
Throughout the 17th and 18th centuries,
Euclidean geometry reigned as Western

civilization’s unquestioned description of physical
space. By the early 19th century, however, a nascent
interest in higher dimensions led to the realization that
an ordinary sphere, which is the 2D surface of a 3D ball,
has a higher-dimensional counterpart called the hyper-

sphere, which is the 3D surface of a
4D ball. In the year 1854, Georg
Friedrich Bernhard Riemann pro-
posed the hypersphere as a model
for the physical universe. Unlike all
previous cosmological models, the
hypersphere offered a 3D universe
with a finite volume but with no
troublesome edge or boundary.

Today, the hypersphere model
offers new opportunities for 21st
century artists and game develop-
ers, and for the audiences who enjoy
their work. Beyond the appeal of a
finite universe, the hypersphere also
offers interesting visual effects and

rich symmetries not available in flat space models. For
example, just as an ordinary sphere allows a tiling by
pentagons that would be impossible in a plane (see Fig-
ure 1), the hypersphere offers a tiling by dodecahedra
that would be impossible in flat space (see Figure 2).

At first glance, you might think that drawing per-

spectively correct pictures in a hypersphere would be
difficult. But the algorithm for rendering a scene in a
hypersphere is identical to the standard algorithm for
rendering a scene in ordinary flat 3D space. Indeed, the
computations are so similar that off-the-shelf 3D graph-
ics cards, when fed the correct matrices, will do real-
time animations in a hypersphere just as easily and as
quickly as they do in flat space.

The sample code accompanying this article (available
from http://www.northnet.org/weeks/CurvedSpaces/)
implements curved-space rendering in both OpenGL
(http://www.opengl.org) and Direct3D (http://www.
microsoft.com/windows/directx/). The sample code can
be an easy starting point for readers wishing to explore
the possibilities. Even readers not wishing to create their
own curved-space applications might enjoy the beauty of
the underlying geometry, and students might find that
understanding curved-space rendering takes some of the
mystery out of the standard flat-space algorithm.

0272-1716/02/$17.00 © 2002 IEEE

Feature Article

90 November/December 2002

A hypersphere surface

provides a finite 3D world in

which the user can fly freely

without encountering

boundaries, while

hyperbolic space provides a

spacious environment.

Jeff Weeks

Real-Time
Rendering in
Curved Spaces

1 Flat pentagons can’t tile a plane, but 12 spherical
pentagons fit snugly to tile a sphere.

2 Ordinary dodecahedra can’t tile flat space, but 120
spherical dodecahedra fit snugly to tile a hypersphere.

What’s a hypersphere?
The official definition of a hypersphere is simple. Just

as the equation x2 + y2 + z2 = 1 defines an ordinary
sphere as a 2D surface in 3D Euclidean space, the equa-
tion x2 + y2 + z2 + w2 = 1 defines a hypersphere as a 3D
hypersurface in 4D Euclidean space. A plane intersects
an ordinary sphere in the shape of a circle. In particu-
lar, the xy, yz, and zx coordinate planes intersect a sphere
in a set of three mutually perpendicular great circles (see
Figure 3). Similarly, a hyperplane intersects a hyper-
sphere in the shape of a sphere. In particular, the xyz,
yzw, zwx, and wxy coordinate hyperplanes intersect a
hypersphere in a set of four mutually perpendicular
great spheres.

Visualizing the hypersphere is much easier than visu-
alizing the 4D space in which it sits. Remember, the
hypersphere is the 3D surface of a 4D ball, not the 4D
ball itself, so even though it’s a curved space, it’s still
only 3D. You can understand curved-space rendering—
and write your own curved space animations—without
ever visualizing four dimensions. Simply do your rea-
soning using sketches of ordinary spheres in three
dimensions, then restore the fourth dimension when it’s
time to write your code.

The hypersphere has some surprising optical proper-
ties. Imagine you’re in a hypersphere and you throw a
basketball (see Figure 4). At first, the basketball is close
to you and it subtends a fairly large angle in your field of
view. As the basketball moves away, it subtends a small-
er angle. The subtended angle reaches a minimum when
the basketball is a quarter of the way around the sphere.
As the basketball continues moving away, the subtend-
ed angle starts to increase, making the basketball appear
larger in your field of view. This phenomenon explains
why some distant planets in Figure 2 appear larger than
the closer ones.

Flat space rendering
To set a clear starting point and establish terminolo-

gy, I’ll review the standard rendering pipeline1 and give
it a new geometric interpretation. Even though our
computations will be 4D, I’ve drawn the figures one
dimension lower by suppressing the y coordinate. In all
cases the suppressed y coordinate behaves just like the
x coordinate.

Standard 3D graphics uses the following four coordi-
nate systems (see Figure 5):

� World coordinates. The overall coordinate system that
contains everything else.

� Model coordinates. Each object in the scene has its own
local coordinate system, typically with the object cen-
tered at the local origin.

� Camera coordinates. The camera sits at the origin of its
own coordinate system, looking in the positive z direc-
tion (Direct3D) or negative z direction (OpenGL).

IEEE Computer Graphics and Applications 91

3 The coordi-
nate planes slice
a sphere along
three mutually
perpendicular
circles.

4 The hypersphere’s surprising optical properties are
best understood by studying optics on the surface of an
ordinary sphere. To an observer at the north pole, the
basketball, which has been squished onto the sphere’s
2D surface, looks large when it’s nearby in the (1)
northern hemisphere because it subtends a wide angle
in the observer’s field of view. The same squished bas-
ketball looks small when it sits on the (2) equator
because it subtends a narrow angle. When the basket-
ball is near the (3) south pole, it again looks large
because the convergence of light beams on the sphere
causes the basketball again to subtend a wide angle in
the observer’s field of view. This same optical phenome-
non occurs in the hypersphere, causing distant images
of the Earth in Figure 2 to appear large.

5 The four coordinate systems of standard 3D graphics.

Z Z

Z
Z

X

X

X

X

Camera
coordinates

World coordinates

Projection
coordinates

Near clip

Far clip

Model #2 coordinates

Model #1 coordinates

N

S

1

2

3

� Projection coordinates. The camera’s field of view is a
pyramid with the camera at the apex. The near and
far clipping planes further restrict the field of view to
the so-called view frustum. Projection coordinates
dictate how the view frustum projects onto the final
2D image. The x and y coordinates give a point’s hor-
izontal and vertical coordinates in the final image,
while the z coordinate gives its depth.

For clarity, it’s convenient to work not just with sepa-
rate coordinate systems but with separate spaces (see
Figure 6). Separating the spaces makes it easier to visu-
alize the transformations. The camera transformation,
which places the camera in world space, is the inverse of
the view transformation, which places the world in cam-
era space.

The only problem with this scheme is that the trans-
formations, which include translational components,
can’t be represented by matrices. The standard solution
is to add an extra dimension, replacing each 3D point
(x, y, z) with the 4D point (x, y, z, 1). Geometrically, we
visualize each 3D space as a slice of 4D space at height
w = 1 (see Figure 7). The model, view, and camera
transformations are now linear, and can be encoded as
matrices:

The projection transformation is almost linear, but
not quite. A linear matrix multiplication takes the hyper-
plane at height w = 1 in camera space to a slanted hyper-
plane in 4D projection space (see Figure 8). Numerically,
each point (x, y, z, 1) in camera space maps to a point
(x′, y′, z′, w′) in 4D projection space. We must then divide
by the last coordinate to rescale to (x′/w′, y′/w′, z′/w′,
1). Geometrically, rescaling projects the slanted hyper-
plane shown in Figure 8 onto the horizontal hyperplane
at w = 1, which provides the desired image of the view
frustum as a box in 3D projection space.

Modern 3D graphics cards implement the whole ren-
dering pipeline: They apply the model, view, and pro-
jection matrices; clip as necessary; project into the box
in 3D projection space; then rasterize the result. Because
the whole procedure runs in hardware, detailed scenes
can be rendered in real time. Standard 3D graphics cards
can render curved space scenes in real time too.

′
′
′

=

x
y
z

x
y
z

1 1

rot rot rot trans
rot rot rot trans
rot rot rot trans

0 0 0 1

xx xy xz x

yx yy yz y

zx zy zz z

Feature Article

92 November/December 2002

6 You can visu-
alize the four
coordinate
systems as
separate spaces.

7 Each space
can be a 3D
hyperplane in
4D space so the
transformations
connecting
them can be
represented as
matrices.

Model space #1

Model space #1

Model space #2

Model space #2

Model
transformation #2

Model
transformation #2

Model
transformation #1

Model
transformation #1

View
transformation

View
transformation

Camera
transformation

Camera
transformation

Projection
transformation

Projection
transformation

X

X

X

X
Z

Z

Z

Z

Z Z
XX

X

X

W

W

W W

Z

World space Camera space Projection space

World space Camera space Projection space

Z

Spherical rendering
Photorealistic curved-space rendering opens a win-

dow into a previously unseen world: when you view the
computer-generated image in the comfort of your flat-
space home or office, you see exactly the same objects in
exactly the same directions as you would in the desired
curved-space scene, giving you the illusion of living in
curved space. To render photorealistic images in a
hypersphere, our conceptual imagery changes, but the
computational algorithm remains the same. We simply
replace the 3D slice at height w = 1 with a unit hyper-
sphere (see Figure 9) and proceed as before.

Because the model, world, and camera spaces are
now hyperspheres, the transformations relating them
are given by pure rotation matrices, unlike the hybrid
rotation-translation matrices used in flat-space render-
ing. For the projection transformation, we can tem-
porarily use the same matrix used in flat space. Spherical
rendering uses different model and view matrices, but
the algorithm for processing the matrices is identical to
the flat-space algorithm, which is true not only in theo-
ry but also in practice. Off-the-shelf 3D graphics hard-
ware renders images in spherical space as well as it does

in flat space, never noticing that it’s processing non-
standard model and view matrices.

To verify that the flat-space projection matrix gives a
perspectively correct image even in spherical rendering,
you can simply project each object on the hypersphere
radially onto the flat space at height w = 1 (see Figure
10). An object at (x, y, z, w) on the hypersphere projects
to (x/w, y/w, z/w, 1) in the flat space. Most important-
ly, the line of sight from the camera to the object—which
follows a great circle along the hypersphere—projects to
a straight line in the flat space. This proves that a cam-
era viewing the projected objects in the flat space sees
exactly the same image that the original camera sees in
the hypersphere.

IEEE Computer Graphics and Applications 93

8 The projection transformation matrix takes the view
frustum to a slanting hyperplane (the light tan color) in
4D projection space. Dividing by the w coordinate
normalizes it to the standard box in the hyperplane at
height w = 1 (the darker orange color).

9 The rendering pipeline for a hypersphere is the same as the pipeline for flat space, except that the model, view,
and camera transformations are now pure rotations.

10 If you pro-
ject each object
from the surface
of the hyper-
sphere onto the
flat space at
height w = 1, the
camera’s view in
the flat space is
then the same
as its view on
the surface of
the hypersphere
itself.

X

Z

W

Model space #1

Model space #2

Model
transformation #2

Model
transformation #1 View

transformation

Camera
transformation Projection

transformation

Z

X

W

Z

X

W
Z

X

W

Z

X

W
World space Camera space Projection space

Thus a naive, but correct, algorithm would entail the
following steps:

1. Project the scene radially from the hypersphere onto
the flat space.

2. Apply the usual flat-space projection matrix to map
camera space into 4D projection space.

3. Divide by the last coordinate, as in the flat space
algorithm, to arrive at the correct point in 3D pro-
jection space.

Surprisingly, we can skip the first step and apply the sec-
ond and third steps directly to the point (x, y, z, w) on
the hypersphere. The proof is as follows: If two vectors
(x, y, z, w) and (cx, cy, cz, cw) are scalar multiples of each
other, the projection matrix takes them to distinct points
(x′, y′, z′, w′) and (cx′, cy′, cz′, cw′) in 4D projection space.
But then dividing each one by its last coordinate takes
them to the same point (x′/w′, y′/w′, z′/w′) in 3D pro-
jection space. In the special case that c = 1/w, steps 2
and 3 take the point (x, y, z, w) on the hypersphere and
the point (x/w, y/w, z/w, 1) in the flat space to the same
point in 3D projection space.

Now that we’ve eliminated step 1, the spherical pro-
jection algorithm is identical to the standard flat-space
algorithm. The algorithm produces a correct image in a
hypersphere even when using the standard flat-space pro-
jection matrix, but it’s needlessly shortsighted. Figure 11
shows that even with the far clipping distance set to infin-
ity, the view frustum on the hypersphere stops at the
equator. We get a deeper view into the scene by extend-
ing the view frustum to a view banana (see Figure 12).

The banana projection matrix (see Figure 13) gives

us a 90 degree field of view beginning at a near clip-
ping plane z0 radians in front of the camera and end-
ing at a far clipping plane z0 radians short of the
antipode. Strictly speaking, z0 is the tangent of the clip-
ping distance, but tan z0 ≈ z0 when z0 is small, so in prac-
tice we ignore this distinction. The banana projection
matrix takes slightly different forms for OpenGL and
Direct3D to accommodate differing camera, clipping,
and notational conventions, but achieves the same
final result.

It’s easy to check that the banana projection matrix
really does take the view banana to the clipping box. For
sake of discussion, consider the OpenGL case. The view
banana’s corners lie at (1/√1+3z 2

0) (±z0, ±z0, −z0, ±1),
but we might safely ignore the 1/√1+3z 2

0 in front
because a constant scale factor is irrelevant. The banana
projection matrix takes the banana’s near vertices (±z0,
±z0, −z0, +1) to (±z0, ±z0, −z0, z0) in 4D projection space,
which scale to (±1, ±1, −1) in 3D projection space. Sim-
ilarly, the banana’s far vertices (±z0, ±z0, −z0, −1) go to
(±z0, ±z0, z0, z0) and thence to (±1, ±1, 1). In other words,
the banana’s corners map precisely to the corners of the
clipping box in projection space, as desired.

Optics in the hypersphere differ from optics in flat
space. Assume for the sake of discussion that you’re at
the north pole of a hypersphere. Your lines of sight
spread into the hemisphere in front of you, reconverge
at the south pole, pass through the south pole and
spread out into the hemisphere behind you, and finally
reconverge at the north pole, hitting the back of your
head. If you teleport yourself into an otherwise empty
hypersphere, you see the back of your own head filling
the whole sky.

You might expect the standard rendering algorithm
to draw objects in the back hemisphere (z > 0 in
OpenGL, z < 0 in Direct3D) along with those in the
front hemisphere (z < 0 in OpenGL, z > 0 in Direct3D).
For example, the OpenGL banana projection matrix

Feature Article

94 November/December 2002

11 Even with
the far clipping
distance set to
infinity, the
view frustum’s
projection onto
the hyper-
sphere reaches
only to the
equator.

12 In spherical rendering, a banana-shaped region
plays the role of the view frustum. The projection trans-
formation will map this view banana to the clipping
box in projection space.

OpenGL banana matrix Direct3D banana matrix
Camera looks down negative z-axis Camera looks down positive z-axis
Clipping box spans −w′ ≤ z′ ≤ w′ Clipping box spans 0 < z′ ≤ w′
Matrix acts as (matrix)(column vector) Matrix acts as (row vector) (matrix)

1 0 0 0
0 1 0 0
0 0 1 2 1
0 0 2 00

/
/−

z

1 0 0 0
0 1 0 0
0 0 0
0 0 1 0

0−
−

z

13 Banana projection matrix.

To ∞

To equator

takes an object at (0, 0, 1, 0) in camera space to the
point (0, 0, 0, −1) in 4D projection space, then to (0,
0, 0) in 3D projection space. This point lies at the cen-
ter of the clipping box, so you might expect it to be
drawn at the center of your screen at intermediate
depth. In practice, the object fails to appear because
OpenGL uses the computationally efficient clipping
equations

−w′ ≤ x′ ≤ w′
−w′ ≤ y′ ≤ w′
−w′ ≤ z′ ≤ w′

instead of the more conceptual equations:

−1 ≤ x′/w′ ≤ 1
−1 ≤ y′/w′ ≤ 1
−1 ≤ z′/w′ ≤ 1

The two sets of equations are of course equivalent
when w′ is positive. But when w′ is negative, they yield
different results. In the previous example, (x′, y′, z′, w′)
= (0, 0, 0, −1) satisfies the second set of equations but
not the first. In effect, the first set of equations imposes
the additional restriction that w′ > 0 in projection space,
which in OpenGL is equivalent to saying that z < 0 in
camera space. Similar considerations apply in Direct3D,
again with the result that only objects in the front hemi-
sphere (w′ > 0 in projection space or z > 0 in camera
space) will be rendered.

The condition w′ > 0 turns out to be a blessing in dis-
guise. Without it, objects from the back hemisphere,
which span the full range of depth values in projection
space (−1 ≤ z′/w′ ≤ 1 in OpenGL, 0 ≤ z′/w′ ≤ 1 in
Direct3D), would get intermingled among the objects
in the front hemisphere. The w′ > 0 restriction makes it
easy to render the front and back hemispheres sepa-
rately, one in front of the other.

Two-pass spherical rendering has five steps:

1. Modify the projection matrix to compress the whole
view banana into the front half of the clipping box
in projection space (−1 ≤ z′/w′ ≤ 0 in OpenGL or 0 ≤
z′/w′ ≤ 1/2 in Direct3D).

2. Render the scene. The w′ > 0 restriction ensures
that only objects in the front hemisphere appear.

3. Move the camera to its antipodal point, facing the
back hemisphere.

4. Modify the projection matrix to compress the view
banana into the back half of the clipping box (0 ≤
z′/w′ ≤ 1 in OpenGL or 1/2 ≤ z′/w′ ≤ 1 in Direct3D).

5. Rerender the scene. The w′ > 0 restriction now
ensures that only objects in what was originally the
back hemisphere appear.

The contents of the front hemisphere end up in the front
half of the clipping box in projection space, while the
contents of the back hemisphere end up in the back half
of the box.

The hypersphere wasn’t the only curved space dis-
covered in the 19th century. In the 1820s, Nikolai
Ivanovich Lobachevski and János Bolyai independent-

ly discovered hyperbolic space. Hyperbolic space is the
opposite of spherical space. While spherical space clos-
es up on itself, hyperbolic space opens outward even
more widely than flat space.

What’s hyperbolic space?
Curly leaf lettuce makes an excellent model of the

hyperbolic plane. You can make yourself a paper model
of the hyperbolic plane by cutting a large number of
equilateral triangles from a few sheets of paper and tap-
ing the triangles together so that exactly seven triangles
(not six) meet at each vertex in the resulting surface.
Either way, with lettuce or a paper surface, the hyper-
bolic plane is roomy in the sense that the area A enclosed
by a circle of radius r grows much faster than the expect-
ed A = πr2. In fact, it quickly approaches an exponen-
tial growth rate.

Just as great circles are cross sections of a sphere, and
great spheres are cross sections of a hypersphere, 3D
hyperbolic space is a space whose cross sections are
hyperbolic planes (see Figure 14). Hyperbolic space
can’t be accurately modeled in ordinary Euclidean space
because the volume enclosed by a ball of radius r grows
too quickly, so Figure 14 should be considered only a
suggestion for imagining hyperbolic space, not a pre-
scription for building a physical model.

Beyond its many applications in math and physics,
hyperbolic space has recently found a new application in
data visualization.2 Its rapidly growing volume provides
an excellent environment for displaying large data sets.
For example, a large binary tree can’t be embedded in flat
space without extreme crowding because the number of
nodes grows exponentially as a function of the depth, but
the tree fits comfortably in hyperbolic space with no
crowding at all because the volume of hyperbolic space
also grows exponentially as a function of the radius.

The mathematics of hyperbolic space are nearly iden-
tical to the mathematics of the hypersphere. Indeed,
their definitions are the same except for a couple minus
signs. A unit sphere, by definition, is the set of points

IEEE Computer Graphics and Applications 95

14 Each slice of
hyperbolic
space is a hyper-
bolic plane. The
volume
enclosed by a
sphere grows
more quickly
than the
expected
(4/3)πr3.

that are one unit from the origin. More pedantically, it’s
the set of vectors v = (x, y, z) of length |v| = 1. More
pedantically still, the length is defined by |v|2 = <v,
v>, where the angle brackets denote the so-called inner
product, defined as <u, v> = uxvx + uyvy + uzvz. String-
ing these definitions together, you can check that the
sphere really does come out to be the set of vectors v =
(x, y, z) satisfying x2 + y2 + z2 = 1.

The hyperbolic plane’s definition is almost the same.
The main difference is that the traditional inner product
is replaced with the Lorentz inner product <u, v> = uxvx

+ uyvy − uzvz. The only change is the minus sign in front
of the uzvz term, but that one minus sign makes a world of
difference. The squared length |v|2 = <v, v> of a vec-
tor v doesn’t need to be positive. For example, the squared
length of the vector (0,0,1) is −1. Euclidean space, with
distances measured according to the Lorentz inner prod-
uct, is known as Minkowski space. The real surprise is
that Minkowski space is the geometry of nature, not the
geometry of space but the geometry of space-time.

In space-time, the so-called interval between two
events E = (x, y, z, t) and E′ = (x′, y′, z′, t′) is given by |E

− E′|2 = <E − E′, E − E′> = (x − x′)2 + (y − y′)2 + (z −
z′)2 − (t − t′)2. When the squared interval is negative, it
tells the proper time between two events. When it’s pos-
itive, it tells the proper distance. And when it’s zero, it

means the line segment from E to E′ is the potential path
of a light ray. By definition, the proper time is the time
as measured by an observer for whom the two events
occur in the same location. The proper distance is the
distance as measured by an observer for whom the two
events take place simultaneously.3 The interval easily
resolves the paradoxes of special relativity.3,4

Just as the sphere is most naturally defined as a sur-
face of constant radius in Euclidean space, the hyper-
bolic plane is most naturally defined as a surface of
constant radius in Minkowski space. It’s the set of vectors
v satisfying |v|2 = −1, where |v|2 is defined using the
Lorentz inner product. That is, the hyperbolic plane con-
sists of all vectors v = (x, y, z) satisfying |v|2 = <v, v>
= x2 + y2 − z2 = −1. To our Euclidean eyes, this is the
equation of a hyperboloid of two sheets (see Figure 15),
but if we measure distances within each sheet using the
Lorentz inner product to do the measuring, then we find
that each sheet has the geometry of leaf lettuce. The
squared length of the segment connecting any two near-
by points is always positive, taking us out of the realm of
Lorentz distances and back into the realm of ordinary
distances. By convention, we take the northern sheet of
the hyperboloid (z > 0) to be the hyperbolic plane, and
ignore the southern sheet (z < 0).

We can develop the mathematics of the hyperbolic
plane by imitating line-by-line the development of the
sphere’s mathematics. Just as the spherical functions
sin d and cos d are defined to be the horizontal and ver-
tical coordinates of a point d units along a unit circle in
the Euclidean plane (see Figure 16), the hyperbolic func-
tions sinh d and cosh d are the horizontal and vertical
coordinates of a point d units along a unit hyperbola in
the Minkowski plane. In spherical space, the functions
sin() and cos() often appear in rotation matrices. For
example, the rotation matrix

x

y

z

w

d d

d d

x

y

z

w

'
'
'
'

cos sin

sin cos

=

−

0 0
0 1 0 0
0 0 1 0

0 0

Feature Article

96 November/December 2002

15 In Euclidean
space, the
equation x2 + y2

− z2 = −1 defines
a hyperboloid
of two sheets.
But in Minkow-
ski space, with
distances mea-
sured using the
Lorentz inner
product, each
sheet turns out
to be a copy of
the hyperbolic
plane.

16 The functions sin d and cos d are, by definition, the coordinates of the point you reach when you travel a Euclid-
ean distance d along a unit circle. Similarly, the functions sinh d and cosh d are, by definition, the coordinates of
the point you reach when you travel a Lorentz distance d along a unit hyperbola.

d

sin d
cos d

sinh d

d
cosh d

moves an observer at the north pole (0, 0, 0, 1) a dis-
tance d along the sphere in the x direction. In hyperbol-
ic space the Lorentz matrix

achieves the same effect.

Hyperbolic rendering
Hyperbolic rendering (see Figure 17) works the same

way as flat rendering and spherical rendering, but the
model, camera, and view transformations are given by
Lorentz matrices.5 Unlike the spherical case, hyperbolic
rendering requires no special care in selecting a projec-
tion matrix. Both traditional and banana projection matri-
ces work fine, although the banana matrix leaves the back
half of the clipping box in projection space empty.

The proof that this technique yields an accurate image
of hyperbolic space is the same as for spherical render-
ing. Simply project each object on the hyperboloid radi-
ally onto the flat space at height w = 1. An object at (x,
y, z, w) on the hyperboloid projects to (x/w, y/w, z/w, 1)
in the flat space, and the line of sight from the camera to
the object—which follows a great hyperbola along the
hyperboloid—projects to a straight line in the flat space.
This technique proves that a camera viewing the pro-
jected objects in the flat space sees exactly the same
image that the original camera sees in hyperbolic space.
As in spherical rendering, the original point (x, y, z, w)
and the rescaled point (x/w, y/w, z/w, 1) both map to
the same point (x′/w′, y′/w′, z′/w′) in the 3D projection
space. The same algorithm that works in flat space and
spherical space produces an accurate image in hyper-
bolic space as well.

Stereoscopic vision
If you hold your finger 10 cm in front of your face and

focus in on it, you’ll need to look cross-eyed to see it
properly. If you move your finger slowly away from you,

the parallax angle—the angle at which your eyes are
directed inward—gradually decreases (see Figure 18).
In flat space, the parallax angle goes to zero as your fin-
ger moves to infinity.

In spherical space, the parallax angle reaches zero
for objects that are only a quarter of the way around the
sphere (see Figure 19). If each eye looks straight for-

x

y

z

w

d d

d d

x

y

z

w

'
'
'
'

cosh sinh

sinh cosh

=

0 0
0 1 0 0
0 0 1 0

0 0

IEEE Computer Graphics and Applications 97

17 The render-
ing pipeline for
hyperbolic
space is the
same as the
pipeline for flat
and spherical
space, except
that the model,
view, and cam-
era transforma-
tions are now
Lorentz trans-
formations.

18 As an object
recedes from
the observer in
flat space, the
parallax angle θ
goes to zero.

19 When an
object recedes
from the
observer in
spherical space,
the parallax
angle reaches
zero when the
object is π/2
radians away, as
illustrated by
the blue trian-
gle with right
angles at the
observer’s eyes.
As the object
moves even
farther away,
the parallax
angle becomes
negative.

Model space #1

X

W

Z

X

W

Z

X

W

Z

X

W

ZModel space #2

Model
transformation #2

Model
transformation #1

Camera
transformation

View
transformation

Projection
transformation

World space Camera space Projection space

ward, the two lines of sight start off parallel but even-
tually converge at the object, just as two travelers who
start walking due south from different points on the
Earth’s equator will eventually meet at the south pole.
For objects more than a quarter of the way around the
sphere, the parallax angle becomes negative. That is,
you must direct your eyes outward to focus on the
objects.

I initially thought that with negative parallax, the
human visual system wouldn’t be able to fuse the left-
and right-eye views into a single coherent image, and
that the user would end up seeing double. Much to my
surprise, when using a large screen in a lecture hall with
a full 90-degree field of view, most people could easily
fuse the two views and see a coherent image. The objects
with negative parallax appear to be about 5 or 10 meters
away, which is the maximum distance detectable by
human stereoscopic vision.

As an object passes through the observer’s antipodal
point, the parallax angle abruptly switches from
extremely negative to extremely positive, and the object
suddenly appears very near, although it might never-
theless be dim due to fog effects. From there, the par-
allax angle again decreases, passing through zero as
the object passes three quarters of the way, and remain-
ing negative for the last quarter of its trip. At the finish,
the object hits us in the back of our head, or, if we duck,
it passes us and we again see it nearby with a large pos-
itive parallax.

In hyperbolic space, by contrast, the parallax angle
never even approaches zero. For example, if your eyes
are 7 cm apart and you are in a standard hyperbolic
space (defined in Minkowski space by the equation |v|2

= −1 meter2), then the parallax angle will always be
greater than 2 degrees, even when viewing very distant
objects. Long-time residents of hyperbolic space would
be accustomed to the fact that a parallax angle of about
2 degrees means that the object is very far away, just as
we humans in our approximately flat space subcon-
sciously know that a parallax angle of zero means an

object is far. Human tourists to hyperbolic space, how-
ever, would be confused. Because the parallax angle
always exceeds 2 degrees, they would have the subjec-
tive impression that all of hyperbolic space, in spite of
its vast roominess, was packed into a finite ball with a
radius of 1 meter.

If you own a pair of red-blue glasses, you can experi-
ment with curved space parallax. If you download the
sample programs from http://www.northnet.org/
weeks/CurvedSpaces, simply run CurvedSpaces-Com-
plete-[GL or D3D].exe, and choose Stereo from the
Options menu. The effect is most convincing when you
stand in a dark room about 1 meter away from the cen-
ter of a large screen, with the image filling your whole
field of view. But even on an ordinary computer moni-
tor you’ll get a satisfactory sensation of depth. Screen
shots show the view in a hypersphere tiled by 120 dodec-
ahedra, first in standard mode and then in stereoscop-
ic 3D (see Figure 20).

Conclusion
Astrophysicists already use curved-space graphics as

part of their research to determine the shape of the real
universe, which is still unknown. In particular, curved-
space visualizations have provided new insights into the
possible topologies for a spherical universe. These
insights simplify the microwave-based detection strate-
gy6,7 from a six-parameter search to a four-parameter
search, reducing the algorithm’s runtime from weeks to
minutes. These same visualization tools are playing an
indispensable educational role in explaining the geom-
etry and topology of space to students. Interactive 3D
simulations lead students to an understanding that
would not be possible with words alone.

I hope that in the future these tools will find additional
application in computer graphics and games. The hyper-
sphere offers gamers the novelty of curved space along
with the convenience of a finite yet boundaryless space,
while hyperbolic space provides the roominess for work-
ing with exponentially complicated data sets.

Acknowledgments
I thank Andrew Glassner, Eric Haines, George Hart,

Tamara Munzner, and Deej Heath and his students for
suggesting improvements to an earlier draft of this arti-
cle. I also thank the MacArthur Foundation for sup-
porting my work and Charlie Gunn, Stuart Levy, and
Mark Phillips for their pioneering work implementing
curved space rendering on Unix workstations at the
Geometry Center in the late 1980s and early 1990s.5,8

References
1. T. Müller and E. Haines, Real-Time Rendering, 2nd ed., AK

Peters, Natick, Mass., 2002.
2. T. Munzner, “H3: Laying Out Large Directed Graphs in 3D

Hyperbolic Space,” Proc. 1997 IEEE Symp. Information Visu-
alization, IEEE CS Press, Los Alamitos, Calif., 1997, pp. 2-
10; http://graphics.stanford.edu/papers/h3.

3. E. Taylor and J. Wheeler, Spacetime Physics, W.H. Freeman
and Co., San Francisco, 1963.

Feature Article

98 November/December 2002

20 The same
scene as in
Figure 2, but
rendered for
viewing with
red-blue
glasses.

4. J. Weeks, “The Twin Paradox in a Closed Universe,” Amer-
ican Mathematical Monthly, vol. 108, 2001, pp. 585-590.

5. M. Phillips and C. Gunn, “Visualizing Hyperbolic Space:
Unusual Uses of 4x4 Matrices,” Proc. 1992 Symp. Interac-
tive 3D Graphics, ACM Press, New York, 1992, pp. 209-214.

6. N. Cornish, D. Spergel and G. Starkman, “Circles in the
Sky: Finding Topology with the Microwave Background
Radiation,” Classical and Quantum Gravity, vol. 15, 1998,
pp. 2657-2670.

7. J.-P. Luminet, G. Starkman and J. Weeks, “Is Space Finite?”
Scientific American, April 1999, pp. 90-97.

8. M. Phillips et al., Geomview: An Interactive 3D Viewing Pro-
gram for Unix, http://www.geomview.org.

Jeff Weeks is a MacArthur Fellow
working in Canton, New York. His
research interests include determin-
ing the shape of the universe from
observational data and developing
educational materials for students.
He received a PhD in Mathematics

from Princeton University.

Readers may contact Jeff Weeks at 15 Farmer St., Can-
ton NY 13617-1120, email weeks@northnet.org.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

IEEE Computer Graphics and Applications 99

R E N E W E A R L Y !
Renew by 15 November, and you will be entered into
a drawing for a FREE Dell Inspiron 8200 Notebook!
Other great reasons to renew include

� Free access to 100 distance learning courses

� Free subscription to Computer

� Free your.name@computer.org transportable e-mail alias

� Low-cost subscriptions to 22 society periodicals including

� IEEE Security & Privacy

� IEEE Computer Society Digital Library
—access to 19 periodicals and over
900 conference proceedings

Renew your IEEE Computer Society membership for 2003 at www.ieee.
org/renewal by 15 November, and you will be automatically entered into
a drawing for a FREE Dell Inspiron 8200 Notebook. Plus you get a
15% discount coupon for the IEEE online store as an added bonus.

Do it today! Renew online at www.ieee.org/renewal

www.ieee.org/renewal

NEW FOR 2003

