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Abstract

Image restoration and simplification methods that respect important features such
as edges play a fundamental role in digital image processing. However, known edge-
preserving methods like common nonlinear diffusion methods tend to round vertices
for large diffusion times. In this paper, we adapt the diffusion tensor for anisotropic
diffusion to avoid this effects in images containing rotated and sheared rectangles,
respectively. In this context we propose a new method for estimating rotation an-
gles and shear parameters based on the so-called structure tensor. Further, we show
how the knowledge of appropriate diffusion tensors can be used in variational mod-
els. Numerical examples including orientation estimation, denoising and segmentation
demonstrate the good performance of our methods.

1 Introduction

Given a possibly noisy image f : Ω → R, one method to denoise and simplify the image
consists in assuming f to be the initial state of a diffusion process

∂tu = div ( D(∇uσ)∇u ) diffusion equation, (1)

(D(∇uσ)∇u )T n = 0 Neumann boundary conditions,

u(·, 0) = f initial condition

and taking the diffused image u after an appropriate time as the final image. Here n
denotes the outward normal to the image boundary,

uσ := Kσ ∗ u

is the convolved image with a Gaussian Kσ of standard deviation σ and D(∇uσ(x)) ∈ R
2,2

is the so-called diffusion tensor. We remark that the convolution with the Gaussian was
recently also replaced by wavelet-based smoothing procedures, see, e.g., [20]. The diffusion
tensor plays a key role in the diffusion process since it steers the direction of the flux
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j := −D(∇uσ)∇u. If D(∇uσ) = diag
(
(g(|∇uσ |), g(|∇uσ |))

)
is a diagonal matrix with

identical diagonal entries g(|∇uσ |), then the diffusion equation becomes

∂tu = div(g(|∇uσ |)∇u). (2)

In this case, the flux is only influenced in gradient direction. More precisely, if the diffu-
sivity g : R≥0 → [0, 1] is a decreasing function with g(0) = 1 as, e.g., the Perona–Malik

diffusivity g(|x|) := 1/(1 + |x|2

γ2 ) introduced in [19], then the flux becomes smaller for high
absolute gradient values. Thus, the diffusion is lowered at important image features such
as edges which leads to edge preserving methods. However, since the diffusion in gradient
direction at edges is lowered, noisy pixels survive at edges for a long time. Of course,
if we diffuse sufficiently long, these pixels are smoothed too, but the denoising result is
not satisfactory at vertices which are rounded, see Fig. 1 bottom left and middle. At
least the first effect can be avoided by using the so-called edge-enhanced diffusion (EED),
see [28], which incorporates the more sophisticated diffusion tensor D(∇uσ) described in
the next section. This diffusion tensor, which is a symmetric 2 × 2 matrix now, allows
a diffusion perpendicular to the gradient direction and thus cleans the noisy pixels along
edges. However, we are still confronted with rounded vertices as shown in Fig. 1 bottom
right.

Besides the described diffusion methods there exists a large number of other denoising
techniques. Energy minimization and adaptive filtering are closely related to PDE meth-
ods and we want to comment on some of these approaches. The Rudin-Osher-Fatemi
variational method [21] shows the same problem at vertices if the regularization param-
eter must be chosen rather large to eliminate the noise, see Fig. 1 top right and also
the results in [4]. Further, we observed that bilateral filters [26, 18] cannot cope with
this large amount of noise. In a series of papers, Kimmel, Sochen and others suggested
restoration techniques within the Beltrami framework. The corresponding smoothing with
the so-called ’short-time Beltrami kernel’ proposed in [25] differs from the bilateral filters
in the fact that it uses geodetic distances on the image manifold while the bilateral kernel
applies Euclidian distances.

Another approach for adapting a PDE to the local geometry of an image can be found
in [27]. Here, the author estimates the local structure by the so-called ’structure tensor’
originally introduced in [13] and then performs the diffusion along integral curves deduced
from those structure tensors. It was shown that the solution of the regarded PDE can be
approximated by successively convolving the initial image with one-dimensional Gaussians
along these integral curves which leads to ”curved” filtering. This method is more flexible
with respect to different shapes than the approach presented in this paper. However, we
observed again rounding artefacts at corners in the presence of heavy noise.

We obtained much better results by the recently proposed nonlocal means (NL means)
at least if we apply the method iteratively. Among the meanwhile rich literature on NL
means we refer to [5] since we have used the corresponding MATLAB software [16] to
produce the restored image in Fig. 5 bottom right. The result is only slightly worse in
comparison with our methods.
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Figure 1: Top left: original image. Top middle: noisy image corrupted by heavy white
Gaussian noise of standard deviation 150. Top right: denoised image by ROF with reg-
ularization parameter λ = 1000. One can improve the result of the ROF method at the
slightly bumpy edges by choosing a larger regularization parameter, but then the vertices
become more rounded. Bottom left/middle : denoised images by the nonlinear diffusion
(2) with σ = 3 and stopping times t = 400 (left) and t = 3000 (middle). For the moderate
diffusion time t = 400 noisy pixels survive at edges which is not the case for EED (bottom
right). However, both methods suffer from rounding artefacts at vertices. Bottom right:
denoised image by EED with σ = 2.5 and t = 400.

For the special case of rotated rectangles, the topic of vertex preserving image simplifi-
cation was addressed by Berkels et al. [4] who suggested, based on results of Osher and
Esedoglu [12], a regularization approach. This leads to an alternating two-step algorithm
which computes in the first step the rotation angles of the rectangles by minimizing a
functional that contains first and second order derivatives of the rotation angles. A sim-
pler regularization method for finding the rotation angles which includes only first order
derivatives was suggested in [24].

In this paper, we focus on diffusion methods. We develop a new method for estimating the
rotation angles and the shear parameters of rotated and sheared rectangles in images by
adapting the structure tensor. Based on these estimates we propose a modification of the
diffusion tensor in anisotropic PDEs so that rounding artefacts at vertices are avoided.
The numerical computations are based on finite difference methods. The correspond-
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ing diffusion process shows very good results for images containing rotated rectangles or
sheared rectangles.

Our paper is organized as follows: In the next section, we present our diffusion models. We
start by recalling EED in Subsection 2.1. Then we modify the approach in Subsections 2.2
and 2.3 such that vertices of rotated rectangles and of sheared rectangles are preserved. In
particular, we present a method for determining rotation angles and shear parameters. In
Section 3, we sketch how our new diffusion tensors can be applied to establish a regular-
ization model for vertex preservation. Section 4 contains discretization issues. The good
performance of our models is demonstrated in Section 5. Our numerical examples include
grouping by orientation estimation, denoising and segmentation. Finally, a summary and
conclusions are given in Section 6.

2 Anisotropic diffusion model

In this section, we present adaptations of the diffusion tensor for vertex preservation of
rotated and sheared rectangles. We start by recalling EED.

2.1 Structure tensor and diffusion tensor

EED applies the structure tensor concept to define useful diffusion tensors. For any x ∈ Ω,
we consider ∇uσ(x) = ∇uσ = |∇uσ|(c, s)

T, where c := cos α and s := sin α and

α :=

{

arccos ∂xuσ

|∇uσ|
if ∂yuσ ≥ 0,

2π − arccos ∂xuσ

|∇uσ|
if ∂yuσ < 0

(3)

denotes the angle between ∇uσ and the x-axis. We set α := 0 if |∇uσ| = 0. Let

J0(∇uσ) := ∇uσ∇uT

σ = |∇uσ|
2

(
c2 c s
c s s2

)

. (4)

Obviously, the entries of J0 do not distinguish between left and right directions, i.e., J0 is
the same for α modπ. By definition, J0 is a rank-1 matrix with spectral decomposition

J0(∇uσ) = Q

(
|∇uσ|

2 0
0 0

)

QT =

(
c −s
s c

) (
|∇uσ|

2 0
0 0

)(
c s

−s c

)

.

In [13], Förstner and Gülch defined the structure tensor Jρ, ρ > 0, as smoothed variant of
J0 by

Jρ(∇uσ) := Kρ ∗ J0(∇uσ) = V

(
µ1 0
0 µ2

)

V T,

where the last equality gives the spectral decomposition of Jρ. Now EED, see [28], uses
the diffusion tensor

D(∇uσ) := g(J0(∇uσ)) = Q

(
g(|∇uσ |

2) 0
0 1

)

QT.
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Alternatively, one could work with g(Jρ(∇uσ)) = V

(
g(µ1) 0

0 g(µ2)

)

V T. For D(∇uσ)

the negative flux becomes

D(∇uσ)∇u = g(|∇uσ|
2)
∇uT

σ∇u

|∇uσ|2
∇uσ + 1

(∇u⊥
σ )T∇u

|∇uσ|2
∇u⊥

σ

and the second summand indicates that we allow a flux component perpendicular to the
gradient which is responsible for the cleaned edges in Fig. 1 bottom right in contrast to
Fig. 1 bottom left.

2.2 Adapting the diffusion tensor to rotated rectangles

If we know that an image consists only of rotated rectangles we can use this knowledge to
modify the diffusion tensor. Having defined the angles α as in (3), we set c2 := cos(2α),
s2 := sin(2α) such that |∇uσ|(c2, s2)

T is the gradient ∇uσ rotated by its angle α. Then,
instead of computing (4), we adapt J0 as follows:

J0

(
|∇uσ|

(
c2

s2

)
)

:= |∇uσ|
2

(
c2
2 c2 s2

c2 s2 s2
2

)

.

Due to the period π of cos(2·) and sin(2·), the new matrix J0

(
|∇uσ|(c2, s2)

T) can only
distinguish between angles mod π

2 and its smoothing should nicely relate the vertices to
the corresponding edges. To this end, we compute

Jρ

(
|∇uσ|

(
c2

s2

)
)

:= Kρ ∗ J0

(
|∇uσ|

(
c2

s2

)
)

= V2

(
µ2,1 0
0 µ2,2

)

V T

2 . (5)

We assume that the columns of matrices V2 are ordered in such a way that µ2,1 ≥ µ2,2.
Next, we reverse the angle doubling process. For each image point, we compute the angle
α2,ρ of the eigenvector belonging to µ2,1 and take α2,ρ/2 as smooth approximation of the
rotation angle. Finally, we set cρ := cos(α2,ρ/2), sρ := sin(α2,ρ/2) and define the diffusion
tensor by

D(∇uσ) := RT

(
g((R∇uσ)1) 0

0 g((R∇uσ)2)

)

R, R = R(ρ) :=

(
cρ sρ

−sρ cρ

)

. (6)

Fig. 2 shows the angle smoothing process in contrast to the method proposed in [24]. The
local character of the angle smoothing via the structure tensor (5) is obvious.

Remark. Similarly, we can also consider rotated and sheared rectangles, where we know
the shear matrices

S = S(ζ) :=

(
1 0
ζ 1

)

(7)

related to the different parallelograms in advance. More precisely, we suppose that we
know the matrices S−1 ∈ R

2,2 which have transformed the gradients of rectangles into the
gradients of parallelograms contained in our image, see Fig. 3. Since S transforms the
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Figure 2: Left: original image of different rotated rectangles. Middle: estimated rotation
angles by the variational angle adaptation method proposed in [24] with parameters σ =
0.5 and µ = 10000. Right: estimated rotation angles by our new structure tensor method
with parameters σ = 0.5 and ρ = 13.

gradients of the image with parallelograms back to the gradients of an image with rotated
rectangles we can process such images by slightly modifying the diffusion tensor. We just
define α to be the angles of S∇uσ instead of ∇uσ, compute cρ, sρ appropriately, and set
the diffusion tensor to

D(∇uσ) := STRT

(
g((RS ∇uσ)1) 0

0 g((RS ∇uσ)2)

)

RS. (8)

Note that the matrices RS are in general not orthogonal so that the flux is steered using
the non-orthogonal directions given by their rows.

2.3 Adapting the diffusion tensor to sheared rectangles

Next, we focus on images consisting of sheared rectangles which are not rotated, but where
the shear parameters ζ in (7) are not known in advance. To process such images while
preserving sharp (non-orthogonal) vertices we want to incorporate an estimation of the
shear parameters into the diffusion tensor. We know that if a point x ∈ Ω belongs to a
non-horizontal edge of a sheared rectangle with shear parameter ζ, then it is likely that
at this pixel

S(ζ)

(
∂xuσ

∂yuσ

)

=

(
1 0
ζ 1

)(
∂xuσ

∂yuσ

)

=

(
∂xuσ

ζ ∂xuσ + ∂yuσ

)

=

(
∂xuσ

0

)

,

which is equivalent to

ζ = −
∂yuσ

∂xuσ
if ∂xuσ 6= 0.

See Fig. 3 for illustration. Hence, we can estimate the shear parameters by the gradients
of the two non-horizontal edges of each sheared rectangle. To get only those gradients,
we locate the horizontal edges and the corners of the sheared rectangles and downsize
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Figure 3: Performance of the shear operation on rectangles.

the gradients at those locations to reduce their influence on the structure tensor. More
precisely, we compute

∇̃uσ̃ := we(∇uσ̃)wv(∇uσ̃)∇uσ̃,

where we use the following weight functions: Let µ1, µ2 be the eigenvalues of the structure
tensors Jρ(∇uσ̃). In order to downsize ∇uσ̃ at vertices, we multiply the gradient by

wv(∇uσ̃) :=

{

ϕv

(∣
∣
∣
µ2

µ1

∣
∣
∣ |∇uσ̃|

2
)

if µ1 > 0,

1 otherwise,

where ϕv has the properties of a diffusivity function, i.e., it is decreasing and ϕv(0) = 1.

Here,
∣
∣
∣
µ2

µ1

∣
∣
∣ |∇uσ̃|

2 plays the role of a corner detector, since in general µ1 ≥ µ2 ≫ 0 at

vertices, while µ1 ≫ µ2 at edges, see [13, 28].
To enforce ∇uσ̃ to become small at horizontal edges we further apply

we(∇uσ̃) :=

{

ϕe(|
∂xuσ̃

∂yuσ̃
|) if |∂yuσ̃| > 0,

1 otherwise,

where ϕe is a sigmoidal function, i.e., it is monotone increasing with ϕe(x) = 0 for x ≤ 0
and ϕe(x) = 1 for x ≥ 1.

For these modified gradients we calculate the structure tensors

J(ρx,ρy)

(
∇̃uσ̃

)
:= K(ρx,ρy) ∗ J0

(
∇̃uσ̃

)

for a non-radial Gaussian K(ρx,ρy) := 1
2πρxρy

e−((x/ρx)2+(y/ρy)2)/2 and determine the eigen-

vectors v = (v1, v2)
T belonging to the largest eigenvalues. In general we propose to use

an anisotropic Gaussian, where ρx and ρy are not necessarily equal to better adapt the
smoothing of J0 to the geometry. Then, we define the shear parameters ζ by

ζ :=

{

−v2

v1
if v1 > 0,

0 otherwise.
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Finally, we set the corresponding diffusion tensors to

D :=

(
1 ζ
0 1

) (
g(∂xuσ) 0

0 g(ζ ∂xuσ + ∂yuσ)

) (
1 0
ζ 1

)

. (9)

Examples of computed shear parameters are depicted in Fig. 6 and 7.

3 Anisotropic regularization model

Alternatively to anisotropic diffusion we can also use regularization methods to process
images consisting of linearly transformed rectangles if we know the transformation matrix
A at each point x ∈ Ω. In this case, we minimize the energy functional

F (u) =
1

2

∫

Ω

(f(x) − u(x))2 dx + λ

∫

Ω

‖A(x)∇u(x)‖1dx, (10)

where λ > 0 is a regularization parameter.
For images containing rotated rectangles, we use the rotation matrices A = R with cρ, sρ

defined in Subsection 2.2, for images with sheared rectangles the shear matrices A = S
with shear parameters ζ determined in Subsection 2.3, and, if available, the combination
A = RS in case of both sheared and rotated rectangles. In contrast to our diffusion model
these matrices can be computed once in advance and will not be repeatedly updated as
it will be done in every diffusion step. In [4, 24], model (10) was presented for rotation
matrices A = R, where R was constructed by minimizing certain functionals in a first
step.
To see the relation to diffusion equations we consider the Euler–Lagrange equation of (10)
with the slightly modified regularization term Φ(A∇u) :=

√

(A∇u)21 + ε2+
√

(A∇u)22 + ε2,
ε ≪ 1 which reads

u − f

λ
= div(D(∇u)∇u)

with the diffusion tensor

D(∇u) := AT

(
1/

√

(A∇u)21 + ε2 0

0 1/
√

(A∇u)22 + ε2

)

A. (11)

This can be interpreted as a fully implicit time discretization of the diffusion equation (1)
but without the additional smoothing uσ = Kσ ∗u in the diffusion tensor. This leads to a
PDE with a special TV-related diffusivity which is a ’boundary case’ between forward and
backward diffusion, see [9, p. 57] and [28]. In contrast, we are more flexible in (6), (8) and
(9) because we can choose various diffusivities, e.g., the Perona-Malik diffusivity which
leads to forward-backward diffusion. This PDE becomes well-posed by using the smoothed
image uσ in the diffusivity [7], but is ill-posed otherwise [10, 11]. For regularization effects
just by discretization, see [29]. A variational formulation of the PDE with Perona-Malik
diffusivity would contain a non-convex penalizing term Φ. Moreover, it is not clear how
the smoothed uσ in the diffusion tensor (and only there) can be brought into play in a
variational formulation. For further relations between variational approaches and diffusion
equations we refer to [23].
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4 Discretization issues

Our numerical approaches are based on finite difference methods for discrete images. In
the following, we briefly outline some special issues.

Let U ∈ R
n×n be a discrete image and u ∈ R

N with N = n2 the corresponding columnwise
reshaped image vector.

Anisotropic diffusion To discretize diffusion model (1) we apply an explicit time dis-
cretization and discretize partial spatial derivatives by central differences, where we ad-
ditionally use a smoothing filter of the form 1

16

(
3 10 3

)
orthogonal to the derivative

direction as suggested by Weickert and Scharr in [30]. As a result, we end up with an
iterative scheme of the form

u(k+1) = u(k) + τQ(u(k))u(k), (12)

u(0) = f,

where τ > 0 is a fixed time step size and Q(u(k)) ∈ R
N×N the iteration matrix correspond-

ing to the spatial derivatives. All non-vanishing entries of the (i + nj)th row of Q(u(k))
are represented by the stencil shown in Fig. 4, where the diffusion tensor at pixel (i, j) is
defined as

D(∇uσ(i, j)) =

(
ai,j bi,j

bi,j ci,j

)

.

An alternative to this stencil is for example the nonnegativity discretization of Weickert
[28]. For a comparison see [22].

9ai–1,j–1 30bi–1,j–1 + 30bi–1,j −9ai–1,j–1 − 9ai–1,j+1 −30bi–1,j − 30bi–1,j+1 9ai–1,j+1

+18bi–1,j–1 +30ci–1,j–1 + 30ci–1,j +9ci–1,j–1 + 9ci–1,j+1 +30ci–1,j + 30ci–1,j+1 −18bi–1,j+1

+9ci–1,j–1 +100ci–1,j +9ci–1,j+1

30ai–1,j–1 + 30ai,j–1 100bi–1,j + 100bi,j–1 −30ai–1,j–1 − 30ai–1,j+1 −100bi–1,j − 100bi,j+1 30ai–1,j+1 + 30ai,j+1

+30bi–1,j–1 + 30bi,j–1 −30ai,j–1 − 30ai,j+1 −30bi–1,j+1 − 30bi,j+1

−30bi–1,j–1 + 30bi–1,j+1

+30bi,j–1 − 30bi,j+1

9ai–1,j–1 + 9ai+1,j–1 −30bi–1,j–1 + 30bi–1,j −9ai–1,j–1 − 9ai–1,j+1 −30bi–1,j + 30bi–1,j+1 9ai–1,j+1 + 9ai+1,j+1

+100ai,j–1 +30bi+1,j–1 − 30bi+1,j −100ai,j–1 − 100ai,j+1 +30bi+1,j − 30bi+1,j+1 +100ai,j+1

−9ci–1,j–1 − 9ci+1,j–1 −30ci–1,j–1 − 30ci–1,j −9ai+1,j–1 − 9ai+1,j+1 −30ci–1,j − 30ci–1,j+1 −9ci–1,j+1 − 9ci+1,j+1

−30ci+1,j–1 − 30ci+1,j −18bi–1,j–1 + 18bi–1,j+1 −30ci+1,j − 30ci+1,j+1

+18bi+1,j–1 − 18bi+1,j+1

−9ci–1,j–1 − 9ci–1,j+1

−100ci–1,j − 100ci+1,j

−9ci+1,j–1 − 9ci+1,j+1

30ai,j–1 + 30ai+1,j–1 −100bi,j–1 − 100bi+1,j −30ai,j–1 − 30ai,j+1 100bi,j+1 + 100bi+1,j 30ai,j+1 + 30ai+1,j+1

−30bi,j–1 − 30bi+1,j–1 −30ai+1,j–1 − 30ai+1,j+1 +30bi,j+1 + 30bi+1,j+1

−30bi,j–1 + 30bi,j+1

+30bi+1,j–1 − 30bi+1,j+1

9ai+1,j–1 −30bi+1,j–1 − 30bi+1,j −9ai+1,j–1 − 9ai+1,j+1 30bi+1,j + 30bi+1,j+1 9ai+1,j+1

−18bi+1,j–1 +30ci+1,j–1 + 30ci+1,j +9ci+1,j–1 + 9ci+1,j+1 +30ci+1,j + 30ci+1,j+1 +18bi+1,j+1

+9ci+1,j–1 +100ci+1,j +9ci+1,j+1

Figure 4: Discretization stencil (multiplied by 322) of div(D(∇uσ)∇u) at pixel (i, j) as
suggested in [22].
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At the boundary of U we apply Neumann boundary conditions. Furthermore, we set

ai,1 = ai,n = bi,1 = bi,n = 0 ∀i ∈ {1, · · · n}

b1,j = bn,j = c1,j = cn,j = 0 ∀j ∈ {1, · · · n}

to guarantee that (D(∇uσ(i, j))∇u(i, j) )T n(i, j) = 0 is fulfilled at the boundaries. The
sum over all entries of the stencil shown in Fig. 4 is zero, since the central entry is the
negative sum of the other ones. Combined with our Neumann boundary conditions, this
guarantees that the sum of all entries in one row of Q(u(k)) is zero. Since Q(u(k)) is
symmetric, it follows that the sum of all elements of one column of Q(u(k)) is also zero.
Hence, the iterative scheme (12) preserves the average gray value, i.e.,

1

N

N∑

i=1

fi =
1

N

N∑

i=1

u
(k)
i , k ∈ N.

However, since there may appear negative matrix entries in I + τQ(u(k)), the iterates do
not in general fulfill a min-max principle.
To avoid possible checkerboard effects which may appear in the presence of heavy noise,
the scheme (12) can be extended by the additional term ν(Ĩ − I)u(k) with a very small
parameter ν. The low pass filter matrix Ĩ is represented by the 5-band Toeplitz matrix
with band 1

16 (−1, 4, 10, 4,−1) and is a discretization of the identity filter of consistency
order 4, i.e., it has no influence on the consistency order of the original scheme. For more
details see [22, Section 9.5]. This additive term leads again to a symmetric iteration matrix
with a row sum of zero. Hence, the resulting scheme preserves the average gray value, too.

Anisotropic regularization To minimize (10) numerically, we compute the minimizer
of its discrete counterpart

1

2
‖f − u‖2

2 + λ‖ AD
︸︷︷︸

M

u‖1, (13)

where f, u ∈ RN are image vectors, D ∈ R2N,N is a discrete partial derivative operator
and A ∈ R

2N,2N a matrix containing the transformation matrices A(i, j). In our case we
set D to be the derivative filters defined in [24, Section 2.1]. Moreover, to avoid possible
checkerboard effects, we extend (13) by the additional term ν‖(H1 ⊗ H1)u‖1, where ν is
a very small parameter and H1 is the upper 2-band Toeplitz matrix with band (−1, 1).
This additional term penalizes diagonal differences. For more details see [24, Section 2.2].
As a consequence we obtain a slightly modified matrix M .
The minimizer û of (13) can be alternatively characterized by the dual formulation û =
f−MTV̂ , where V̂ ∈ R

2N is a minimizer of the quadratic functional with linear constraints

min
V ∈R2N

‖f − MTV ‖2
2 subject to ‖V ‖∞ ≤ λ. (14)

There exist various numerical methods to solve (14). In this paper, we prefer, due to
the observed fast convergence, to minimize the functional (13), resp. (14) by second-order
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cone programming (SOCP). Concerning SOCP we refer to [3, 17]. To determine a solution
V̂ of (14) by SOCP we reformulate the problem appropriately as

min
t∈R,V ∈R2N







t

V







T







1
0
...
0








subject to





f − MTV
t
1



 ∈ LN+2
r ,

−Vi, Vi ≤ λ, i ∈ {1, · · · , 2N}

where LN+2
r denotes the rotated second-order cone defined by

LN+2
r :=

{
(x̄, xN+1, xN+2)

T ∈ R
N+2 : ‖x̄‖2

2 ≤ 2xN+1xN+2, xN+2 ≥ 0
}

.

5 Numerical examples

In the following, we present numerical examples. The implementation was done in MAT-
LAB, where we additionally used the software package MOSEK [1] for SOCP. To visualize
the images we have applied the MATLAB routine ’imagesc’ which incorporates an affine
gray value scaling. Besides, the parameters were chosen with respect to the best visual
results. In all diffusion experiments, if not stated otherwise, we have used the weight
ν = 0.001 to avoid checkerboard effects, time step size τ = 0.1 and 4000 iterations , i.e., a
diffusion time of t = 400.
In our first experiment, we denoised the image at top middle of Fig. 1 with anisotropic
diffusion using the adapted diffusion tensor (6) for rotated rectangles. The result is shown
at top right of Fig. 5. In contrast to the denoising results presented in Fig. 1 the vertices
of the rectangles are well preserved. As illustrated at Fig. 5 bottom left, this is also
the case if we apply the anisotropic regularization method presented in Section 3. For
comparison we also applied two times the iterated NL means from the software package
[16] with parameters t = 30, f = 10 and h = 4000. Since this method uses the information
of similar patches in the image it shows also a good performance in the presence of heavy
noise.
For our next examples, we used the results of Section 2.3 to denoise arbitrary sheared
rectangles. For ϕv , ϕe we chose the functions

ϕv (x) := e−(x/c)4 , c := 0.06 max
x∈Ω

{
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2(x)}, µ1 > 0,

ϕe(x) := sin
(π

2
x
)

, x ∈ [0, 1]

with µ1, µ2 defined in Section 2.3. As shown at top right of Fig. 6 the shear parameters
are well estimated from the noisy image at top left. Moreover, our methods preserve the
vertices of the parallelograms as depicted at the bottom of Fig. 6.
As demonstrated by Fig. 7 our method can also be applied for more general shapes.
Here, we have estimated the shear parameters of an image which contains no transformed
rectangles, but all vertices are sheared rectangular ones. Then we have incorporated these
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Figure 5: Denoising results for the rectangles at top middle of Fig. 1. Top left: original
image. Top right: denoised image by anisotropic diffusion with adapted diffusion tensors
(6) for rotated rectangles (σ = 2.5, ρ = 20) and Perona-Malik diffusivity (γ = 1.5).
Bottom left: denoised image using the regularization method proposed in Section 3 with
σ = 2.5, ρ = 20, λ = 800 and ν = 0.1. Bottom right: denoised image using two times
iterated NL means. The result is slightly worse than those of our methods.

estimates to restore the noisy image which leads to very good results. To test our method
also on real–world data we have used the image depicted in Fig. 8. The results show
that the proposed method performs much better than ROF for this example, since by the
estimated shear parameters the shapes of the shadows are preserved much more accurate.

Regarding possible applications we have applied our new angle estimation method to an
image with differently oriented toy cars. As visible at Fig. 9 right, the orientations of the
cars are well estimated by our new approach and through the color coding of the angles
equally oriented cars are grouped together. In connection with quality control this might
for example be helpful to detect wrongly oriented objects very easily.

Another application of our methods for rotated rectangular shapes is presented in our last
example. Here, we have extracted the cartoon of a real–world image of a city area with the
anisotropic regularization method of Section 3. The result presented in Fig. 10 top right
shows that the estimated rotation angles give a good approximation of the orientations of
the houses. For this reason, the shapes of the houses are well preserved in the cartoons
while the details are removed. If we now apply the Canny edge detector [6] implemented
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Figure 6: Top left: noisy image of two sheared rectangles (ζ1 = 0.5 and ζ2 = −1) corrupted
by white Gaussian noise of standard deviation 150. Top right: estimated shear parameters
ζ for σ̃ = 5, ρ = 2, ρx = 35 and ρy = 20. Bottom left: denoised image by anisotropic
diffusion with adapted diffusion tensors (9) to sheared rectangles (σ = 2.5) and Perona-
Malik diffusivity (γ = 1.5). Bottom right: denoised image using the regularization method
proposed in Section 3 with shear parameters ζ as depicted at top right, λ = 1000 and
ν = 0.1.

in the MATLAB ’edge’ routine to the original image as well as to our simplified one, we
see that the shapes of the houses are well extracted from the simplified image without the
details contained in the original image. The obtained edge image can now be used for
e.g. building segmentation. A first overview of the vast literature on this topic can be
found in [15]. To give an example we have implemented the windowed Hough transform
for extracting rectangles presented in [8]. The results are depicted in Fig. 11 and 12.
By using the edge image of the cartoon in Fig. 10 bottom middle instead of the original
image we benefit from a reduction in the computational time needed for the segmentation
as well as a lower risk of detecting false positives.

6 Summary and Conclusions

Preserving vertices is still a problem in image processing. We have presented anisotropic
diffusion methods for processing images containing rotated or sheared rectangles which
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Figure 7: Top left: noisy image corrupted by white Gaussian noise of standard deviation
100. Top right: estimated shear parameters ζ for σ̃ = 2, ρ = 1, ρx = 25 and ρy = 12.
Bottom left: denoised image by anisotropic diffusion after 3000 iterations (σ = 2) with
adapted diffusion tensors (9) to sheared rectangles and Perona-Malik diffusivity (γ = 1.5).
Bottom right: denoised image using the regularization method proposed in Section 3 with
the shear parameters at top right, λ = 600 and ν = 0.07.

solve this problem using special diffusion tensors. These diffusion tensors are derived
by different adaptations of the structure tensor guiding the diffusion at vertices in the
directions of the corresponding edges. Moreover, the modified structure tensors can be
used for anisotropic regularization as outlined in Section 3.

Future work has to be invested for processing images containing both rotated and sheared
rectangles as well as arbitrary multiple orientations at corners and junctions. Here, struc-
ture tensors containing for example higher-order derivatives maybe useful [2].
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Figure 9: Left: real image of differently oriented toy cars. Right: estimated orientations by
our new structure tensor method for rotated shapes with parameters σ = 0.5 and ρ = 15.
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Figure 10: Top left: original image of a city area of Stuttgart. Top middle: edges detected
by the Canny edge detector in the original image (σ = 0.5, thresh = [0.1, 0.3]). Top
right: estimated rotation angles by the adapted structure tensor (6) for rotated rectangles
(σ = 0.5, ρ = 10). Bottom left/middle: cartoons generated by anisotropic regularization
using the rotation angles at top right, ν = 0.1 and parameters λ = 50 (left) and λ = 100
(middle). Bottom right: edges detected by the Canny edge detector in the cartoon at
bottom middle (σ = 0.5, thresh = [0.03, 0.12]).
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