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Abstract

Motivated by a recent halftoning method which is based on electrostatic principles,
we analyze a halftoning framework where one minimizes a functional consisting of the
difference of two convex functions (DC). One of them describes attracting forces caused by
the image gray values, the other one enforces repulsion between points. In one dimension,
the minimizers of our functional can be computed analytically and have the following
desired properties: the points are pairwise distinct, lie within the image frame and can
be placed at grid points. In the two-dimensional setting, we prove some useful properties
of our functional like its coercivity and propose to compute a minimizer by a forward-
backward splitting algorithm. We suggest to compute the special sums occurring in each
iteration step by a fast summation technique based on the fast Fourier transform at
non-equispaced knots which requires only O(m logm) arithmetic operations for m points.
Finally, we present numerical results showing the excellent performance of our dithering
method.

1 Introduction

Digital halftoning is a method for creating the illusion of a continuous tone image with a
device having only a limited number of tones available, see [55] for an introduction and Fig.
1 for illustration. Applications of halftoning include printing and geometry processing [49]
as well as sampling problems occurring in rendering [54], re-lighting [31] or object placement
and artistic non-photorealistic image visualization [4, 45]. Halftoning, resp. dithering has
been an active field of research for many years. An early dithering technique proposed in [17]
perturbs the initial image by white Gaussian noise prior to quantization to avoid quantization
boundaries. Point processes as the so-called ordered dithering approximate colour values
locally by predefined regular local patterns [7] or by more random patterns as the method
proposed by Purgathofer et al. [43].
Due to their run-time efficiency error diffusion methods as those of Floyd and Steinberg
[14] are very popular halftoning algorithms. Extensions of the Floyd-Steinberg algorithm
use different neighborhoods or grids [25, 46, 47]. To enhance the visual quality rather than
approximating the image from the mathematical point of view edge enhancing preprocessing
steps of the initial image were suggested in [25, 26]. These methods are very similar to the
unsharp masking method in [16]. A variant of error diffusion called dot diffusion was de-
veloped in [30]. All these methods produce unpleasant visual artefacts, especially so-called
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Figure 1: Original 650 × 560 image of a cat, cf. [38] (left) and the stippled image by our
proposed method with m = 194682 dots (right).

worms and disturbing patterns. Ostromoukhov [37] detected that the disturbing patterns in
the Floyd-Steinberg algorithm occur mainly at certain gray values. Therefore he introduced a
special distribution mask for the gray values. Further improvements were suggested by Zhou
et al. [58] using threshold modulation as in [29] and stencils optimized for this situation.
Recently, Chang et al. [9] proposed a so-called structure-aware error diffusion algorithm.
Their modulation depends on the local frequency content of the image (local dominant fre-
quency/orientation/contrast). The amount of thresholding is manually calibrated and stored
in five lookup tables in such a way that for each specific combination of the above quantities
the error diffusion system produces a halftone output which is perceptually close to the source
image. A different technique which also performs scan line processing optimizes the halftoned
result in a local neighborhood based on an electrostatic analysis and has been patented in
[24].
Another class of digital halftoning methods applies iterative procedures such as global search
or direct binary search [1, 5]. For instance, the structure-aware halftoning of Pang et al. [38]
introduces an iterative optimization method to maintain both the local tone and the original
texture of the image with the drawback of a long execution time. Finally, we mention two
techniques in [15] by neural networks and Markovian simulations which reduce local errors
by optimizing the frequencies occurring within local neighborhoods.

Stippling algorithms which are closely related to halftoning techniques use the continuous
domain as possible point positions. Non-photorealistic stippling places black dots in such
a way that their distribution gives the impression of tone. One prominent example of this
technique was proposed by Secord [45]. It is based on weighted centroidal Voronoi tessellations
and Lloyd’s iterative algorithm [33]. Recall that Lloyd’s algorithm tries to find for a given
weight function w : Ω → [0, 1] on a bounded domain Ω ∈ R2 and given m ∈ N a useful
minimizer of the error functional

L((pk, Vk)mk=1) :=
m∑
k=1

∫
Vk

w(x)|x− pk|2 dx
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over any set of points {pk}mk=1 belonging to Ω̄ and any tessellation {Vk}mk=1 of Ω̄. Note that the
above functional was also examined for other than the Euclidian norm. A necessary condition
for L to be minimized is that the V̂k’s are the Voronoi regions corresponding to the p̂k’s, and,
simultaneously, the p̂k are the centroids of the corresponding V̂k’s, see, e.g., [11]. Starting with
an initial guess of {p(0)

k } Lloyd’s algorithm iteratively finds the corresponding Voronoi tessel-
lation and then the centroids corresponding to this tessellation. For the continuous setting
this requires O(m logm) arithmetic operation per iteration step mainly due to the construc-
tion of the Voronoi tessellation. The local convergence of the algorithm was proved in 1D for
differentiable, strictly logarithmical concave weights w in [28]. The convergence analysis in
the multidimensional case is far from being complete. Few results are known, see [10]. For
a comprehensive overview and references up to 1999 we refer to [11]. Recently, a capacity-
constrained variant of Lloyd’s algorithm was introduced by Balzer et al. [4]. This approach
aims to overcome the drawback of Lloyd’s algorithm which introduces regularity artefacts if
not stopped at a suitable iteration step and requires some additional computational expenses.

In this paper, we propose a completely different approach both for halftoning and stippling.
We minimize a global energy functional which is the difference of two functionals (DC),
namely one for the attraction of the dots by the image gray values and the other one (with
the negative sign) for the repulsion between the dots. Our method was inspired by the electro-
statically motivated paper [44] and is to the best of our knowledge the first attempt to treat
the dithering problem from a convex analysis point of view. Our functional is the difference of
two continuous, convex functions so that we can build on existing results for the computation.
To get an idea about the behavior of our functional we first deal with the one-dimensional set-
ting. We show that after assuming an ordering of the point positions the functional becomes
convex and the minimizers can be determined analytically. We prove that the minimizing
points have the following desired properties: they are pairwise distinct, lie within the image
frame and can always be placed at grid positions. Some of these useful properties carry over
to the actual two-dimensional case. We propose to use a forward-backward splitting (FBS)
algorithm for DC programming also known as proximal point (type) algorithm or Moreau-
Yoshida regularization [23, 20, 48]. The proposed algorithms involve the computation of
special sums in each iteration step where straightforward computation would require O(m2)
arithmetic operations for m points. We suggest to compute these sums by a fast summation
procedure based on the fast Fourier transform at non-equispaced knots. Similar to the fast
multipole method this summation algorithm requires only O(m logm) arithmetic operations.
In the rest of the paper, we will not strictly distinguish between halftoning/dithering and
stippling since the used technique becomes clear from the context. We will mainly use the
first term.

This paper is organized as follows: In Section 2 we introduce our functional whose minimizers
will serve as dithering/stippling results. In Section 3 we examine the simpler one-dimensional
setting in order to get an idea about the behavior of our functional and move to the two-
dimensional case in Section 4. We prove some useful properties of our functional in Subsection
4.1 and review the forward-backward splitting (FBS) algorithm for DC programming. In
Subsection 4.2 we show how the large sums involved in our iterative minimization algorithms
can be computed by a fast summation procedure based on the fast Fourier transform at non-
equispaced knots. Finally, we present numerical results showing the excellent quality of our
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dithering/stippling method in Section 5. The paper ends with conclusions in Section 6.

2 General Problem

We consider images u : G → [0, 1] on an integer grid G := {1, . . . , nx} × {1, . . . , ny}, where
’black’ is 0 and ’white’ 1. Let w := 1 − u denote the corresponding weight distribution.
Let m be the number of black pixels produced by the dithering process and p :=

(
pk
)m
k=1

=(
(pk,x, pk,y)T

)m
k=1
∈ R2m be their position vector. By |pk| :=

√
p2
k,x + p2

k,y we denote the
Euclidian norm of the position of the k-th black pixel. Let λ be chosen by

λ :=
1
m

∑
(i,j)∈G

w(i, j).

In the following, we want to determine minimizers p̂ of the functional

E(p) =
m∑
k=1

∑
(i,j)∈G

w(i, j)
∣∣∣pk − (ij

) ∣∣∣
︸ ︷︷ ︸

F (p)

−λ
m∑
k=1

m∑
l=k+1

|pk − pl|︸ ︷︷ ︸
G(p)

. (1)

Note that

F (p) :=
m∑
k=1

f(pk), f(q) :=
∑

(i,j)∈G

w(i, j)
∣∣∣q − (i

j

) ∣∣∣.
The intention for considering minimizers of this functional as point positions for dithering is
as follows: consider the points with positions pk as small particles of equal size moving in an
environment, e.g., a glass pane above the image w. The particles are attracted by the image
forces w(i, j) at the points (i, j) ∈ G. On the other hand, there is a force of repulsion between
the particles modeled by the negative sign of G which tries to maximize the distances between
the particles.
The functional (1) is the difference of two continuous, convex functionals F and G so that we
can build on existing results of DC (difference of convex functions, delta-convex functions)
computation. For a recent overview on DC functions see [3].

Remark 2.1.

i) Role of λ. The parameter λ is not a usual regularization parameter but an equilibration
parameter between the ’opposite’ functionals. Since 1

λE(p) has the same minimizer as
E(p) one can set λ := 1 and use 1

λw(i, j) instead of w(i, j) in the functional. Therefore
we restrict our attention mainly to λ = 1 and m =

∑
(i,j)∈Gw(i, j). In applications we

often use m := round(
∑

(i,j)∈Gw(i, j)) to preserve the mean gray value of the image.

ii) Continuous setting. Sometimes we will also consider the continuous counterpart of
(1), namely

m∑
k=1

∫
Ω
w(x)|pk − x| dx− λ

m∑
k=1

m∑
l=k+1

|pk − pl|,

where Ω := (1
2 ,

1
2 + nx)× (1

2 ,
1
2 + ny).
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iii) Other functionals. More general functionals of the form

Eϕ(p) =
m∑
k=1

∑
(i,j)∈G

w(i, j)ϕ
(∣∣∣pk − (ij

) ∣∣∣)− λ m∑
k=1

m∑
l=k+1

ϕ (|pk − pl|) , (2)

with ϕ : [0,∞) → R may also be of interest. In our setting (1), we have ϕ(s) = s.
We will see that for ϕ(s) := sα it makes only sense to consider these functionals for
α ∈ (0, 2) since otherwise Eϕ is not bounded from below or not coercive. To obtain
differentiable functionals one could also replace the Euclidian norm |q| = |(qx, qy)T| in
(2) by

|q|ε = |(qx, qy)T|ε :=
√
q2
x + q2

y + ε2, ε > 0.

We denote the resulting functional by Eϕ,ε.

In [44] an iterative global dithering algorithm was proposed which can be considered
as a gradient descent algorithm of the functional Eϕ,ε with the function ϕ(s) = log(s).
Note that log(|q|ε) is neither convex nor concave which also holds true for the two
sums in Eϕ,ε. The motivation in [44] came from physical principles of electrostatics,
namely from the movement of small equally-charged particles in a global system. Fig. 2
shows the functionals E(p1, p2) and Elog,ε(p1, p2) in one dimension for a signal w ≡ 2/n
consisting of n equal weights.

Figure 2: The functionals E(p1, p2) (left) and Elog,ε(p1, p2) :=
∑2

k=1

∑n
j=1w(j) log(|pk−j|2 +

ε2)− log(|p1− p2|2 + ε2) (right) with ε = 0.1 in one dimension for w = (w(j))10
j=1 = (1/5)10

j=1.

3 One-dimensional Problem

We consider 1D signals with n = nx. Then the functional we have to minimize reads

E(p) =
m∑
k=1

n∑
j=1

w(j) |pk − j| −
m∑
k=1

m∑
l=k+1

|pk − pl|.

This non-convex 1D minimization problem can be simplified if we assume p to be an ordered
vector with p1 ≤ · · · ≤ pm. Then we have

m∑
k=1

m∑
l=k+1

|pk − pl| =
m∑
k=1

m∑
l=k+1

pl − pk =
m∑
k=1

−(m− (2k − 1)) pk.
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Hence, instead of minimizing E(p) over p, we can consider the convex minimization problem

argmin
p1≤...≤pm

E(p) = argmin
p∈Rm

m∑
k=1

 n∑
j=1

w(j) |pk − j| + (m− (2k − 1)) pk

 . (3)

Note that a minimizer p̂ exists because the functional is continuous and coercive. The following
theorem determines the minimizers analytically and shows that they have the useful properties
we expected, namely:

• the points p̂k are within the signal interval [1, n],

• the points p̂k are pairwise different,

• there exists a minimizer within the grid {1, . . . , n}.

Figure 3: Graphical illustration of the solution of (3). Left: Signal w consisting of n = 12
points linearly connected. Right: The solution (4) with m = 4 is p̂1 = 1, p̂2 = 5, p̂3 = 8,
p̂4 ∈ [10, 11].

We define

a0 := 0, ar :=
r∑
j=1

w(j), r = 1, . . . , n

so that the interval [0,m] can be divided into n subintervals [ar−1, ar] of length w(r). Fur-
thermore let ∂F (p∗) := {p : F (x)− F (p∗) ≥ 〈p, x− p∗〉 ∀x} denote the subdifferential of F at
p∗, see [22].

Theorem 3.1. (Analytical solutions in 1D)
Let m :=

∑n
j=1w(j) ∈ N and w(j) ∈ [0, 1], j = 1, . . . , n. Then the solutions p̂ of the

minimization problem (3) are given by

p̂k ∈

r if k − 1
2 ∈ (ar−1, ar) ,

[r, r + s] if k − 1
2 = ar = . . . = ar+s−1 6= ar+s, s ≥ 1, ar 6= ar−1.

(4)

In particular, we have that p̂k ∈ [1, n] for all k = 1, . . . ,m. If 0 ≤ w(j) < 1, j = 1, . . . , n,
then for any minimizer p̂ of (3) the relation p̂k 6= p̂l holds true for k 6= l. There always exists
a minimizer p̂ ∈ Nm with pairwise different entries.
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Proof: The functional in (3) can be minimized separately for each pk, i.e., we have to find a
minimizer p̂k of

Ek(q) :=
n∑
j=1

w(j) |q − j| + (m− (2k − 1)) q (5)

for all k = 1, . . . ,m. Note that the minimizer of the first sum on the right-hand side is the
weighted median of (j)nj=1. By Fermat’s rule, p̂k is a solution of (5) if and only if

0 ∈ ∂Ek(p̂k) =
n∑
j=1

w(j) sgn(p̂k − j) + (m− (2k − 1)),

k − 1
2
∈ m

2
+

1
2

n∑
j=1

w(j) sgn(p̂k − j), (6)

where

sgn(q) :=


−1 if q < 0,
[−1, 1] if q = 0,
1 if q > 0.

We will use that
m

2
+

1
2

 r∑
j=1

w(j)−
n∑

j=r+1

w(j)

 =
r∑
j=1

w(j) = ar. (7)

Now we distinguish two cases. For illustration the reader may have a look at Fig. 3, where
we have depicted the solution of a special problem graphically.
Case 1: Assume that k − 1

2 ∈ (ar−1, ar) for some r ∈ {1, . . . ,m}. Then we obtain by (6) and
(7) that p̂k = r.
Case 2: Assume that k− 1

2 = ar where ar 6= ar−1 and ar = . . . = ar+s−1 6= ar+s, s ≥ 1. Then
we see by (6) and (7) that p̂k ∈ [r, r + s]. The rest of the assertion follows directly from (4).

�

Figs. 4 and 5 show minimizers p̂ ∈ Nm obtained by (4) for different underlying functions
w. In Fig. 5 an interesting disadvantage of Lloyd’s algorithm can be seen for the one-
dimensional case. If the underlying image contains large uniform regions, Lloyd’s algorithm
can be incapable of bypassing these regions. The problem is, that since there is no capacity
constraint, a stable state can be reached where the sum of each Voronoi region strongly
differs. This drawback may be avoided by initializing the halftone image with a sufficient
approximation of the result where each area is initialized with about the right number of
pixels.
The attraction of the grid points disperses to the whole line if we deal with the continuous
counterpart of (3) given by

argmin
p∈Rm

m∑
k=1

n+ 1
2∫

1
2

w(x)|pk − x| dx+ (m− (2k − 1))pk. (8)
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Figure 4: Dithering results (dots) by an integer solution of (4). Left: w =
(

1
8·511 , . . . ,

511
8·511

)
and m = 32. Right: w is the ’Piece-Regular’ signal of length 128 from the WaveLab-Toolbox
and m = 38.

If we assume for example that

w(x) :=
{
w(j) x ∈ [j − 1

2 , j + 1
2),

0 otherwise,

the solution of (8) equals

argmin
p∈Rm

m∑
k=1

(
n∑
j=1
j 6=[pk]

w(j)|pk − j|) + w([pk])(pk − [pk])2 + (m− (2k − 1))pk,

where [pk] denotes the nearest grid neighbor of pk in the sense that [pk] = r ∈ Z if pk ∈
[r − 1/2, r + 1/2). Of course, (pk − [pk])2 is a weaker penalizer than |pk − [pk]|. If w(x)
is continuous, e.g., the linear interpolation between the w(j), then the solution of (8) is
given by

∫ p̂k
1
2

w(x) dx = k − 1
2 , k = 1, . . . ,m. In the example in Fig. 3 one would get with

linearly interpolated weights and Neumann boundary conditions that p̂1 = 9/14 ≈ 0.6429,
p̂2 = 59/14 ≈ 4.2143, p̂3 = 7.25 and p̂4 = 10.

Remark 3.2. (Relaxed grid attraction by linear interpolation)
To obtain our two-dimensional stippling results it will be efficient to replace a special subgra-
dient Df(q) ∈ ∂f(q) by its, e.g., bilinear interpolation at the grid points. In 1D this means
that we replace

Df(q) =
n∑
j=1

w(j)sign(q − j), sign(x) =
{

sgn(x) x 6= 0,
0 otherwise

by

f ′I(q) :=
n∑
r=1

Df(r)M2(q − r) =
n∑
j=1

w(j)
n∑
r=1

sign(r − j)M2(q − r),

where M2 denotes the centered, cardinal B-spline of order 2. Then

fI(q) =
n∑
j=1

w(j)
n∑
r=1

sign(r − j)ψ(q − r)
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Figure 5: From top to bottom: Image of a 1D signal which is repeated in vertical direction.
Results by Lloyd’s method, the method of Balzer et al. and our approach as given by (4).
We initialized the first two methods with a vector of uniformly distributed points.

with

ψ(x) :=


−1

2 x ∈ (−∞,−1),
x+ 1

2x
2 x ∈ [−1, 0),

x− 1
2x

2 x ∈ [0, 1),
1
2 x ∈ [1,∞)

and after some straightforward computation this becomes (up to a constant)

fI(q) =
n∑
j=1

w(j)|q − j|+ 1
2
w([q]) (|q − [q]| − 1)2 . (9)

In other words, the interpolated subgradient is the derivative of the functional (9), which
shows a relaxed grid attraction. Therefore, we will use it for stippling, but not for dithering.

Remark 3.3. (Capacity constraints)
As the method of Balzer et al. [4] our approach is also ’capacity constrained’. More precisely,
let w : [0, 1] → R and λ := 1

m

∫ 1
0 w(x) dx. Then we have seen that the minimizing points p̂k

of our functional are given by

p̂k∫
0

w(x) dx = λ(k − 1
2

), k = 1, . . . ,m. (10)

Now we can associate to each point p̂k the interval Ik := [γk−1, γk) determined by γ0 := 0
and

∫
Ik

w(x) dx = λ. Since
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• the intervals Ik form a tessellation of [0, 1),

• the integrals of w over the intervals Ik have the same value λ, and

• the point p̂k is an interior point of Ik for all k = 1, . . . ,m,

the method can be considered as capacity contrained. By (10) it is easy to check that

p̂k := argmin
q

∫
Ik

w(x)|x− q| dx (weighted median).

The method of Balzer et al. computes the same intervals Ik but the points are determined by

pBk := argmin
q

∫
Ik

w(x)(x− q)2 dx =

∫
Ik
xw(x) dx∫

Ik
w(x) dx

(weighted mean).

Finally note that Lloyd’s method which is not ’capacity constrained’ computes a tessellation
with ILk := [γLk−1, γ

L
k ) and the associated points pLk by using γL0 := 0 and

pLk =

∫
ILk
xw(x) dx∫

ILk
w(x) dx

, γLk =
pLk + pLk+1

2
, k = 1, . . . ,m− 1.

Consider for example the linear ramp w(x) = 2x, x ∈ [0, 1]. Then 1
16 of the integral

∫ 1
0 2x dx

lies between [0, 1
4), 3

16 between [1
4 ,

1
2), 5

16 between [1
2 ,

3
4) and 7

16 between [3
4 , 1). Now straight-

forward computation shows: If we dither the function with 64 points by our method exactly
4, 12, 20, 28 points lie in the above subintervals. In contrast, Lloyd’s algorithm distributes the
points as 10, 15, 19, 20.

4 Two-dimensional Problem

4.1 DC Programming

The functional E in (1) is the difference of the two convex functions F and G. A necessary
condition for p̂ to be a local minimizer of E is

∂G(p̂) ⊂ ∂F (p̂). (11)

For conditions on global minimizers we refer to [22]. Using (11) we can prove the following
useful property of our local minimizers.

Proposition 4.1. (Property of local minimizers of E)
Let p̂ be a local minimizer of (1) and let 0 ≤ w(i, j) < 1, (i, j) ∈ G. Then p̂k 6= p̂l holds true
for k 6= l.

Proof: If p̂ is a local minimizer of (1), then we know by (11) that

m∑
l=1

∂| · |(p̂k − p̂l) ⊂
∑

(i,j)∈G

w(i, j)∂| · |
(
p̂k −

(
i
j

))
∀k = 1, . . . ,m.
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If p̂k = p̂l, k 6= l, then the left-hand side contains an area q + {x : |x| ≤ 1} which must be
contained in the right-hand side. This is only possible if p̂k coincides with some grid point
and the corresponding weight is equal to 1. �

In general, condition (11) is hard to be reached and may be relaxed to

0 ∈ ∂CE(p̂) = ∂F (p̂)− ∂G(p̂) ⇔ ∂F (p̂) ∩ ∂G(p̂) 6= ∅, (12)

where ∂CE(p̂) denotes the Clarke subdifferential of E at p̂ given by

∂CE(p̂) :=

z ∈ R2m : 〈z, u〉 ≤ lim sup
y→p̂
t→0+

E(y + tu)− E(y)
t

∀u ∈ R2m

 ,

see [21]. A point p̂ fulfilling (12) is called a critical point due to Toland [50]. For Gâteaux-
differentiable functions F the subdifferential coincides with the gradient and the above condi-
tions (11) and (12) are the same. For our application, the following subdifferentials/gradients
at q = (qx, qy)T are of interest:

∇
(
q2
x + q2

y + ε2
) 1

2 =
1
2
q/
(
q2
x + q2

y + ε2
) 1

2 , ε > 0,

∂|q| =
{
q/|q| for q 6= 0,
{x : |x| ≤ 1} for q = 0.

The following theorem shows some useful properties of Eϕ.

Theorem 4.2. (Properties of the 2D functional Eϕ)
Let m =

∑
(i,j)∈Gw(i, j) ∈ N and ϕ : [0,∞) → R. Then the functional Eϕ in (1) has the

following properties:

i) If ϕ is concave and monotone increasing on [0,∞) and ϕ(0) is finite, then Eϕ is bounded
from below and coercive, i.e., Eϕ(p)→∞ if ‖p‖ → ∞.

ii) If ϕ grows for s→∞ as sα, α > 2, then Eϕ is not bounded from below.

iii) If ϕ(s) = s2, then Eϕ is not coercive.

Proof: i) Let us first restrict our attention to functions ϕ with ϕ(0) = 0. Let 0 ≤ a ≤ b <∞
be arbitrary points and let g(x) = c x = ϕ(a+b)

a+b x denote the line through the origin and
(a+ b, ϕ(a+ b)). Since ϕ is concave and ϕ(0) = 0 we have for λ ∈ [0, 1] that ϕ(λ(a + b)) ≥
λϕ(a+b) = λg(a+b). Setting λ := a/(a+b) and λ := b/(a+b), resp., we see that ϕ(a) ≥ g(a)
and ϕ(b) ≥ g(b) and consequently

ϕ(a) + ϕ(b) ≥ g(a) + g(b) = g(a+ b) = ϕ(a+ b).

In other words, ϕ is subadditive. Since ϕ is moreover monotone increasing, we get by the
triangle inequality for the Euclidian norm of q1, q2 ∈ R2 that

ϕ(|q1 + q2|) ≤ ϕ(|q1|+ |q2|) ≤ ϕ(|q1|) + ϕ(|q2|).

11



Using this inequality we obtain

E(p) ≥
m∑
k=1

∑
(i,j)∈G

w(i, j)
(
ϕ(|pk|)− ϕ

(∣∣∣(i
j

) ∣∣∣))− m∑
k=1

m∑
l=k+1

ϕ(|pk|) + ϕ(|pl|)

= m
m∑
k=1

ϕ(|pk|)−m
∑

(i,j)∈G

w(i, j)ϕ
(∣∣∣(i

j

) ∣∣∣)− (m− 1)
m∑
k=1

ϕ(|pk|)

=
m∑
k=1

ϕ(|pk|)−m
∑

(i,j)∈G

w(i, j)ϕ
(∣∣∣(i

j

) ∣∣∣) ≥ −m ∑
(i,j)∈G

w(i, j)ϕ
(∣∣∣(i

j

) ∣∣∣) .(13)

Hence E is bounded from below and we see that E(p)→∞ as ‖p‖ → ∞.
Finally, we can also draw the conclusions in (13) for ϕ + C with a constant C. Hence the
assertion i) holds true for ϕ with finite ϕ(0).
ii) Assume w.l.o.g. that the number m of points is even. We consider p = (pk)mk=1 with
p1 = . . . = pm/2 = q and pm/2+1 = . . . = pm = −q which leads to

Eϕ(p) =
m

2

∑
(i,j)∈G

w(i, j)
(
ϕ

(∣∣∣q − (i
j

) ∣∣∣)+ ϕ

(∣∣∣q +
(
i
j

) ∣∣∣))− (m
2

)2
ϕ(2|q|)− cϕ(0)

with some constant c. For |q| → ∞, the first sum grows as m2|q|α and the negative part
as m2 2α

4 |q|
α. Consequently, for α > 2, the function Eϕ(p) is not bounded from below as

|q| → ∞.
iii) For ϕ(s) = s2 we obtain by straightforward computation that

Eϕ(p) =
m∑
k=1

∑
(i,j)∈G

w(i, j)
∣∣∣pk − (ij

) ∣∣∣2 − m∑
k=1

m∑
l=k+1

|pk − pl|2

=

 m∑
k=1

pk,x −
∑

(i,j)∈G

i w(i, j)

2

+

 m∑
k=1

pk,y −
∑

(i,j)∈G

j w(i, j)

2

+ C

with some constant C. Thus ‖p‖ → ∞ does not imply Eϕ(p)→∞ and we are done. �

Remark 4.3. Note that the following functions ϕ : [0,∞) → R fulfill the conditions of
Theorem 4.2 i): ϕ(s) := sα, α ∈ (0, 1] and for ε > 0

ϕ(s) :=
{

log(s) for s ∈ [ε,∞)
1
ε s+ log ε− 1 for s ∈ [0, ε),

ϕ(s) :=
{
−s−α for s ∈ [ε,∞),
α

εα+1 s− α+1
εα for s ∈ [0, ε),

α > 0.

Next we are looking for algorithms to find a critical point of E. Condition (12) is equivalent
to

p̂+ µ∂F (p̂) ∈ p̂+ µ∂G(p̂), µ > 0,
p̂ ∈ (I + µ∂F )−1(I + µ∂G)(p̂), (14)

where ∂F (p̂) ∈ ∂G(p̂) means that there exists an element x ∈ ∂F (p̂) such that x ∈ ∂G(p̂).
Furthermore we have used that the resolvent (I + µ∂F )−1 of µ∂F is single-valued again, see
[2]. Hence a necessary and sufficient condition for p̂ to be a critical point of E is that p̂ is a
fixed point of (I+µ∂F )−1(I+µ∂G) in (14). The following Picard iteration is called forward–
backward splitting (FBS) algorithm, proximal point (type) algorithm [48] or Moreau–Yoshida
regularization [20].
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Algorithm (FBS for DC programming)
Initialization: p(0)

For r = 0, 1, . . . repeat until a convergence criterion is reached

v(r) ∈ ∂G(p(r)),
p(r+1) = (I + µ∂F )−1(p(r) + µ v(r)).

Note that the FBS algorithm is closely related to the DC algorithm of Pham and Souad
[39, 40] which computes iteratively

v(r) ∈ ∂G(p(r)), p(r+1) ∈ ∂F ∗(v(r)), (15)

where F ∗ denotes the conjugate function of F . If we split

E(p) =
(

1
2
‖p‖22 + µF (p)

)
︸ ︷︷ ︸

F̃ (p)

−
(

1
2
‖p‖22 + µG(p)

)
︸ ︷︷ ︸

G̃(p)

into the strongly convex parts F̃ , G̃ and use these functions instead of F,G in (15), we obtain
exactly the FBS algorithm. For continuously differentiable G there also exists a relation of
FBS to the algorithm in [34].
The following theorem ensures that convergent subsequences of {p(r)} generated by the FBS
algorithm converge to a critical point of E.

Theorem 4.4. (Convergence of the FBS algorithm for DC)
The sequence {p(r)} generated by the FBS algorithm fulfills

E(p(r+1)) ≤ E(p(r))− 1
µ
‖p(r+1) − p(r)‖22 (16)

Any convergent subsequence of {p(r)} converges to a critical point of E.

The estimate (16) was proved in [48]. By Theorem 4.2 the sequence {p(r)} generated by the
FBS algorithm is bounded so that it follows from Zangwill’s convergence theorem [57] that
any convergent subsequence converges to a critical point of E.

Finally, let us have a closer look at the FBS algorithm for our special setting. A subgradient
v(r) = (v(r)

k )mk=1 of G at p(r) is given by

v
(r)
k =

m∑
l=1

p
(r)
l
6=p(r)
k

p
(r)
k − p

(r)
l

|p(r)
k − p

(r)
l |

with the corresponding modifications if we use the ε-smoothed variant. Set y(r) := p(r)+µv(r).
Next, p(r+1) = (I + µ∂F )−1(y(r)) requires the minimization of

1
2
‖p− y(r)‖22 + µF (p)
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which can be done componentwise for each pk, i.e.,

p
(r+1)
k = argmin

q

{
1
2
‖q − y(r)

k ‖
2
2 + µf(q)

}
, k = 1, . . . ,m. (17)

Note that in one dimension this problem can be solved analytically, see [32]. The simplest
way to solve (17) numerically is to use a (sub)gradient algorithm, see [35]. If one uses only
one inner iteration the overall FBS algorithm is just a (sub)gradient algorithm applied to E:

Algorithm ((Sub)gradient algorithm applied to E)
Initialization: p(0)

For r = 0, 1, . . . repeat until a convergence criterion is reached

p
(r+1)
k = p

(r)
k − τ

 ∑
(i,j)∈G

(i,j)T 6=p(r)
k

w(i, j)
p

(r)
k −

(
i
j

)
|p(r)
k −

(
i
j

)
|
−

m∑
l=1

p
(r)
l
6=p(r)
k

p
(r)
k − p

(r)
l

|p(r)
k − p

(r)
l |

 . (18)

Remark 4.5. Another possibility to solve (17) in its differentiable variant is the Newton
method which computes in each iteration

q(s+1) = q(s) + JH(q(s))−1H(q(s)),

where

H(q) := q − y(r)
k + µ

∑
(i,j)∈G

p
(r)
k
6=(i,j)T

w(i, j)
p

(r)
k −

(
i
j

)
|p(r)
k −

(
i
j

)
|
,

JH(q)−1 :=
1

j20j02 − j2
11

(
1 + j02 −j11

−j11 1 + j20

)
,

jab := µ
∑

(i,j)∈G
q 6=(i,j)T

w(i, j)
(qx − i)a(qy − j)b

|q −
(
i
j

)
|3

, a, b ∈ {0, 1, 2}.

This requires the computation of two more sums involving w(i, j).

4.2 Fast Summation by NFFT

The above algorithms involve the computation of special sums of the form

s1(pk) :=
∑

(i,j)∈G
(i,j)T 6=pk

w(i, j)
pk −

(
i
j

)
|pk −

(
i
j

)
|

and s2(pk) :=
m∑
l=1
pl 6=pk

pk − pl
|pk − pl|

(19)

for k = 1, . . . ,m in each iteration. The straightforward computation of these sums is too
time consuming to make the algorithm work for applications with a large number m of black
pixels.
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We propose to compute the first sum by bilinear interpolation if we are looking for continuous
particle locations, see Remark 3.2. In other words, we precompute s1(s, t), (s, t) ∈ G. Since
this requires a (noncyclic) convolution of w(i, j) with i/(i2 + j2)

1
2 , such precomputation can

be computed very efficiently via 3 FFTs of size 2n× 2n in O(n2 log n) arithmetic operations.
The bilinear interpolation at the points pk, k = 1, . . . ,m requires O(m) arithmetic operations.
In this paper, we suggest to compute the second sum by fast summation methods based on the
fast Fourier transform for non-equispaced data (NFFT) developed in [13, 41]. Material about
the NFFT can be found, e.g., in [12, 42]. Alternatively one could use fast multipole methods
[8, 18], see also fast mosaic-skeleton matrix multiplication [51] or fast H-matrix multiplication
[19]. All these methods require O(m logm) arithmetic operations. Since these methods are
designed for radial kernels, i.e., for sums of the form

s(pk) :=
m∑
l=1

αlK(pk − pl) =
m∑
l=1

αlK(|pk − pl|), k = 1, . . . ,m, (20)

we decompose s2 for pk = (pk,x, pk,y) as

s2(pk) :=
m∑
l=1

pk − pl
|pk − pl|

= pk

m∑
l=1

1
|pk − pl|

−
m∑
l=1

pl
|pk − pl|

= pk

m∑
l=1

1
|pk − pl|

−
(

1
0

) m∑
l=1

pl,x
|pk − pl|

−
(

0
1

) m∑
l=1

pl,y
|pk − pl|

. (21)

Note that the first sum s1 can be decomposed similarly.
In the following, we sketch our NFFT-based summation algorithm for the computation of each
sum in (21) with the kernel K(x) = 1/|x|. For more information, including error estimates
we refer to [13, 41]. We assume that our image is centered at the origin and that the image
size is scaled by a factor

√
2(1−εB)

4n ≥ 1
4n with 0 < εB � 1 so that |pk − pl| ≤ 1−εB

2 . We
regularize K near (0, 0) and near the boundary ±1/2 in each direction to obtain a bivariate
smooth 1–periodic kernel KR in the Sobolev space Hp(T2), i.e.,

KR(x) =


KI(|x|) if |x| ∈ [0, εI2 ],
KB(|x|) if |x| ∈ [1−εB

2 , 1
2 ],

KB(1
2) if |x| ≥ 1

2 ,

K(|x|) otherwise,

with 0 < εI � 1. This regularization can be done in different ways, e.g., by two-point Taylor
interpolation with polynomials, see [13]. If p is large enough, KR can be approximated with
only a small error by its truncated Fourier series

KRF (x) :=
∑
j∈JN

bj e2πi〈j,x〉, bj :=
1
N2

∑
k∈JN

KR
(
k

N

)
e−2πi〈j,k〉/N , (22)

where JN := {−N/2, . . . , N/2 − 1} × {−N/2, . . . , N/2 − 1} for even N . In [41] the authors
propose to choose N ∼ √pm and εI ∼ 2p/N . Now the original kernel K can be written

K = (K −KR) + (KR −KRF ) + KRF = KNE + KERR + KRF .
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Since KERR is small, we approximate K by KNE +KRF and compute instead of s(pk) in (20)
the sums

s̃(pk) :=
m∑
l=1

αlKNE(pk − pl) +
m∑
l=1

αlKRF (pk − pl). (23)

Indeed this can be done in a fast way by the following two steps:

• Near field computation
Suppose that the points pk are sufficiently uniformly distributed so that each ball of
radius εI/2 contains at most a fixed number of ν points. Since |pk − pl| < 1−εB

2 and
supp(KNE)∩ [−1−εB

2 , 1−εB
2 ]× [−1−εB

2 , 1−εB
2 ] = [− εI

2 ,
εI
2 ]× [− εI

2 ,
εI
2 ] the evaluation of the

first sum in (23) requires ≤ mν, i.e., O(m) arithmetic operations.

• NFFT based summation
By (22) the second sum in (23) can be rewritten as

m∑
l=1

αlKRF (pk − pl) =
m∑
l=1

αl
∑
j∈JN

bj e2πi〈j,pk−pl〉

=
∑
j∈JN

bj

(
m∑
l=1

αl e−2πi〈j,pl〉

)
e2πi〈j,pk〉.

The expression cj , j ∈ JN in the inner brackets can be computed by a bivariate NFFT.
This will be followed by N2 multiplications with bl and completed by another bivariate
NFFT to compute the outer summation with the complex exponentials. It can be shown
that this summation procedure requires O(m logm) arithmetic operations.

Remark 4.6. The fast summation method can be applied for other kernels as well, e.g., for

s1(pk) :=
∑

(i,j)∈G

w(i, j)
pk −

(
i
j

)
|pk −

(
i
j

)
|2ε

and s2(pk) :=
m∑
l=1

pk − pl
|pk − pl|2ε

(24)

which will be used in our numerical examples for the logarithmic setting ϕ = log.

5 Numerical Examples

In this section, we demonstrate the performance of our algorithms by numerical examples.
Our algorithms were implemented in C using double precision arithmetic and tested on a dual
core desktop with two 2.4 GHz processors and 3 GB physical memory.
The numerical results were produced by the subgradient algorithm (18). Until stated oth-
erwise no smoothing parameter ε was used. Our fast summation algorithm applies the
NFFT-package from http://www-user.tu-chemnitz.de/~potts/nfft which incorporates
the FFTW. To guarantee that all points remain in the image domain during our iterative
procedure, we project back to the image domain at the end of every iteration.
We compare our stippling results with those obtained by the method of Balzer et al. [4].
The dithering results, where the points have to meet grid positions, are compared with those
computed by the algorithms of Floyd-Steinberg [14], Ostromoukhov [37], Pang et al. [38],
Zhou et al. [58] and Purgathofer et al. [43]. While implementations of the algorithms of
Ostromoukhov and Balzer et al. are freely available, we have implemented the remaining
methods from scratch.
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Remark 5.1. In particular, we compare our approach for the functional Eϕ with ϕ(s) = s
with the gradient descent algorithm for the functional Eϕ,ε with the logarithmic function
ϕ(s) = log(s). To this end, we just have to replace the involved sums by those in (24). This
approach was suggested from an electrostatical point of view in [44] and leads to qualitatively
very good results. However, also for this case our computations involve two novelties:

i) The involved large sums are computed by a fast summation algorithm on a usual PC
now instead on a Graphics Processing Unit (GPU) without fast algorithm.

ii) While the stippling results are achieved by a bilinear interpolation of the first sum, the
halftoning method, which requires point positions on the grid, is simply obtained by
applying a better approximation of the first sum. As better approximation we have
again used our fast summation approach. In [44] a more complex method including a
third function to concentrate the dots in the vicinity of the grid points was suggested.

Continuous pixel location. Our stippling results were obtained by computing the first
sum in (19), resp. (24) by bilinear interpolation which relaxes the grid attraction. The second
sum was computed by our fast summation algorithm.

Grid pixel location. To place the points at/near grid positions we need a better approx-
imation of the first sums in (19), resp. (24). In our computations, we use a fast summation
algorithm for the first sum, too, which includes NFFTs and ordinary FFTs now due to the
involved grid points

(
i
j

)
. In our computations with the logarithmic kernel we set ε := 0.2

in the first sum. Moreover, the minimization procedure for the logarithmic setting tends
to end in a local minimum yielding suboptimal results. Therefore we introduce a ’shaking
or warming procedure’: Every ten iterations, each point is moved into a random direction
with a random magnitude, where the maximal displacement ’cools down’ with an increasing
iteration number. More precisely, we set the maximal displacement at the k-th iteration to

c · e−
3k
K , c := max

(
0,

log2(3K)− 6
10

)
,

where K is the total number of iterations to be done.
In our experiments, the method with the logarithmic function places nearly all points pk at
grid positions (up to a small error), while for our method with ϕ(s) = s approximately two
third of the points lie on the grid. We push the remaining points to the nearest grid positions.

All in all, our applied dithering algorithm for ϕ(s) = s and ϕ(s) = log(s) can be summarized
as follows:

Dithering/stippling algorithm

Initialization: Initialize p(0) by choosing m different grid points such that the probability
that (i, j)T is chosen is proportional to w(i, j).

Stippling: Precompute sl,k ≈
∑

(i,j)∈G
(i,j)T 6=pk

w(i, j)
( lk)−(ij)
|( lk)−(ij)|

ϕ′
(
|
(
l
k

)
−
(
i
j

)
|
)
∀
(
l
k

)
∈ G

by fast summation.
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For r = 0, 1, . . . ,K − 1

• Compute s1(p(r)
k ) ≈

∑
(i,j)∈G

(i,j)T 6=pk

w(i, j)
p
(r)
k −(ij)

|p(r)k −(ij)|ε
ϕ′
(
|p(r)
k −

(
i
j

)
|ε
)

by either

fast summation (dithering) or bilinear interpolation of the sl,k (stippling, ε = 0).

• Compute s2(p(r)
k ) ≈

m∑
l=1

p
(r)
l
6=p(r)
k

p
(r)
k −p

(r)
l

|p(r)k −p
(r)
l |

ϕ′
(
|p(r)
k − p

(r)
l |
)

by fast summation.

• Set p
(r+1)
k = p

(r)
k − τ(s1(p(r)

k )− s2(p(r)
k )) ∀ k = 1, . . . ,m.

• Dithering: If ((r + 1) mod 10 = 0), apply shaking.

• Project all p(r+1)
k back onto the image domain G.

Dithering: Push all p(K)
k to the nearest grid positions if they are not already on the grid.

First example. In our first example, we evaluate the visual quality of the images produced
by our method in comparison with other methods both for the continuous and the grid setting
for a natural image. Fig. 6 shows the stippling results for the algorithm of Balzer et al. and
for the continuous methods with ϕ(s) = s (τ = 0.01) and ϕ(s) = log(s) (τ = 0.1). Note that
the different time step sizes τ do not mean that the first method requires more iterations than
the other since the involved sums have different magnitudes. All three methods show a good
performance. The algorithm with ϕ(s) = log(s) tends to arrange dots in large uniform regions
in an energetically optimal hexagonal structure. Such ’regularity artefacts’ which also appear
if Lloyd’s algorithm is not stopped at a suitable iteration step may attract the attention
of the observer and are therefore undesirable in some applications. In [44] an additional
jittering procedure was suggested to avoid this phenomenon. Note that with our present
implementation one iteration for this image requires a runtime of approximately a second and
one needs less than 1000 iterations to get an image with a very good visual quality.
Next, we compare various dithering approaches in Figs. 10 and 11 (left). The error diffusion
methods of Floyd and Steinberg and of Ostromoukhov show the expected disturbing patterns.
The iterative algorithm of Pang et al. with the parameters proposed in [38] has the structure
enhancing properties which are often considered as its strength but fails to approximate the
overall image very well, see Fig. 11 (left).
At a certain distance an observer should not recognize the difference between the stip-
pled/halftoned image and the original one. Therefore we analyze the Gaussian scale space
properties of our images. For this, the original and the stippled images are convolved with
a Gaussian of standard deviation σ. The results for σ = 1 are depicted in Fig. 7 together
with the differences between the convolved original image and the results. The image result-
ing from the continuous method with ϕ(s) = log(s) is superior here. As it can be seen in
Fig. 6 (top right), the algorithm of Balzer et al. produces some artefacts at the boundary.
Therefore, for comparing the scale space properties, we mirrored the image prior to the ap-
plication of the method of Balzer et al. and applied the Gaussian blurring to the resulting
image. Nevertheless, our method with ϕ(s) = s gives a better result then those of Balzer
et al. Finally, Figs. 8 and 9 compare the Peak Signal to Noise Ratio (PSNR) between the
convolved stippled/dithered and original images for increasing standard deviations σ. The
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Figure 6: Top left: Original 256 × 256 image. Top right: Stippling result by the algorithm
of Balzer et al. Bottom: Stippling results by the continuous method with ϕ(s) = s (left) and
ϕ(s) = log(s) (right). Here we use m = 30150 points.

above findings were confirmed by this plot. For a reference image u and the computed image
ũ the PSNR is defined by

PSNR := 20 log10

(
1√
MSE

)
, MSE :=

1
nxny

∑
(i,j)∈G

(u(i, j)− ũ(i, j))2 .

Second example. In our second example, we dither a Gaussian of standard deviation
σ = 40. Fig. 12 shows the results for the stippling methods. All three methods perform
very well. We added the PSNR versus standard deviation plot in Fig. 14. Next, Figs. 13
and 11 (right) contain the results for the various dithering methods. As we see here, the
Floyd-Steinberg method cannot keep the rotation invariance of the Gaussian. Moreover,
some artefacts at special gray values are visible. Ostromoukhov’s approach and the algorithm
of Zhou et al. perform better, but there is still a lack in rotation invariance and there are
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artefacts at special gray values in Ostromoukhov’s algorithm. The method of Purgathofer et
al. spreads the pixels too much. The result for the method of Pang et al. with the parameters
proposed in [38] shows again that the good structure preservation of the algorithm is paid
with a lack in tone preservation. The scale space behavior of the various dithering results for
the Gaussian can be found in Fig. 15.

Third example. In our third example, we distribute black pixels equally within an image of
constant gray value uc ∈ [0, 1] by our methods. It is generally accepted that the ideal halftone
image has a special blue noise spectrum [52, 53]. To this end, the Fourier spectrum of the
dithered image without its lowest frequency coefficient (in other words, the Fourier spectrum
of the difference between the dithered image and the original one) is radially averaged which
ideally results in the curve depicted in Fig. 16. The curve shows a low energy content up
to the principal frequency fp :=

√
0.5− |uc − 0.5|, where a sharp transition region occurs.

Above this frequency blue noise behavior is visible, but much lower than the peak. Fig. 17
shows the results obtained by the stippling method with ϕ(s) = s and ϕ(s) = log(s), and by
its dithering variants together with the corresponding blue noise spectrum. For robustness
we have averaged the power spectra of ten randomly selected patches with a sufficient dis-
tance to the image boundary as it is common, see [6]. For the blue noise behavior of other
stippling/dithering methods we refer to [44].

Remark 5.2. We like to stress that optional extensions like edge enhancement by applying
a preprocessing step to the initial image u, different pixel sizes by varying m, resp. λ or the
extension to the case of RGB or CMY color models by treating the channels separately can
be included in our computations without difficulties. An example for a color image is given
in Fig. 18.

6 Conclusions

This paper is a first attempt to treat the problem of halftoning as a global optimization
problem of the form (1). We have proved some facts concerning this functional with ϕ(s) = s,
but there remain various questions starting from the appropriate choice of the functional ϕ
and its properties up to algorithms to find a local/global minimizer. It would be interesting
if other functions as, e.g., those considered in [36] are also useful in our context. In this
paper, we have combined a simple subgradient algorithm with a fast summation algorithm
for radial kernels. However, we have sketched that other algorithms, e.g., an FBS method
applied to the ordinary splitting of E together with a Newton method for the inner iterations
can be used as well. We remark that there may also work a Weiszfeld–like algorithm. The
Weiszfeld algorithm and its modified/accelerated versions are the best–known algorithms for
solving the problem of the spatial median [27, 56]. The examination of different algorithmical
approaches in connection with the appropriate adaptation of our fast summation algorithm is
object of future research. To this end, we have to further speed up our adapted fast summation
algorithm. In [44] some of the authors have implemented the electrostatic halftoning on a
Graphics Processing Units (GPU). In our future work we plan to combine our fast summation
algorithm with GPU programming. Moreover, we have shown that our method can also be
applied for color images by processing each channel separately. The coupled treatment of the
channels will be a further topic of future research.
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[43] W. Purgathofer, R. F. Tobler, and M. Geiler. Forced random dithering: Improved thresh-
old matrices for ordered dithering. In Proceedings of 1st IEEE International Conference
on Image Processing, volume 2, pages 1032–1035, Austin, Texas, 1994.

[44] C. Schmaltz, P. Gwosdek, A. Bruhn, and J. Weickert. Electrostatic halftoning. Computer
Graphics Forum, EarlyView, May 2010.

[45] A. Secord. Weighted Voronoi stippling. In Proceedings of the 2nd International Sympo-
sium on Non-Photorealistic Animation and Rendering, pages 37–43. ACM Press, 2002.

[46] R. L. Stevenson and G. R. Arce. Binary display of hexagonally sampled continuous-tone
images. Journal of the Optical Society of America, A 2(7):1009–1013, 1985.

[47] P. Stucki. MECCA - a multiple-error correcting computation algorithm for bilevel hard-
copy reproduction. Tech. Report RZ1060, IBM Research Lab, Zürich, Switzerland, 1981.
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Figure 7: Stippled images convolved with a Gaussian of standard deviation σ = 1 (left)
and the error between the convolved original and stippled images (right). Top: Method of
Balzer et al. Middle: Continuous method with ϕ(s) = s. Bottom: Continuous method with
ϕ(s) = log(s).
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Figure 8: PSNR for stippling results in Fig. 6 under the convolution with Gaussians of various
standard deviations σ.
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Figure 9: PSNR for dithering results in Figs. 10 and 11 under the convolution with Gaussians
of various standard deviations σ.
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Figure 10: Dithering results by our grid method with ϕ(s) = s (top left) and ϕ(s) = log(s)
(top right), the Floyd-Steinberg algorithm (middle left), Ostromoukhov’s algorithm (middle
right), the algorithm of Purgathofer et al. (bottom left) and the algorithm of Zhou et al.
(bottom right).
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Figure 11: Dithering results by the algorithm of Pang et al. with the parameter setting
proposed in [38] for the image in Fig. 6 (left) and the Gaussian in Fig. 12 (right).
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Figure 12: Top left: Original 256 × 256 image. Top right: Stippling result by the algorithm
of Balzer et al. Bottom: Stippling results by the continuous method with ϕ(s) = s (left) and
ϕ(s) = log(s) (right). Here we use m = 10023 points.
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Figure 13: Dithering results by our grid method with ϕ(s) = s (top left) and ϕ(s) = log(s)
(top right), the Floyd-Steinberg algorithm (middle left), Ostromoukhov’s algorithm (middle
right), the algorithm of Purgathofer et al. (bottom left), the algorithm of Zhou et al. (bottom
right).
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Figure 14: PSNR for stippling results in Fig. 12 under the convolution with Gaussians of
various standard deviations σ.
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Figure 15: PSNR for dithering results in Figs. 13 and 11 under the convolution with Gaussians
of various standard deviations σ.
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Figure 16: Blue noise behavior of an ideal halftone image proposed in [52, 53].
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Figure 17: Results for an 512 × 512 image of constant gray value uc = 0.85 obtained by the
stippling method for ϕ(s) = s and ϕ(s) = log(s) and by their discrete dithering versions
(left to right). Here m = 39322 points were used. Top: Zoom into the point distributions.
Bottom: Radially averaged power spectrum (upper graph) and the anisotropy of the power
spectrum in decibels (lower graph).
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Figure 18: Top left: Original color image of size 300× 200. Top right: Stippling result by the
algorithm of Balzer et al. Bottom: Stippling results by the continuous method with ϕ(s) = s
(left) and ϕ(s) = log(s) (right). To obtain the results we applied the CMY color model and
treated each channel separately using (39184, 37646, 33019) points.
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