, assigning to each real number its corresponding class. So, for example, [x] = [x+3] = [x-111], where $x, x+3, \ldots$ are different representatives of the same class. \mathbb{Z} is the kernel of the map $[\]$.

Obviously every class, i.e. every element of \mathbb{R}/\mathbb{Z} has one and only one representative in the interval [0, 1) (we could have chosen any other half open half closed interval of unit length). That is, there is an isomorphism between the two sets [0, 1) and \mathbb{R}/\mathbb{Z} .

Remark We endow \mathbb{R}/\mathbb{Z} with the quotient topology¹ and we see that [0,1) and \mathbb{R}/\mathbb{Z} are not isomorphic as topological spaces, i.e. not homeomorphic, as the latter is closed.

We want to give a structure of 1-dimensional smooth manifold to \mathbb{R}/\mathbb{Z} and therefore look for coordinate neighbourhoods.

Consider the set $U_0 = [(0,1)] \subset \mathbb{R}/\mathbb{Z}$, i.e. the image in \mathbb{R}/\mathbb{Z} through the quotient map [] of the set (0,1).

 $[]^{-1}(U_0) = \cdots \cup (-1,0) \cup (0,1) \cup (1,2) \dots$, i.e. a (countable) union of open sets, thus open. This means that $U_0 \subset \mathbb{R}/\mathbb{Z}$ is open as well (in the quotient topology).

Define $\phi_0: U_0 \to (0,1)$ as $\phi_0(m) = []^{(-1)}(m) \cap (0,1), \forall m \in U_0.$

That is, ϕ_0 assigns to each class contained in U_0 its unique representative in (0, 1). This map is a bijection. It is also easily seen to be a homeomorphism. In fact, if $W \subset U_0$ is open, then $[]^{-1}(W)$ must be an open subset of \mathbb{R} , and the intersection of two open sets $[]^{-1}(W) \cap (0, 1)$ is open as well. Likewise, if $V \subset (0, 1)$ is open, then $\phi_0^{-1}(V) = [V] \subset \mathbb{R}/\mathbb{Z}$ is open (proof analogous as for U_0 above).

So (U_0, ϕ_0) is a candidate for a coordinate neighbourhood.

¹a set $U \subset \mathbb{R}/\mathbb{Z}$ is said to be open in the quotient topology iff $[]^{-1}(U)$ is open in \mathbb{R} .

We construct a second (candidate) chart by shifting the same procedure 1/2on the right. Define: $U_{\frac{1}{2}} := [(\frac{1}{2}, \frac{3}{2})]$ and $\phi_{\frac{1}{2}} : U_{\frac{1}{2}} \to (\frac{1}{2}, \frac{3}{2})$ as $\phi_{\frac{1}{2}}(m) :=$ $[]^{-1}(m) \cap (\frac{1}{2}, \frac{3}{2}).$

 U_0 and $U_{\frac{1}{2}}$ are a covering of \mathbb{R}/\mathbb{Z} , i.e. $U_0 \cup U_{\frac{1}{2}} = \mathbb{R}/\mathbb{Z}$.

 $U_0 \cap U_{\frac{1}{2}} = (\mathbb{R}/\mathbb{Z}) \setminus \{[0], [\frac{1}{2}]\},$ i.e. their intersection leaves two points out. Notice also that this intersection is not connected.

Likewise, the images in \mathbb{R} of this intersection given by ϕ_0 and $\phi_{\frac{1}{2}}$ are discon-

nected: $\phi_0(U_0 \cap U_{\frac{1}{2}}) = (0, \frac{1}{2}) \cup (\frac{1}{2}, 1)$ and $\phi_{\frac{1}{2}}(U_0 \cap U_{\frac{1}{2}}) = (\frac{1}{2}, 1) \cup (1, \frac{3}{2}).$ So we consider now the composition $\phi_{\frac{1}{2}} \circ \phi_0^{-1} : (0, \frac{1}{2}) \cup (\frac{1}{2}, 1) \to (\frac{1}{2}, 1) \cup (1, \frac{3}{2}).$ This map is a diffeomorphism: $\phi_{\frac{1}{2}} \circ \phi_0^{-1}|_{(\frac{1}{2}, 1)} : (\frac{1}{2}, 1) \to (\frac{1}{2}, 1)$ is the identity map and $\phi_{\frac{1}{2}} \circ \phi_0^{-1}|_{(0,\frac{1}{2})} : (0,\frac{1}{2}) \to (1,\frac{3}{2})$ is simply the map $x \to x+1$.

This shows that the two coordinate neighbourhoods $(U_0, \phi_0), (U_{\frac{1}{2}}, \phi_{\frac{1}{2}})$ determine a smooth structure on \mathbb{R}/\mathbb{Z} .

Remark It is possible to construct a diffeomorphism between S^1 in the first example and \mathbb{R}/\mathbb{Z} . For example, assign to each point $P \in S^1$ with coordinates (x,y) the angle θ such that $\cos(\theta) = x$, $\sin(\theta) = y$. Then the map $\pi: S^1 \to \mathbb{R}/2$ $\mathbb{Z}, \pi(x, y) = \frac{1}{2\pi} \theta$ is an isomorphism (of sets). Looking at the action of this map in terms of local charts, i.e. studying the functions $\phi_j \circ \pi \circ \psi_i^{-1}$, $(i = +, -; j = 0, \frac{1}{2})$ one sees that it is actually a diffeomorphism.

In other words, S^1 and \mathbb{R}/\mathbb{Z} (with the smooth structures given above) are diffeomorphically equivalent.

Remark We were able to define a smooth 1-dimensional manifold structure for \mathbb{R}/\mathbb{Z} without mentioning \mathbb{R}^2 .

More precisely, in the first example we have defined S^1 as a 1-dimensional smooth manifold embedded in \mathbb{R}^2 , while in the third example we have constructed a (diffeomorphically equivalent) 1-dimensional manifold directly, without the help auxiliary higher dimensional manifolds.

T^2 4

As in the previous example, consider the 2-dimensional torus $\mathbb{R}^2 \setminus \mathbb{Z}^2$. One can choose open squares of the type $(a, a + 1) \times (b, b + 1) \subset \mathbb{R}^2$ and define charts $(U_{a,b}, \phi_{a,b})$ as before:

 $U_{a,b} := [(a, a+1) \times (b, b+1)] \subset \mathbb{R}^2 \backslash \mathbb{Z}^2;$

 $\phi_{a,b}(m) := []^{-1}(m) \cap ((a, a+1) \times (b, b+1)).$

A choice of charts of such kind necessary for determining a smooth structure on the torus is left to the reader.