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AbstractRe
ectivity measurements are used in thin �lm investigations for determining the densityand the thickness of layered structures and the roughness of external and internal surfaces.From the mathematical point of view the deduction of these parameters from a measuredre
ectivity curve represents an inverse problem. At present, curve �tting procedures, basedto a large extent on expert knowledge are commonly used in practice. These techniquesare very time consuming and su�er from a low degree of automation.In this paper, we present a new method for the evaluation of re
ectivity curves bythe sparse approximation of multivariate vector{valued function mapping the re
ectiv-ity curves directly onto the thin �lm parameter set. This is the �rst method which solvesthe problem in a reasonable amount of time. Our approach utilizes an extended versionof the optical matrix method as well as support vector machines for regression working inparallel. The solution of the corresponding quadratic programming problem makes use ofthe SVMTorch algorithm.We present numerical investigations to assess the performance of our method using modelsof practical relevance. It is concluded that the approximation by support vector machinesrepresents a very promising tool in X{ray re
ectivity investigations and seems also to beapplicable for a much broader range of parameter detection problems in X{ray analysis.1991 Mathematics Subject Classi�cation. 49N10, 49N45, 41A63, 41A30.Key words and phrases. Support vector machines, reproducing kernel Hilbert spaces, radialbasis functions, X{ray re
ectometry, optical matrix method1 IntroductionThin �lms appear in various �elds of technology such as conductor line materials in integratedcircuits, di�usion barriers or anticorrosion coatings, antire
ection coatings in optics, andmagnetooptic storages. Three important parameters for characterizing thin �lms are thedensity, the thickness, and the roughness of the surface. The re
ectometry, i.e., the utilizationof the X{ray re
ectivity curve obtained at grazing incidences is an established non{destructivemethod for determining these parameters which is widely used in practical environments.1The work of the �rst two authors has been partially supported by Deutsche Forschungsgemeinschaft, GrantSch 457/5{1. 1



This method involves two types of re
ectivity curves. One curve is measured by hardware,see Figure 1, mainly build on the basis of conventional powder di�ractometers and the otherone is simulated by a physical model using a set of assumed model parameters.
Figure 1: Setup for X{ray re
ectivity measurementsUp to now, the measured and the simulated curves are �tted in an interactive trial and errorprocedure of changing the model parameters and comparing the concurrence of the curves,see [1]. This procedure is mainly based on expert knowledge and su�ers from a low degreeof automation. Therefore, the evaluation of re
ectivity curves is very time consuming andstrongly depends on the skills of the practitioner who evaluates the curves.In this paper, we present a new method for the evaluation of re
ectivity curves by the sparseapproximation of multivariate vector{valued function mapping the re
ectivity curves directlyonto the thin �lm parameter set. This is the �rst method that approaches the detection bymultivariate approximation instead of curve �tting and that solves the problem in a reasonableamont of time, i.e., in seconds instead of days. Our approach utilizes an extended version ofthe optical matrix method [4, 5, 6] to provide a sampling of the unknown function as well asparallel working support vector machines (SVMs) for regression working. SVMs were recentlyintroduced by Vapnik [7] in statistical learning theory and have found wide applications forsolving machine learning tasks such as regression, classi�cation and novelty detection. Incontrast to other multivariate approximation schemes such as feed forward backpropagationnetworks [8], SVMs guarantee a global solution and lead in general to a sparse approximationof the unknown function.As we apply the optical matrix method to gain a sampling of the unknown function, weare independent from measured data and can generate a large set of training associations.However, this results in large{scale quadratic programming (QP) problems [2, 3, 7, 9]. Fortheir solution, we apply the very recently developed SVMTorch algorithm [10, 11] which canhandle such large{scale problems.The major advantage of our method is that it o�ers a full automation of the evaluation ofre
ectivity curves. Expert intervention is only involved for determining a few parameters forthe raised QP problems. For routine applications, we have only a limited number of possiblesample constitutions which have to be analyzed. Thus the QP problems must be solvedonly once for a particular specimen constitution and the results can be stored for subsequentanalysis. Due to our di�erent approach, the evaluation of a re
ectivity curves needs less thanone second instead of hours in the conventional approach.The performance of our approach is veri�ed using simulated and measured data. In particular,we investigate a three{layer and four{layer model based on practical samples. We show thatour method provides a good approximation of the underlying mapping.This paper is organized as follows: Section 2 introduces the OMM which will provide ourtraining set of associations. In Section 3, we deal with the mathematical modelling of theproblem, in particular, with the SVM approach with respect to our setting. In Section 4 we2



present some numerical investigations showing the performance of our scheme. Conclusionsof the paper are given in Section 5.2 The Optical Matrix MethodThe OMM is an established technique to model the re
ectivity of thin �lms. The methodgoes back to Kiessig [12] who investigated the dispersion of X{rays of di�erent wavelengthin thin nickel �lms and showed that X{rays can be treated similar to the re
ection of visiblelight. It was generalized by Parratt [4] who extended the results of Kiessig for multilayerpackages. In the following we introduce the OMM with a further extension by including thesurface roughness according to N�evot and Croce [5, 6].Let us consider the re
ection of X{rays at an interface of two media �rst. This can be describedby the model of a planar electromagnetic wave hitting an ideal interface (mathematical plane).See Figure 2.
Figure 2: Refraction of a planar electromagnetic wave at an interface between two uniformhomogeneous media (�{polarization) where kj: wave vector, Ej: electric �eld vector, Bj :magnetic �eld vector, nj: refractive index of medium j, 
j: angle between interface and wavevector kj (j = 1; 2). The re
ected vectors with their corresponding angles are prime marked.Crossing the interface between the media, the X{rays are refracted according to Snell's lawcos 
1cos 
2 = n2n1 ; (1)where nj denotes the refractive index of medium j and 
j the angle between the interface andthe wave vector kj (j = 1; 2).For electromagnetic radiation belonging to the X{ray range, the refractive index n in matteris smaller than 1 and can be expressed asn = 1� � � i�: (2)Here � and � are the dispersive correction and the absorptive correction, respectively. Typicalvalues are � � 10�5 and � � 10�7. These corrections are proportional to the mass density �of the medium.If the angle 
2 becomes zero, then the beam is totally re
ected and medium 2 behaves likea perfect mirror. The corresponding angle 
1 is called the critical angle 
c and we have thatcos 
c = n2=n1. See also the upper picture of Figure 4. If we consider the transition fromvacuum (n1 = 1) to matter (n2 < 1) and neglect the absorptive correction �, then we obtainby (2) that cos 
c � 1� 
2c =2 = 1� �2, i.e., 
c � p2�2. Thus, given 
c, we can determine therefractive index of the medium and the mass density, respectively.3



Figure 3: Multilayer consisting of J layers. Êj (j = 1; 2; : : : ; J) represents the amplitude ofelectrical �eld in the middle of layer j.The intensities of re
ected and refracted electromagnetic waves at an ideal interface are de-scribed by the Fresnel equations in classical electrodynamics, cf. [13]. At grazing incidence(small angles of 
1) the polarization plays no role and we can turn to a scalar consideration.If Ê denotes the amplitude of the electric �eld, the Fresnel re
ection coe�cient rF and thetransmission coe�cient tF are given byrF = Ê01Ê1 = 
1 � 
2
1 + 
2 ; (3)tF = Ê2Ê1 = 2
1
1 + 
2 : (4)The re
ectivity � is �nally de�ned as squared ratio of the re
ected and incident �eld ampli-tudes, i.e., � = r2F . Note, that with this de�nition it also holds that � = I 01=I1, where I 01represents the re
ected and I1 the incident intensity.A main application of the X{ray re
ectometry is the characterization of multilayer packageson substrate. In the following, we consider a multilayer package consisting of J layers. Herethe �rst layer represents the vacuum and the last layer is the substrate. These layers arecharacterized by their refractive index nj, their thickness �j, their mass density �j and by theroughness �j of the interface between consecutive layers j and j +1, see Figure 3. Note, thatwe included the surface / interface roughness which is, in short, the standard deviation fromthe mean height of a rough surface. As described, we have a transmission and re
ection of theincident beam above some angle 
c at an interface. Since the re
ected beams are coherent,they interfere and modulate the re
ectivity � of the multilayer package as a function of theincidence angle 
 = 
1 in a characteristic manner. See [6] for detailed treatments.Again, we have by Snell's relation (1) thatcos 
jcos 
 = n1nj4



so that the angles 
j are determined by the incidence angle and by the refractive indices ofthe media.Given the parameters above of the layers, the re
ectivity �(
) of the whole multilayer packagecan be calculated by the OMM:Let k0 denote the absolute value of the vacuum wave vector. Then the relation between theamplitudes Êj, Ê0j and Êj+1, Ê0j+1 in the middle of the j{th and (j+1){th layer, respectively,reads  ÊjÊ0j ! = R(j;j+1) Êj+1Ê0j+1 ! ; (5)where the entries of the transition matrix R(j;j+1) are given by [6]R(j;j+1)11 = 
j+
j+12
j e� 12k20(
j�
j+1)2�2j+1 e�i k02 (
j�j+
j+1�j+1) ;R(j;j+1)12 = 
j�
j+12
j e� 12k20(
j+
j+1)2�2j+1 e�i k02 (
j�j�
j+1�j+1) ;R(j;j+1)21 = 
j�
j+12
j e� 12k20(
j+
j+1)2�2j+1 ei k02 (
j�j�
j+1�j+1) ;R(j;j+1)22 = 
j+
j+12
j e� 12k20(
j�
j+1)2�2j+1 ei k02 (
j�j+
j+1�j+1) :The �rst factors on the right{hand side of the equations above stem from the Fresnel equations(3), (4). The exponential terms in the middle represent the damping due to the interfaceroughness. The last terms carry the shifts in phase, depending on the thickness of the layer.They mainly describe the interference of the rays re
ected at the various interfaces. Thesubstrate is considered as in�nitely thick, i.e., Ê0J equals zero. Now successive application of(5) yields for the amplitudes in the vacuum� Ê1Ê01 � = R(1;2)R(2;3) � � �R(J�1;J)� ÊJ0 � : (6)Finally, the re
ectivity of the whole multilayer package can be obtained by� =  Ê01Ê1!2 : (7)Figure 4 shows the re
ectivity � = �(
) (
 2 [0�; 3�]) simulated by the OMM for a �xedmultilayer package consisting of vacuum, molybdenum, silicon oxide, silicon substrate, i.e.,J = 4. Note that there is no abrupt cross{over from total re
ection to transition. This is dueto the absorption which smears an abrupt change. Thus, an angle 
c can hardly be de�nedin presence of strong absorption. Without absorption, the re
ectivity would be 1 below acritical angle 
c. More information about the morphological analysis of re
ectivity curves canbe found in [14].3 The Support Vector Machine ApproachIn this section, we introduce the SVM approach with respect to our problem. For a moredetailed treatment of SVMs we refer to standard literature on this topic, e.g., [7].As in the previous section we consider a multilayer package consisting of J layers. We areinterested in determining the thickness �j , the mass density �j and the roughness �j (j =5



Figure 4: An exemplary re
ectivity curve for J = 4 simulated by the OMM.2; : : : ; J�1) from the re
ectivity �m = �m(
) measured for di�erent incidence angles 
 2 [0; �].Note that we have indeed only J � 2 layers of interest since the parameters of vacuum andsubstrate are known. Let L = 3(J � 2). Set � = (�2; : : : ; �J�1)T , � = (�2; : : : ; �J�1)T and� = (�2; : : : ; �J�1)T . For 
k = �kN�1 (k = 0; : : : ; N � 1), let �m = (�m(
0); : : : ; �m(
N�1))T .Up to now, the following time consuming interactive trial and error technique was mainlyused to solve the problem above: Choose � , � and � and compute � : RL ! RN� = �(� ;�;�) = (�(
k; � ;�;�))N�1k=0 T (8)by the OMM. Compare � and �m. If � is a "good" approximation of the measured vector�m, then associate the parameters � , � and � with the multilayer package, otherwise selectother parameters and repeat the procedure. Unfortunately, this technique is to a large extentbased on expert knowledge since �tting algorithms can only be used for a re�nement of the'handmade �t' [1]. Thus, this technique su�ers from a low degree of automation and can betime consuming.In the following, we propose an approach by SVMs which seems to be superior to other possibleautomation methods, e.g., FFBNs [8], for our purposes. FFBNs were already used to solveinverse problems in X{ray analysis, e.g., Long et al. [15] applied FFBNs for the identi�cationof 
uorescence spectra and Wern and Ringeisen [16] used them for the evaluation of residualstrain/stress gradients from X{ray di�raction data. However, these networks su�er from twomajor drawbacks: they can be trapped into local minima during learning and their architecturemust be determined empirically.In contrast to FFBNs the SVM complexity depends on the data. There are only a few pa-rameters to adjust. Training a SVM requires the solution of a QP problem which yields aglobal solution. Furthermore, training a SVM does not depend directly on the dimensionalityof the input space. In general, SVMs provide a sparse approximation of the unknown func-tion so that we can e�ciently evaluate the approximate function. Due to the 
exible kernelsubstitution, a variety of approximation schemes can be implemented by SVMs.6



Assume that we are given a set of M associationsf(�i;pi) 2 RN � RL : i = 1; : : : ;Mgwhere pi = (� i;�i;�i) and �i = (�(
1;pi); : : : ; �(
N�1;pi))T . Note that we can provide alarge number of associations by using the OMM. We are interested in a function F : RN ! RLso that F(�i) approximates pi (i = 1; : : : ;M), i.e, we want to approximate the inverse of �in (8). We intend to determine the functions Fl (l = 1; : : : ; L) of the vector{valued functionF simultaneously.To avoid multiindices, we �x l 2 f1; : : : ; Lg in the following and setf(�) = Fl(�); yl = pi;l :Our SVM introduction follows mainly the lines of Wahba [9].Let K(�; �) be a positive de�nite function on RN � RN and let HK denote the reproducingkernel Hilbert space (RKHS) with reproducing kernel K. For more information on RKHSsee [17]. Suppose that we are given a set of training data (�i; yi) (i = 1; : : : ;M). Setf = (f1; : : : ; fM )T , where fi = f(�i).We are interested in �nding a function f = f� of the form h + d (h 2 HK ; d 2 R) whichminimizes � MXi=1 V�(yi � fi) + 12 jjhjj2HK ; (9)where V�(x) = max f0; jxj � �gdenotes Vapnik's �{insensitive loss function [7]. By the Representer Theorem [18, 9] theminimizer of (9) can be written in the formf(�) = MXj=1 cjK(�;�j) + d (10)so that f = Kc+ de: (11)Here K = (K(�i;�j))Mi;j=1, c = (c1; : : : ; cM )T and e denotes the vector with M entries 1.Using this notation we are looking for c 2 RM and d 2 R minimizing� MXi=1 V�(yi � fi) + 12 cTKc:This is equivalent to the following constraint optimization problemminc;d;u;u� � (eTu+ eTu�) + 12 cTKc (12)subject to u � 0; u� � 0;y �Kc� de � �e+ u;�y+Kc+ de � �e+ u�:7



The dual problem with Lagrange multipliers �;��;�;�� readsmaxc;d;u;u�;�;��;�;�� L(c; d;u;u�;�;��;�;��)L(c; d;u;u�;�;��;�;��) = �(eTu+ eTu�) + 12 cTKc� �Tu� ��Tu���T (�e+ u� y +Kc+ de)���T (�e+ u� + y� �Kc� de)subject to @L@c = 0; @L@u = 0; @L@u� = 0; @L@d = 0; (13)� � 0; �� � 0; � � 0; �� � 0:Now 0 = @L@c = Kc�K�+K�� implies thatc = ���� :Further, by @L@u = 0 and @L@u� = 0 it follows � = �e � � and �� = �e � ��, respectively.Finally, @L@d = 0 can be rewritten as eT (� � ��) = 0. Then the optimization above problembecomes max�;�� �12(����)TK(����)� �eT (�+��) + yT (����) (14)subject to eT (����) = 0 ;0 � �;�� � �e :This QP problem is usually solved in SVM literature. It requires resources of order M2, see(14). Thus, it can be very challenging for standard QP{routines if M becomes large. On theother hand, the set of training associations should be large to provide a good sampling ofthe unknown function. Recently, the so{called SVMTorch algorithm has been introduced byCollobert and Bengio [10, 11] for solving large{scale problems. Based on an idea in [19], inevery iteration step of SVMTorch a small subset of variables is selected as working set and theQP problem is solved with respect to this working set. If the working set consists only of twovariables, the partial QP problems can be solved analytically. Working sets of two variableswere also used for classi�cation tasks in the so{called Sequential Minimal Optimization [20]and for regression in [21]. These working sets often imply a faster convergence of the QPalgorithm than larger sets [11]. The decision rule for the choice of the working set goes backto [22] and was used in [23] for classi�cation problems. Furthermore, a shrinking phase isused to exclude variables that are stuck to 0 or � for a longer phase of iterations so thatthese variables will probably not change anymore. These variables can be removed fromthe optimization problem such that a more e�cient overall optimization is obtained. If noshrinking is used, the convergence of the SVMTorch algorithm was proved in [24] for a workingset of size two and for an arbitrary working set in [25] under some restrictions.Once we have computed � and ��, we obtain the functionf(�) = MXj=1K(�;�j)(�j � ��j ) + d: (15)8



The support vectors are those K(�;�j) for which �j � ��j 6= 0, i.e., since �j ��j = 0 (i =1; : : : ;M), those for which �j > 0 or ��j > 0. Only the summands in (15) including supportvectors do not vanish.With respect to the computation of the constant d we notice the following: The Kuhn{Tuckerconditions in (12) are satis�ed by�i(�+ uk � yk + fk) = 0;��i (�+ u�k + yk � fk) = 0;(�� �i)ui = 0;(�� ��i )u�i = 0:Thus, we have for 0 < �i < � that ui = 0 and consequently that fi = yi � �. By (15) weobtain fi = MXj=1K(�i;�j)(�j � ��j ) + d = yi � � ;which implies d = yi � �� MPj=1K(�i;�j)(�j � ��j ).4 Numerical InvestigationIn this section we present some numerical investigations for assessing the performance of ourSVM approach. First of all, we emphasize that the constitution of the specimen to be analyzedis known a priori. Thus, we know the bulk values of the mass densities. The thickness androughness depend on the production process and lower and upper limits are also known suchthat the physical domain of admissible parameters can be bounded prior the investigation.In other words, for a given specimen the ranges of Fl (l = 1; : : : ; L) are bounded intervalsIl = [al; bl], where al; bl 2 R. Of course, tight bounds lead to a problem that is much easierto treat. A specimen independent approximation seems to be infeasible since the range ofphysically admissible values becomes too large.The accuracy of approximation can be slacked by the insensitivity �l for the individual param-eter since a perfect match between the physical specimen parameters and the ones deducedfrom the OMM simulation can not be achieved in practice due to measurement inaccuraciesand discrepancies from theoretical model assumptions. Unfortunately, such e�ects are notgiven quantitatively so far and recent results on the choice of �l, e.g., based on noise models[26], cannot be applied here. Therefore, the insensitivity can only be estimated by expertexperience.With respect to our (ideal) synthetic data we choose a very large constant � which approxi-mates in�nity, here � = 1010. In this way, we obtain a vector{valued function F with elementsFl = hl + dl (hl 2 HK ; dl 2 R; l = 1; : : : ; L) having at most a deviation of �l from the target�lm parameters of the simulated curve. Note that �l heavily determines the degree of sparsityof the representation of Fl.Another issue is the choice of the reproducing kernel K(�; �). Here we follow the proposalof Smola and Sch�olkopf [27] to use Gaussian kernels, i.e., K(x;y) = e� 1s2 jjx�yjj22 if thereonly exists a general smoothness assumption about the mapping. However, Gaussian kernelsinvolve the Euclidean distance between the morphological features of two distinct curves. Dueto the characteristic cross{over from total re
ection to penetration in re
ectivity curves, this9



distance measure is highly sensitive to morphological dissimilarities near the critical angle. Onthe other hand, dissimilarities for larger incident angles do nearly not in
uence the evaluationalthough they are not necessarily of minor importance. For weighting the morphologicalfeatures more balanced, we work with p�, i.e., with the Fresnel re
ection coe�cient rF (3)instead of the re
ectivity. Hence the kernel evaluation becomesK(�;�j) = e� 1s2 PN�1k=0 (p�k�p�k;j)2 : (16)The constant s is a free parameter and must be determined empirically. Here we make useof the fact that small values of s lead to a fast convergence of the algorithm but result in anover�tting. Cristianini et al. [28] used this fact for dynamically adapting s during SVM learn-ing for classi�cation tasks. We begin with small values and then successively increase s untila satisfactory result is obtained on a test set separated from the learning set of associations.Using this technique, we have that s 2 [1; 20] in the subsequent experiments.For our investigation, let us �rst consider a model with J = 3 layers consisting of a molybde-num �lm between vacuum and silicon substrate with �3 = 2:2g=cm3 and �3 = 7�A. We use atraining set of M = 5000 associations f(� i;pi) 2 RN �R3 : i = 1; : : : ;Mg provided by OMMsimulations �i with � = 2, N = 1000, and uniformly distributed random numbers as modelparameters pi;l 2 Il (l = 1; : : : ; L). The resulting QP problems are solved by employing theSVMTorch method sketched in the previous section with a working set of size two. Note thatshrinking can signi�cantly speed up the calculation. The price we have to pay is the uncer-tainty whether the algorithm converges to the desired solution or not. Therefore, if shrinkingis used the results should be controlled on the training set. In our numerical experiments itis controlled that shrinking does not a�ect the results, i.e., the error on the training set iswithin the prede�ned �l bound.For assessing the generalization performance of our scheme and the quality of our approxi-mation we use an independent test set f(~� i; ~pi) 2 RN � R3 : i = 1; : : : ; Tg of T = 10000associations generated with uniformly distributed random numbers ~pi;l 2 Il as model param-eters and the corresponding OMM simulations ~�i, where again � = 2 and N = 1000. Let usintroduce the following error notation with respect to �l�i;l = max f0; jFl(~�i)� ~pi;lj � �lg (i = 1; : : : ; T )with mean �l = 1T TXi=1 �i;land maximum �̂l = maxi=1;::: ;Tf�i;lg:The results as well as the a priori given interval Il, the insensitivity �l, and the number ofsupport vectors (NSV) are given in Table 1. For the density, the interval is given by a2 =0:7bulk and b2 = bulk. As noticeable, �l is small and also �̂l is within tolerable bounds withrespect to the range bl � al. Thus, we have indeed found a function F which re
ects well thedependency of the thin �lm parameters on the corresponding re
ectivity curve simulated bythe OMM. Note, that there is great variance in the NSVs which indicates how the complexityof the SVMs is individually adapted to the particular mappings Fl (l = 1; : : : ; L). Especially,the mass density of the �rst �lm can be represented by a simple model due to its direct relation10



parameter al bl �l �l STD �̂l NSV�2 [�A] 502 754 5.0 0.07 0.28 6.41 782�2 [g=cm3] 7.14 10.2 0.1 8 � 10�5 5 � 10�4 0.007 24�2 [�A] 0 10.0 0.2 0.067 0.12 1.22 801Table 1: Results for an independent random test set of T = 10000 re
ectivity curves for amodel with J = 3 layers. Here the mean �l is given with the standard deviation (STD). Note,that thickness and roughness is given in �Angstr�om where 1�A=10�10m.to the cross{over from total re
ection to penetration, i.e., the most signi�cant morphologicalfeature of the curve.A specimen consisting of the layers described above was also investigated by using the SiemensD500 X{ray di�ractometer equipped with a knife edge for re
ectivity measurements. Thesetup is shown schematically in Figure 1.The resulting re
ectivity curve �(m) is shown in Figure 5 by the scattered points. Here weplotted r(m)F = p�(m) since this information is evaluated by the SVMs with Gaussian kerneldue to (16). The evaluation of our computed function F for this curve yieldsF(�(m)) = �631�A; 8:60g=cm3 ; 7:89�A�T :

Figure 5: Comparison of a measured re
ectivity curve and corresponding OMM simulationusing the map F.Substituting this results in the OMM, the solid curve in Figure 5 is obtained. As noticeable,the measured and simulated curves o�er a high degree of concurrence. The evaluation of thiscurve needs less than one second. In comparison, the conventional approach needs approxi-mately one hour by an expert using a standard interactive trail and error �tting package toobtain a comparable result. Note that this is only a coarse guide value as the evaluation timein the conventional trail and error procedure depends on several non{objective factors, e.g.,11



the guessed initial parameters.Let us now consider a model with J = 4 layers consisting of a metastable solution of oxygen inmolybdenum (second layer) and a silicon oxide �lm (third layer) between vacuum and siliconsubstrate with �4 = 2:32g=cm3 and �4 = 10�A. For instance, such layers are used for realizingdi�usion barriers. Here we stick to the very same settings described above for generatingthe training and test set, respectively, which allow us to compare the results. To be moreprecise, we have a training set of M = 5000 associations f(� i;pi) 2 RN � R6 : i = 1; : : : ;Mgprovided by OMM simulations �i with � = 2, N = 1000, and uniformly distributed randomnumbers as model parameters pi;l 2 Il (l = 1; : : : ; L) and a corresponding independent testset f(~� i; ~pi) 2 RN � R6 : i = 1; : : : ; Tg of T = 10000 associations. For the density we haveagain that al = 0:7bulk and bl = bulk (l = 2; 3). The other intervals corresponding to thisspecimen are given in Table 2 with the results of the analysis. Here our method o�ers nearlyparameter al bl �l �l STD �̂l NSV�2 [�A] 80 120 1 6 � 10�4 0.01 0.38 41�3 [�A] 400 600 5 1.71 4.08 39.00 2267�2 [g=cm3] 6 8.58 0.086 1.1 �10�3 2:0 � 10�3 0.01 22�3 [g=cm3] 1.54 2.20 0.022 1:1 � 10�3 2:6 � 10�3 0.04 581�2 [�A] 0 10.0 0.2 0.028 0.06 0.79 1182�3 [�A] 0 10.0 0.2 0.058 0.11 1.14 1950Table 2: Results for an independent random test set of T = 10000 re
ectivity curves for amodel with J = 4 layers.the same performance as for the simpler system analyzed before. One exception is �3 whichyields a relatively large maximal error. However, the mean error is even here within tolerablebounds. As before, we have found a function F which re
ects the dependency.Note, that we have a low contrast of the silicon oxide layer with respect to the silicon substrate,i.e., the di�erence of the electron densities is low. For this reason, the re
ectivity curve isrelatively insensitive to the parameters of the silicon oxide layer, leading to an increasedcomplexity, i.e., a larger NSVs, of the underlying mappings for the third layer as comparedto the second layer.5 ConclusionsWe presented a new method for detecting the parameters of thin �lms from their re
ectivitycurves by the sparse approximation of a vector{valued function. For this, we merged recentadvances in applied physics, machine learning, and optimization theory to obtain a hybridscheme consisting of an extended version of the optical matrix method and support vectormachines working in parallel. We investigated a three{layer and a four{layer model. Ourmethod with 5000 training associations exhibited a good approximation of the underlyingmapping for a large test set of 10000 simulated curves in both cases.We conclude that our method represents a powerful scheme for the evaluation of X{ray re
ec-tivity curves since it leads to a full automation and extraordinary reduction of the evaluationtime. Apart from our application, we have shown that support vector machines may invert12



well complex mathematical models with a high precision on a prede�ned domain. The use ofthe �{insensitive cost function guarantees that only the data needed for constructing an in-version hypothesis is kept and all the useless data is discarded. An application of this methodfor a broader range of parameter detection problems in X{ray analysis seems to be promising.Our approach is novel to the �eld of re
ectometry from its statement and cannot be foundedon any results obtained before. Therefore, some constants given here by heuristics are �rstattempts and can, of course, not be seen as optimal in general. We also hope that furtherinterdisciplinary research will illuminate some relations of the physical behaviours and themultivariate mappings such that we can incorporate more a priori knowledge in our task.
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