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Abstract

Reflectivity measurements are used in thin film investigations for determining the density
and the thickness of layered structures and the roughness of external and internal surfaces.
From the mathematical point of view the deduction of these parameters from a measured
reflectivity curve represents an inverse problem. At present, curve fitting procedures, based
to a large extent on expert knowledge are commonly used in practice. These techniques
are very time consuming and suffer from a low degree of automation.

In this paper, we present a new method for the evaluation of reflectivity curves by
the sparse approximation of multivariate vector—valued function mapping the reflectiv-
ity curves directly onto the thin film parameter set. This is the first method which solves
the problem in a reasonable amount of time. Our approach utilizes an extended version
of the optical matrix method as well as support vector machines for regression working in
parallel. The solution of the corresponding quadratic programming problem makes use of
the SVMTorch algorithm.

We present numerical investigations to assess the performance of our method using models
of practical relevance. It is concluded that the approximation by support vector machines
represents a very promising tool in X-ray reflectivity investigations and seems also to be
applicable for a much broader range of parameter detection problems in X-ray analysis.

1991 Mathematics Subject Classification. 49N10, 49N45, 41A63, 41A30.
Key words and phrases. Support vector machines, reproducing kernel Hilbert spaces, radial
basis functions, X-ray reflectometry, optical matrix method

1 Introduction

Thin films appear in various fields of technology such as conductor line materials in integrated
circuits, diffusion barriers or anticorrosion coatings, antireflection coatings in optics, and
magnetooptic storages. Three important parameters for characterizing thin films are the
density, the thickness, and the roughness of the surface. The refiectometry, i.e., the utilization
of the X—ray reflectivity curve obtained at grazing incidences is an established non—destructive
method for determining these parameters which is widely used in practical environments.

'The work of the first two authors has been partially supported by Deutsche Forschungsgemeinschaft, Grant
Sch 457/5-1.



This method involves two types of reflectivity curves. One curve is measured by hardware,
see Figure 1, mainly build on the basis of conventional powder diffractometers and the other
one is simulated by a physical model using a set of assumed model parameters.
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Figure 1: Setup for X-ray reflectivity measurements

Up to now, the measured and the simulated curves are fitted in an interactive trial and error
procedure of changing the model parameters and comparing the concurrence of the curves,
see [1]. This procedure is mainly based on expert knowledge and suffers from a low degree
of automation. Therefore, the evaluation of reflectivity curves is very time consuming and
strongly depends on the skills of the practitioner who evaluates the curves.

In this paper, we present a new method for the evaluation of reflectivity curves by the sparse
approximation of multivariate vector—valued function mapping the reflectivity curves directly
onto the thin film parameter set. This is the first method that approaches the detection by
multivariate approximation instead of curve fitting and that solves the problem in a reasonable
amont of time, i.e., in seconds instead of days. Our approach utilizes an extended version of
the optical matrix method [4, 5, 6] to provide a sampling of the unknown function as well as
parallel working support vector machines (SVMs) for regression working. SVMs were recently
introduced by Vapnik [7] in statistical learning theory and have found wide applications for
solving machine learning tasks such as regression, classification and novelty detection. In
contrast to other multivariate approximation schemes such as feed forward backpropagation
networks [8], SVMs guarantee a global solution and lead in general to a sparse approximation
of the unknown function.

As we apply the optical matrix method to gain a sampling of the unknown function, we
are independent from measured data and can generate a large set of training associations.
However, this results in large—scale quadratic programming (QP) problems [2, 3, 7, 9]. For
their solution, we apply the very recently developed SVMTorch algorithm [10, 11] which can
handle such large—scale problems.

The major advantage of our method is that it offers a full automation of the evaluation of
reflectivity curves. Expert intervention is only involved for determining a few parameters for
the raised QP problems. For routine applications, we have only a limited number of possible
sample constitutions which have to be analyzed. Thus the QP problems must be solved
only once for a particular specimen constitution and the results can be stored for subsequent
analysis. Due to our different approach, the evaluation of a reflectivity curves needs less than
one second instead of hours in the conventional approach.

The performance of our approach is verified using simulated and measured data. In particular,
we investigate a three-layer and four-layer model based on practical samples. We show that
our method provides a good approximation of the underlying mapping.

This paper is organized as follows: Section 2 introduces the OMM which will provide our
training set of associations. In Section 3, we deal with the mathematical modelling of the
problem, in particular, with the SVM approach with respect to our setting. In Section 4 we



present some numerical investigations showing the performance of our scheme. Conclusions
of the paper are given in Section 5.

2 The Optical Matrix Method

The OMM is an established technique to model the reflectivity of thin films. The method
goes back to Kiessig [12] who investigated the dispersion of X-rays of different wavelength
in thin nickel films and showed that X-rays can be treated similar to the reflection of visible
light. It was generalized by Parratt [4] who extended the results of Kiessig for multilayer
packages. In the following we introduce the OMM with a further extension by including the
surface roughness according to Névot and Croce [5, 6].

Let us consider the reflection of X—rays at an interface of two media first. This can be described
by the model of a planar electromagnetic wave hitting an ideal interface (mathematical plane).
See Figure 2.
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Figure 2: Refraction of a planar electromagnetic wave at an interface between two uniform
homogeneous media (o-polarization) where k;: wave vector, E;: electric field vector, B;:
magnetic field vector, n;: refractive index of medium j, v;: angle between interface and wave
vector k; (j = 1,2). The reflected vectors with their corresponding angles are prime marked.

Crossing the interface between the media, the X-rays are refracted according to Snell’s law

COS Y1 N9

=) (1)

COS Y2 n1

where n; denotes the refractive index of medium j and v; the angle between the interface and
the wave vector k; (j =1,2).

For electromagnetic radiation belonging to the X-ray range, the refractive index n in matter
is smaller than 1 and can be expressed as

n=1-4—ip. (2)

Here § and 3 are the dispersive correction and the absorptive correction, respectively. Typical
values are § ~ 107> and 8 ~ 10~". These corrections are proportional to the mass density p
of the medium.

If the angle 7> becomes zero, then the beam is totally reflected and medium 2 behaves like
a perfect mirror. The corresponding angle v is called the critical angle . and we have that
cosy. = ng/ni. See also the upper picture of Figure 4. If we consider the transition from
vacuum (ny = 1) to matter (ne < 1) and neglect the absorptive correction 3, then we obtain
by (2) that cosy, =~ 1 —92/2 =1 — 8y, i.e., 7. = /202. Thus, given 7., we can determine the
refractive index of the medium and the mass density, respectively.
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Figure 3: Multilayer consisting of J layers. Ej (7 =1,2,...,J) represents the amplitude of
electrical field in the middle of layer j.

The intensities of reflected and refracted electromagnetic waves at an ideal interface are de-
scribed by the Fresnel equations in classical electrodynamics, cf. [13]. At grazing incidence
(small angles of ;) the polarization plays no role and we can turn to a scalar consideration.
If E denotes the amplitude of the electric field, the Fresnel reflection coefficient ry and the
transmission coefficient tp are given by

E! —

re = 1 _n 72, 3)
E1 Y1+ 72
E 2

tp = 2= (4)
E1 Y1+ 72

The reflectivity v is finally defined as squared ratio of the reflected and incident field ampli-
tudes, i.e., v = r%. Note, that with this definition it also holds that v = Ij/I1, where I]
represents the reflected and Iy the incident intensity.

A main application of the X—ray reflectometry is the characterization of multilayer packages
on substrate. In the following, we consider a multilayer package consisting of .J layers. Here
the first layer represents the vacuum and the last layer is the substrate. These layers are
characterized by their refractive index n;, their thickness 7;, their mass density p; and by the
roughness o; of the interface between consecutive layers j and j + 1, see Figure 3. Note, that
we included the surface / interface roughness which is, in short, the standard deviation from
the mean height of a rough surface. As described, we have a transmission and reflection of the
incident beam above some angle «. at an interface. Since the reflected beams are coherent,
they interfere and modulate the reflectivity v of the multilayer package as a function of the
incidence angle y = -y in a characteristic manner. See [6] for detailed treatments.

Again, we have by Snell’s relation (1) that

cosvy;  np

cosy  n;



so that the angles v; are determined by the incidence angle and by the refractive indices of
the media.

Given the parameters above of the layers, the reflectivity v () of the whole multilayer package
can be calculated by the OMM:

Let kg denote the absolute value of the vacuum wave vector. Then the relation between the
amplitudes Ej, E} and Ej+1, E; 41 in the middle of the j-th and (j +1)-th layer, respectively,

reads
( 7 ) = RO/ < Fa ) , (5)
J j+1

where the entries of the transition matrix RU7+1 are given by [6]

R%J'Jrl) _ Vj;;Y;+1 o~ 3k (Vi —vi41)% 07 e—ik70(7j7j+’7j+17j+1)7
R%jﬂ) _ ’ng;Y]{'_+1 e~ 3k (vt 41)% 0% e*i%o(“Y]‘Tr“rﬁﬂjﬂ)7
jofjﬂ) _ ’ng;Y]{'_+1 e~ 3k (it 41)% 0% eikfzo(’Yﬂr’YjﬂTHl),
R%j-l-l) _ 'ng;/YJJ"-#-l o2k (Vi +1)%07 eik_20(7j7j+7j+17'j+1)_

The first factors on the right—hand side of the equations above stem from the Fresnel equations
(3), (4). The exponential terms in the middle represent the damping due to the interface
roughness. The last terms carry the shifts in phase, depending on the thickness of the layer.
They mainly describe the interference of the rays reflected at the various interfaces. The
substrate is considered as infinitely thick, i.e., E’f, equals zero. Now successive application of
(5) yields for the amplitudes in the vacuum

By \ _ na2pes  w-ts ( Er
<Ei>—R R R 7). (6)

Finally, the reflectivity of the whole multilayer package can be obtained by

i\’
_ 1
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Figure 4 shows the reflectivity v = v(v) (v € [0°,3°]) simulated by the OMM for a fixed
multilayer package consisting of vacuum, molybdenum, silicon oxide, silicon substrate, i.e.,
J = 4. Note that there is no abrupt cross—over from total reflection to transition. This is due
to the absorption which smears an abrupt change. Thus, an angle v, can hardly be defined
in presence of strong absorption. Without absorption, the reflectivity would be 1 below a
critical angle .. More information about the morphological analysis of reflectivity curves can
be found in [14].

3 The Support Vector Machine Approach

In this section, we introduce the SVM approach with respect to our problem. For a more
detailed treatment of SVMs we refer to standard literature on this topic, e.g., [7].

As in the previous section we consider a multilayer package consisting of J layers. We are
interested in determining the thickness 7;, the mass density p; and the roughness o; (j =
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Figure 4: An exemplary reflectivity curve for J = 4 simulated by the OMM.

2,...,J=1) from the reflectivity ™ = v""(-y) measured for different incidence angles vy € [0, k.
Note that we have indeed only J — 2 layers of interest since the parameters of vacuum and
substrate are known. Let L = 3(J —2). Set 7 = (r2,...,77-1)%, p = (p2,... ,ps_1)T and

o= (02,...,05-1)T. For y, = £ (k=0,... ,N = 1), let v™ = (™ (70), ... , "™ (yn-1))T.
Up to now, the following time consuming interactive trial and error technique was mainly
used to solve the problem above: Choose 7, p and o and compute v : Rl — RV

v=v(r,p,o) = (T p o)y " (8)
by the OMM. Compare v and v™. If v is a "good” approximation of the measured vector
V™, then associate the parameters 7, p and o with the multilayer package, otherwise select
other parameters and repeat the procedure. Unfortunately, this technique is to a large extent
based on expert knowledge since fitting algorithms can only be used for a refinement of the
’handmade fit’ [1]. Thus, this technique suffers from a low degree of automation and can be
time consuming.

In the following, we propose an approach by SVMs which seems to be superior to other possible
automation methods, e.g., FFBNs [8], for our purposes. FFBNs were already used to solve
inverse problems in X-ray analysis, e.g., Long et al. [15] applied FFBNs for the identification
of fluorescence spectra and Wern and Ringeisen [16] used them for the evaluation of residual
strain/stress gradients from X-ray diffraction data. However, these networks suffer from two
major drawbacks: they can be trapped into local minima during learning and their architecture
must be determined empirically.

In contrast to FFBNs the SVM complexity depends on the data. There are only a few pa-
rameters to adjust. Training a SVM requires the solution of a QP problem which yields a
global solution. Furthermore, training a SVM does not depend directly on the dimensionality
of the input space. In general, SVMs provide a sparse approximation of the unknown func-
tion so that we can efficiently evaluate the approximate function. Due to the flexible kernel
substitution, a variety of approximation schemes can be implemented by SVMs.



Assume that we are given a set of M associations

{(wi,pi) eRY xRF :i=1,... , M}
where p; = (T;,p;,0;) and v; = (v(y1;Pi)s--- ,v(yv—1;Pi))T. Note that we can provide a

large number of associations by using the OMM. We are interested in a function F : RV — RE

so that F(v;) approximates p; (i = 1,..., M), i.e, we want to approximate the inverse of v
in (8). We intend to determine the functions F; (I = 1,...,L) of the vector-valued function
F simultaneously.

To avoid multiindices, we fix [ € {1,..., L} in the following and set

fv)=F(v), yi =pi;-

Our SVM introduction follows mainly the lines of Wahba [9].
Let K(-,-) be a positive definite function on RY x RN and let Hx denote the reproducing
kernel Hilbert space (RKHS) with reproducing kernel K. For more information on RKHS
see [17]. Suppose that we are given a set of training data (v;,y;) (i = 1,...,M). Set
f=(f1,... . fa)", where f; = f(v;).
We are interested in finding a function f = f) of the form h +d (h € Hg,d € R) which
minimizes

l 1

AZVe(yi—fi)‘i‘thH%LKa (9)

i=1

where

Ve(xz) = max {0, |z| — €}

denotes Vapnik’s e—insensitive loss function [7]. By the Representer Theorem [18, 9] the
minimizer of (9) can be written in the form

M
fw) =) ¢K(v,v)) +d (10)
j=1
so that
f = Kc + de. (11)
Here K = (K(ui,uj))%zl, ¢ = (c1....,cm)T and e denotes the vector with M entries 1.

Using this notation we are looking for ¢ € R™ and d € R minimizing
&l 1
A 2} Velys — fi) + 5 ¢'Ke.
1=

This is equivalent to the following constraint optimization problem

C’g}lilg* A(eTu+eTu) + % c’Kec (12)
subject to
u > 0, u* >0,
y—Kc—de < ce+u,
-y+Kc+de < ee+u’.



The dual problem with Lagrange multipliers a, a*, 3, 3* reads

* * *
max *L(c7d7u7u 7a7a 76716)
CvdvuaU*vava*aﬂaﬁ

1
L(c,d,u,u*,a,a*,3,8°) = MeTu+elu*)+ 3 ¢"Ke — BTu—-p*Tu*
—al(ee+u—y+Kc+de) —a*T(ee + u* +y* — Kc — de)
subject to
oL oL oL oL
de " Ju T Ju* " ad 0 (13)

a>0,a">0, B>0 6">0.
Now 0 = g—i = Kc — Ka + Ka* implies that

c=a—a".

Further, by g—ﬁ = 0 and % = 0 it follows 3 = de — a and B* = \e — a*, respectively.

Finally, g—z = 0 can be rewritten as e’ (o — a*) = 0. Then the optimization above problem
becomes
max —%(a—a*)TK(a—a*) —ee"(a+a*) +y (@ —a¥) (14)
subject to
el(la—a*)=0,

0<a,a" <)e.

This QP problem is usually solved in SVM literature. It requires resources of order M?, see
(14). Thus, it can be very challenging for standard QP-routines if M becomes large. On the
other hand, the set of training associations should be large to provide a good sampling of
the unknown function. Recently, the so—called SVMTorch algorithm has been introduced by
Collobert and Bengio [10, 11] for solving large—scale problems. Based on an idea in [19], in
every iteration step of SVMTorch a small subset of variables is selected as working set and the
QP problem is solved with respect to this working set. If the working set consists only of two
variables, the partial QP problems can be solved analytically. Working sets of two variables
were also used for classification tasks in the so—called Sequential Minimal Optimization [20]
and for regression in [21]. These working sets often imply a faster convergence of the QP
algorithm than larger sets [11]. The decision rule for the choice of the working set goes back
to [22] and was used in [23] for classification problems. Furthermore, a shrinking phase is
used to exclude variables that are stuck to 0 or A for a longer phase of iterations so that
these variables will probably not change anymore. These variables can be removed from
the optimization problem such that a more efficient overall optimization is obtained. If no
shrinking is used, the convergence of the SVM Torch algorithm was proved in [24] for a working
set of size two and for an arbitrary working set in [25] under some restrictions.

Once we have computed a and a*, we obtain the function

M
fw) =Y Kv,vj)(oj—af) +d. (15)
j=1



The support vectors are those K(-,v;) for which a; — o # 0, ie., since ajai =0 (1 =
1,...,M), those for which o; > 0 or o} > 0. Only the summands in (15) including support
vectors do not vanish.

With respect to the computation of the constant d we notice the following: The Kuhn—Tucker
conditions in (12) are satisfied by

aile+up —yr + fr) =
af(e—i—uz-l-yk—fk) =
(A —aiu; =

(= afup =

= S

Thus, we have for 0 < a; < A that u; = 0 and consequently that f; = y; —e. By (15) we
obtain

M
fi=Y Ki,vj)(aj —aj) +d=yi—e,
j=1

M
which implies d = y; — e — > K(vj,v;)(aj — af).
j=1

4 Numerical Investigation

In this section we present some numerical investigations for assessing the performance of our
SVM approach. First of all, we emphasize that the constitution of the specimen to be analyzed
is known a priori. Thus, we know the bulk values of the mass densities. The thickness and
roughness depend on the production process and lower and upper limits are also known such
that the physical domain of admissible parameters can be bounded prior the investigation.
In other words, for a given specimen the ranges of F; (I = 1,...,L) are bounded intervals
T, = [a, by], where a;,b; € R. Of course, tight bounds lead to a problem that is much easier
to treat. A specimen independent approximation seems to be infeasible since the range of
physically admissible values becomes too large.

The accuracy of approximation can be slacked by the insensitivity ¢; for the individual param-
eter since a perfect match between the physical specimen parameters and the ones deduced
from the OMM simulation can not be achieved in practice due to measurement inaccuracies
and discrepancies from theoretical model assumptions. Unfortunately, such effects are not
given quantitatively so far and recent results on the choice of ¢, e.g., based on noise models
[26], cannot be applied here. Therefore, the insensitivity can only be estimated by expert
experience.

With respect to our (ideal) synthetic data we choose a very large constant A which approxi-
mates infinity, here A\ = 10*0. In this way, we obtain a vector-valued function F with elements
Fi=h+d (hy € Hg; dj € Ry 1 =1,...,L) having at most a deviation of ¢ from the target
film parameters of the simulated curve. Note that ¢; heavily determines the degree of sparsity
of the representation of Fj.

Another issue is the choice of the reproducing kernel K(-,-). Here we follow the proposal
of Smola and Scholkopf [27] to use Gaussian kernels, i.e., K(x,y) = e~ Y13 it there
only exists a general smoothness assumption about the mapping. However, Gaussian kernels
involve the Fuclidean distance between the morphological features of two distinct curves. Due
to the characteristic cross—over from total reflection to penetration in reflectivity curves, this



distance measure is highly sensitive to morphological dissimilarities near the critical angle. On
the other hand, dissimilarities for larger incident angles do nearly not influence the evaluation
although they are not necessarily of minor importance. For weighting the morphological
features more balanced, we work with /v, i.e., with the Fresnel reflection coefficient rr (3)
instead of the reflectivity. Hence the kernel evaluation becomes

Kw,vj)=e 5 o (VI veg) (16)
The constant s is a free parameter and must be determined empirically. Here we make use
of the fact that small values of s lead to a fast convergence of the algorithm but result in an
overfitting. Cristianini et al. [28] used this fact for dynamically adapting s during SVM learn-
ing for classification tasks. We begin with small values and then successively increase s until
a satisfactory result is obtained on a test set separated from the learning set of associations.
Using this technique, we have that s € [1,20] in the subsequent experiments.

For our investigation, let us first consider a model with .J = 3 layers consisting of a molybde-
num film between vacuum and silicon substrate with p3 = 2.2g/cm? and o3 = 7A. We use a
training set of M = 5000 associations {(v;,p;) € RN xR3 :i=1,... , M} provided by OMM
simulations v; with x = 2, N = 1000, and uniformly distributed random numbers as model
parameters p;; € Z; (I =1,... ,L). The resulting QP problems are solved by employing the
SVMTorch method sketched in the previous section with a working set of size two. Note that
shrinking can significantly speed up the calculation. The price we have to pay is the uncer-
tainty whether the algorithm converges to the desired solution or not. Therefore, if shrinking
is used the results should be controlled on the training set. In our numerical experiments it
is controlled that shrinking does not affect the results, i.e., the error on the training set is
within the predefined ¢; bound.

For assessing the generalization performance of our scheme and the quality of our approxi-
mation we use an independent test set {(;,p;) € RY x R3 : i = 1,...,T} of T = 10000
associations generated with uniformly distributed random numbers p;; € Z; as model param-
eters and the corresponding OMM simulations o;, where again £k = 2 and N = 1000. Let us
introduce the following error notation with respect to ¢

nig = max {0, |F(&;) —pig| —a} (i=1,....T)

with mean
1 T
m= T z; Ni,l
1=

and maximum

i =, max_{n;}.

The results as well as the a priori given interval Z;, the insensitivity ¢;, and the number of
support vectors (NSV) are given in Table 1. For the density, the interval is given by as =
0.7bulk and by = bulk. As noticeable, 7, is small and also 7); is within tolerable bounds with
respect to the range b; — a;. Thus, we have indeed found a function F which reflects well the
dependency of the thin film parameters on the corresponding reflectivity curve simulated by
the OMM. Note, that there is great variance in the NSVs which indicates how the complexity
of the SVMs is individually adapted to the particular mappings F; (I = 1,...,L). Especially,
the mass density of the first film can be represented by a simple model due to its direct relation

10



parameter | a b € n STD i NSV
7 [A] 502 | 754 | 5.0 | 0.07 0.28 | 6.41 | 782
po [g/cm?] | 7.14 | 10.2 | 0.1 | 8-107° 5-107* | 0.007 | 24
o2 [A] 0 10.0 | 0.2 | 0.067 0.12 1.22 801

Table 1: Results for an independent random test set of T' = 10000 reflectivity curves for a
model with J = 3 layers. Here the mean 7; is given with the standard deviation (STD). Note,
that thickness and roughness is given in Angstrom where 1A=10"1m.

to the cross—over from total reflection to penetration, i.e., the most significant morphological
feature of the curve.

A specimen consisting of the layers described above was also investigated by using the Siemens
D500 X-ray diffractometer equipped with a knife edge for reflectivity measurements. The
setup is shown schematically in Figure 1.

The resulting reflectivity curve ©(™ is shown in Figure 5 by the scattered points. Here we
plotted r%m) = Vv(m) since this information is evaluated by the SVMs with Gaussian kernel
due to (16). The evaluation of our computed function F for this curve yields

F(v(™) = (6314,8.60g/cm?,7.894)" .
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Figure 5: Comparison of a measured reflectivity curve and corresponding OMM simulation
using the map F.

Substituting this results in the OMM, the solid curve in Figure 5 is obtained. As noticeable,
the measured and simulated curves offer a high degree of concurrence. The evaluation of this
curve needs less than one second. In comparison, the conventional approach needs approxi-
mately one hour by an expert using a standard interactive trail and error fitting package to
obtain a comparable result. Note that this is only a coarse guide value as the evaluation time
in the conventional trail and error procedure depends on several non—objective factors, e.g.,

11



the guessed initial parameters.

Let us now consider a model with .J = 4 layers consisting of a metastable solution of oxygen in
molybdenum (second layer) and a silicon oxide film (third layer) between vacuum and silicon
substrate with py = 2.32g/cm® and o4 = 10A. For instance, such layers are used for realizing
diffusion barriers. Here we stick to the very same settings described above for generating
the training and test set, respectively, which allow us to compare the results. To be more

precise, we have a training set of M = 5000 associations {(v;,p;) € RV xR® :i=1,... , M}
provided by OMM simulations v; with kK = 2, N = 1000, and uniformly distributed random
numbers as model parameters p;; € Z; (I = 1,...,L) and a corresponding independent test

set {(0;,p;) €RY xRC :i=1,...,T} of T = 10000 associations. For the density we have
again that a; = 0.7bulk and b; = bulk (I = 2,3). The other intervals corresponding to this
specimen are given in Table 2 with the results of the analysis. Here our method offers nearly

parameter | a b € il STD i NSV
o [A] 80 | 120 | 1 6-10"* 0.01 0.38 | 41
3 [A] 400 | 600 | 5 1.71 4.08 39.00 | 2267
p2 [g/em3] | 6 | 8.58(0.086 | 1.1-10=% 2.0-1073 | 0.01 22
p3 [g/em3] | 1.54 | 2.20 | 0.022 | 1.1-10°3 2.6-10"3 | 0.04 | 581
oo [A] 0 |10.0]| 0.2 0.028 0.06 0.79 | 1182
o3 [A] 0 | 100 ]| 0.2 0.058 0.11 1.14 | 1950

Table 2: Results for an independent random test set of T' = 10000 reflectivity curves for a
model with .J = 4 layers.

the same performance as for the simpler system analyzed before. One exception is 73 which
yields a relatively large maximal error. However, the mean error is even here within tolerable
bounds. As before, we have found a function F which reflects the dependency.

Note, that we have a low contrast of the silicon oxide layer with respect to the silicon substrate,
i.e., the difference of the electron densities is low. For this reason, the reflectivity curve is
relatively insensitive to the parameters of the silicon oxide layer, leading to an increased
complexity, i.e., a larger NSVs, of the underlying mappings for the third layer as compared
to the second layer.

5 Conclusions

We presented a new method for detecting the parameters of thin films from their reflectivity
curves by the sparse approximation of a vector-valued function. For this, we merged recent
advances in applied physics, machine learning, and optimization theory to obtain a hybrid
scheme consisting of an extended version of the optical matrix method and support vector
machines working in parallel. We investigated a three-layer and a four—layer model. Our
method with 5000 training associations exhibited a good approximation of the underlying
mapping for a large test set of 10000 simulated curves in both cases.

We conclude that our method represents a powerful scheme for the evaluation of X-ray reflec-
tivity curves since it leads to a full automation and extraordinary reduction of the evaluation
time. Apart from our application, we have shown that support vector machines may invert
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well complex mathematical models with a high precision on a predefined domain. The use of
the e-insensitive cost function guarantees that only the data needed for constructing an in-
version hypothesis is kept and all the useless data is discarded. An application of this method
for a broader range of parameter detection problems in X-ray analysis seems to be promising.
Our approach is novel to the field of reflectometry from its statement and cannot be founded
on any results obtained before. Therefore, some constants given here by heuristics are first
attempts and can, of course, not be seen as optimal in general. We also hope that further
interdisciplinary research will illuminate some relations of the physical behaviours and the
multivariate mappings such that we can incorporate more a priori knowledge in our task.
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