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tWherever anisotropi
 behaviour in physi
al measurements or mod-els is en
ountered matri
es provide adequate means to des
ribe thisanisotropy. Prominent examples are the di�usion tensor magneti
 res-onan
e imaging in medi
al imaging or the stress tensor in 
ivil engi-neering. As most measured data these matrix-valued data are alsopolluted by noise and require restoration.The restoration of s
alar images 
orrupted by noise via minimizationof an energy fun
tional is a well-established te
hnique that o�ers manyadvantages. A 
onvenient way to a
hieve this minimization is se
ondorder 
one programming (SOCP). The goal of this arti
le is to transferthis method to the matrix-valued setting. It is shown how SOCP 
anbe applied to minimize various energy fun
tionals de�ned for matrix�elds. These fun
tionals 
ouple the di�erent matrix 
hannels takinginto a

ount the relations between them. Furthermore, new fun
tionalsfor the regularization of matrix data are proposed and the 
orrespond-ing Euler-Lagrange equations are derived by means of matrix di�eren-tial 
al
ulus. Numeri
al experiments substantiate the usefulness of theproposed methods for the restoration of matrix �elds.1 Introdu
tionMatrix-valued data, so-
alled matrix �elds have gained signi�
ant impor-tan
e in re
ent years:
• First, di�usion tensor magneti
 resonan
e imaging (DT-MRI) [3℄ is amodern but 
ommonly used medi
al imaging te
hnique that measuresa 3 × 3 positive semide�nite matrix-�eld: A so-
alled di�usion tensoris assigned to ea
h voxel. This di�usion tensor des
ribes the di�usiveproperty of water mole
ules. Sin
e water di�uses preferably along or-dered tissue su
h as nerve �bers this matrix gives valuable information
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about the geometry and organization of the tissue under examination.Hen
e this matrix �eld plays a very important role for the diagnosisof multiple s
lerosis and strokes. For detailed information about thea
quisition of this type of data the reader is referred to [2℄ and theliterature 
ited therein.
• Se
ond, in the �eld of te
hni
al s
ien
es su
h as 
ivil engineering andsolid me
hani
s or geology anisotropi
 behaviour is often des
ribedsatisfa
torily by inertia, di�usion, stress, and permittivity tensors.
• Third, matri
es/tensors have been re
ognized as a useful 
on
ept inimage analysis itself [15℄: The stru
ture tensor [13℄, for instan
e, (also
alled Förstner interest operator, or s
atter matrix) has been employednot only for 
orner dete
tion [16℄, but also for texture analysis [23℄ andmotion estimation [5℄. Tensor voting, an interesting re
ent tool forsegmentation and grouping, also makes use of the tensor 
on
ept.This variety of appli
ations make it worthwhile to develop appropriate toolsfor the restoration and pro
essing of tensor, respe
tively matrix data, sin
e,just as s
alar images, they are 
orrupted by noise. However, when design-ing �lters for matrix �elds, treating the 
hannels independently is a simplethough not advisable strategy. Any relation between the di�erent matrix
hannels is ignored whi
h leads to similarly serious short
omings as in the
ase of ve
tor-valued �ltering.Unlike ve
tors, matri
es 
an be multiplied making matrix-valued polyno-mials and also fun
tions of matri
es. These useful notions that rely de
isivelyon the strong interplay between the di�erent matrix entries. Roughly speak-ing, we are taking an operator-algebrai
 point of view here 
on
entrating onsymmetri
 matri
es as �nite-dimensional instan
es of self-adjoint operators.Unfortunately in the 
ase of those symmetri
 matri
es, extra 
are has to betaken sin
e the produ
t of two symmetri
 matri
es is usually not symmetri
:The Jordan produ
t is used as an symmetri
 multipli
ation. In fa
t thisprodu
t makes its natural appearan
e in the derivation of energy fun
tionalsused in this paper for matrix �eld restoration.This paper is organized as follows: Sin
e we want to 
onvert restora-tion methods whi
h were su

essfully applied in the s
alar valued 
ase tothe matrix�valued setting, we start by 
onsidering the related s
alar�valuedte
hniques in Se
tion 2. Se
tion 3 provides preliminaries on matrix-valuedfun
tions and introdu
es to se
ond order 
one programming (SOCP). InSe
tion 4 we examine properties of a fun
tional suggested by Deri
he andTs
humperlé for the root fun
tion in the penalizing term and show howSOCP 
an be applied to �nd the minimizer of this fun
tional. Se
tion 5proposes two new fun
tionals whi
h better 
orrespond to the matrix stru
-ture of our obje
ts. The 
orresponding Euler-Lagrange equation in
ludes theJordan produ
t of matri
es. We apply SOCP and a steepest de
ent method2



to 
ompute minimizers of these fun
tionals. Finally, Se
tion 6 
ompares thedi�erent methods by various numeri
al examples.2 Motivation: restoration of s
alar-valued fun
tionsA well-established method for restoring a s
alar-valued image u from a givendegraded image f 
onsists in 
al
ulating the minimizer of the fun
tional
J (u) :=

1

2

∫

Ω
(f − u)2 + α Φ(|∇u|2) dxdy (1)with regularization parameter α > 0 and an in
reasing fun
tion Φ : [0,∞] →

R in the penalizing term. The �rst summand en
ourages similarity be-tween the restored image and the original one, while the se
ond one rewardssmoothness. The appropriate 
hoi
e of the fun
tion Φ ensures that impor-tant image stru
tures su
h as edges are preserved while areas with smallgradients are smoothed. A standard way for solving (1) uses the fa
t thatthe minimizer has to ful�ll the Euler�Lagrange equation
0 = f − u + α div(Φ′(|∇u|2)∇u).Then a steepest des
ent method 
an be applied whi
h is equivalent to 
om-puting the steady state of the rea
tion-di�usion equation
∂tu = f − u + α div(Φ′(|∇u|2)∇u)with initial image u(·, 0) = f and homogeneous Neumann boundary 
ondi-tions. On the other hand, the Euler�Lagrange equation 
an be rewrittenas

u − f

α
= div(Φ′(|∇u|2)∇u).This ellipti
 PDE 
an be interpreted as a fully impli
it time dis
retizationof the di�usion equation

∂tu = div(Φ′(|∇u|2)∇u) (2)with initial image u(·, 0) = f and homogeneous Neumann boundary 
ondi-tions. The solution of this di�usion equation is a good approximation of theminimizer of (1). For details see [25, 29℄.The steepest des
ent method requires that the fun
tion Φ is di�eren-tiable. In this paper, we are interested in the fun
tion
Φ(s2) := |s| (3)whi
h is not di�erentiable at zero. Then the 
onvex fun
tional (1) is thefrequently applied ROF�model introdu
ed by Rudin, Osher and Fatemi [24℄.3



If we want to apply a steepest des
ent method we have to introdu
e a smalladditional parameter ε and to deal with
Φ(s2) =

√

s2 + ε2, (4)instead of the original fun
tion, 
f. [28℄. However, for the fun
tion (3),the penalizing fun
tional in (1) has very useful properties, in parti
ular it ispositive homogeneous. Based on these properties various numeri
al methods
an be applied to �nd the minimizer without introdu
ing the additionalparameter ε, e.g.,
• se
ond order 
one programming (SOCP) [14℄,
• Chambolle's des
ent algorithms for the dual fun
tional [10℄,
• a four pixel method for the 
orresponding di�usion equation [26℄.In this paper, we will see how in parti
ular SOCP 
an also be applied totensor-valued images.In addition to the fun
tional (1), the fun
tional

J (u) :=
1

2

∫

Ω
(f − u)2 + α (Φ(u2

x) + Φ(u2
y)) dxdy (5)was applied for image restoration also with higher order derivatives in liter-ature [11, 17, 19℄. For the absolute value fun
tion Φ, this fun
tional 
an behandled more e�
iently than (1). However, it is not rotationally invariantbut may be useful for images whose edges are straight lines in 
onne
tionwith other te
hniques [4℄.3 PreliminariesMatrix-valued fun
tions. To deal with matrix �elds we have to intro-du
e some notation. Let Symn(R) be the ve
tor spa
e of symmetri
 n × nmatri
es. This 
an be treated as a Eu
lidian ve
tor spa
e relative to thetra
e inner produ
t

〈A,B〉 := tr AB.Then
〈A,A〉 = tr A2 = ‖A‖2

Fis the squared Frobenius norm of A. In Symn(R), the positive semi-de�nitematri
es Sym+
n (R) form a 
losed 
onvex set whose interior 
onsists of thepositive de�nite matri
es. More pre
isely, Sym+

n (R) is a 
one with base B[1, 8, 9℄, i.e.
Sym+

n (R) = R≥0 B4



and
B := {B ∈ Sym+

n (R) : tr B = 1}.Sin
e B is a 
onvex 
ompa
t set in a �nite dimensional spa
e it is, by theKrein-Milman theorem, the 
onvex hull of its extreme points whi
h are givenby the rank 1 matri
es vvT with ‖v‖2 = 1. Thus,
B = convexhull{vvT : v ∈ Sn−1}.For n = 2, this 
an be illustrated as follows: we embed Sym2(R) into R

3by
A 7→ a :=

1√
2
(2a12, a11 − a22, a11 + a22)

T. (6)This mapping is an isometry from Sym2(R) with the Frobenius norm onto
R

3 with the Eu
lidian norm. For A ∈ Sym+
2 (R) with eigenvalues λ1, λ2 ≥ 0,we have that

λ1 + λ2 = trA = a11 + a22 =
√

2 a3 ≥ 0,

λ1λ2 = detA =
1

4

(

(a11 + a22)
2 − (a11 − a22)

2 − 4a2
12

)

≥ 0.Hen
e, A ∈ Sym+
2 (R) if and only if a3 ≥ 0 and ‖(a1, a2)

T‖2 ≤ a3, i.e., thesymmetri
 positive semi-de�nite matri
es form the 
one C3 := {a ∈ R
3 :

‖(a1, a2)
T‖2 ≤ a3} depi
ted in Fig. 1. Its base B is just the 
losed dis
 atthe height 1/

√
2 and the extreme points form the boundary of this dis
. Forour numeri
al examples we will further use that the positive de�nite matri
es

A ∈ Sym+
2 (R) 
an be visualized as ellipses

{x ∈ R
2 : xTA−2x = 1}whose axes have just the length of the eigenvalues of A.By A◦B we denote the Hadamard produ
t (
omponentwise produ
t) andby A⊗B the Krone
ker produ
t (tensor produ
t) of A and B, 
f. [18℄. Furtherwe 
onsider the so-
alled Jordan�produ
t of matri
es A,B ∈ Symn(R) de�nedby

A • B :=
1

2
(AB + BA) ∈ Symn(R).In 
ontrast to the ordinary matrix multipli
ation the Jordan�produ
t pre-serves the symmetry of the matri
es. This does not hold for positive semi-de�niteness. Finally, we set

vecA :=







a1...
an





for an n × n matrix A with j-th 
olumn aj.5
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Figure 1: Cone of symmetri
, positive semi-de�nite matri
es via (6).Se
ond order 
one programming. SOCP [20℄ amounts to minimize alinear obje
tive fun
tion subje
t to the 
onstraints that several a�ne fun
-tions of the variables have to lie in a se
ond order 
one Cn+1 ⊂ R
n+1 de�nedby the 
onvex set

Cn+1 =

{(

x
x̄n+1

)

= (x1, . . . , xn, x̄n+1)
T : ‖x‖2 ≤ x̄n+1

}

. (7)With this notation, the general form of a SOCP is given by
inf

x∈Rn
fTx , s.t. (

Aix + bi

cTi x + di

)

∈ Cn+1 , i = 1, . . . , r. (8)Alternatively, one 
an also use the rotated version of the standard 
one:
Kn+2 :=

{

(

x, x̄n+1, x̄n+2

)T ∈ R
n+2 : ‖x‖2

2 ≤ 2 x̄n+1x̄n+2

}

.This allows to in
orporate quadrati
 
onstraints. Problem (8) is a 
onvexprogram for whi
h e�
ient, large s
ale solvers are available [22℄.4 SOCP for the Deri
he-Ts
humperlé fun
tionalLet F : R
2 → Sym+

n (R) be a matrix �eld 
orrupted by white Gaussian noise.In analogy to (1), Deri
he and Ts
humperlé [27℄ proposed to �nd the restoredfun
tion U by minimizing the fun
tional
J (U) :=

∫

Ω
‖F − U‖2

F dxdy + αJ(U), (9)6



where
J(U) :=

∫

Ω
Φ

(

tr(U2
x + U2

y )
)

dxdy =

∫

Ω
Φ

(

n
∑

j,k=1

∇uTjk∇ujk

)

dxdy. (10)The penalizing term J(U) 
ontains a 
oupling between the matrix 
oe�-
ients.For di�erentiable Φ, the 
orresponding Euler�Lagrange equation reads
0 = F − U + α

(

∂x(Φ′(tr(U2
x + U2

y ))Ux + ∂y(Φ
′(tr(U2

x + U2
y ))Uy

)

.In [7℄ this system was 
onsidered similarly as in the s
alar-valued 
ase (2) asexpli
it time dis
retization of an isotropi
 matrix�valued di�usion pro
ess.Based on the extremum prin
iple ful�lled by the solution of this PDE theauthors showed that the solution of the matrix�valued equation preservesfor appropriate Φ the positive de�niteness of the initial matrix �eld.In this paper, we restri
t our attention to the absolute value fun
tion Φin (3) and SOCP. For 
omputations, we 
onsider the dis
rete 
ounterpart of(9), where we repla
e the derivative operators by simple forward di�eren
eoperators
Jd(U) :=

N−1
∑

i,j=0

‖F (i, j) − U(i, j)‖2
F + α Jd(U), (11)

Jd(U) :=
N−1
∑

i,j=0

(

‖U(i, j) − U(i − 1, j)‖2
F + ‖U(i, j) − U(i − 1, j)‖2

F

)1/2with U(−1, j) = U(i,−1) = 0. Other dis
retizations of the �rst order deriva-tives are possible, too. The fun
tional (11) is stri
tly 
onvex so that it hasa unique minimizer.For su�
iently large α, we see that Û minimizes Jd i� Jd(Û) = 0, i.e.
Û(i, j) = Û(0, 0) for all i, j = 0, . . . ,N − 1. Then the data �tting termbe
omes minimal i�

Û(0, 0) =
1

N2

N−1
∑

j,k=0

F (i, j). (12)We say that the dis
rete matrix �eld F : Z
2
N → Sym+

n (R) has all eigen-values in an interval I if every matrix F (i, j) of the �eld has all eigenvaluesin I. By the following proposition the minimizer of (11) preserves positivede�niteness.Proposition 4.1. Let all eigenvalues of F : Z
2
N → Sym+

n (R) be 
ontained inthe interval [λmin, λmax]. Then the minimizer Û of (11) has all eigenvaluesin [λmin, λmax]. 7



Proof. Using that the minimal and maximal eigenvalues λmin(A), λmax(A)of a symmetri
 matrix A ful�ll
λmin(A) = min

‖v‖=1
vTAv, λmax(A) = max

‖v‖=1
vTAv,it is easy to 
he
k that the set C of matri
es having all eigenvalues in

[λmin, λmax] is 
onvex and 
losed.Assume that some matri
es Û(i, j) are not 
ontained in C. Let PÛ(i, j)denote the orthogonal proje
tion (w.r.t. the Frobenius norm) of Û(i, j) onto
C. Then we obtain by the proje
tion theorem [12, p. 269℄ that

‖F (i, j) − PÛ(i, j)‖F ≤ ‖F (i, j) − Û(i, j)‖F ,

‖PÛ(i, j) − PÛ(k, l)‖F ≤ ‖Û (i, j) − Û(k, l)‖F .Consequently, Jd(PÛ) ≤ Jd(Û) whi
h 
ontradi
ts our assumption sin
e theminimizer is unique. This 
ompletes the proof. �Remark 4.2. To get an intuition, let us just 
ompute the minimizer of (11)for two given matri
es F (i), i = 0, 1 in one dimension. Via the embedding(6) we obtain F (i) 7→ f := (f1(i), f2(i), f3(i))
T. Then, (11) reads

Jd(u) =

1
∑

i=0

(

‖f(i) − u(i)‖2
2 + α ‖u(1) − u(0)‖2

)and, in 
ase d := ‖û(1)−û(0)‖2 6= 0, the (sub)gradient of Jd at the minimizer
û has to be zero. After some reordering this leads to

û(0) = f(0) +
α

2d
(û(1) − û(0)),

û(1) = f(1) − α

2d
(û(1) − û(0)).By subtra
ting these equations and taking the norm of the resulting equationwe obtain

d =
d

d + α
‖f(1) − f(0)‖2and thus d = ‖f(1)− f(0)‖2 − α if the right-hand side is nonnegative. Con-sequently, the minimizer of Jd is given by

û(0) = f(0) +
α

2

f(1) − f(0)

‖f(1) − f(0)‖2
, (13)

û(1) = f(1) − α

2

f(1) − f(0)

‖f̃(1) − f(0)‖2for α ≤ ‖f(1)−f(0)‖2 and a

ording to (12) by û(0) = û(1) = (f(0)+f(1))/2for larger α. 8



We want to 
ompute the minimizer of (11) by SOCP. In this paper, weare only interested in Sym2(R). The generalization to Symn(R), n ≥ 3 isstraightforward. We reorder a matrix �eld U : Z
2
N → Sym2(R) into a ve
tor

u ∈ R
3N2 by applying the ve
-operation

u =





vec U11

vec U12

vec U22



 , Ukl :=
(

ukl(i, j)
)N−1

i,j=0
, k, l ∈ {1, 2}. (14)The (partial) forward di�eren
e matrix is de�ned by D =

(

Dx

Dy

) with
Dx = IN ⊗ D, Dy = D ⊗ IN and

D :=



















−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0. . . . . . . . .
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 0



















. (15)Let 1N denote the ve
tor 
onsisting of N 
omponents 1. Then it is straight-forward that minimizing (11) is equivalent to the following SOCP:
t + α1TN2v → min

s.t.





(

(1,
√

2, 1) ⊗ IN2

)

(f − u)
t

1/2



 ∈ K3N2+2,

(

u11x, u11y, u12x, u12y , u22x, u22y

)T
=

(

13 ⊗D
)

u,
((

u11x(i, j)
u11y(i, j)

)T
,
√

2

(

u12x(i, j)
u12y(i, j)

)T
,

(

u22x(i, j)
u22y(i, j)

)T
, v(i, j)

)T
∈ C7,

i, j = 0, . . . ,N − 1,where uTklx = vec
(

uklx(i, j)
)N−1

i,j=0
.Remark 4.3. For the sake of 
ompleteness, we mention that there also existsan anisotropi
 approa
h [30℄ given by

J (U) :=

∫

Ω
‖F − U‖2

F + α tr Φ
(

n
∑

j,k=1

∇ujk∇uTjk) dxdy. (16)In 
ontrast to (10), the fun
tion Φ is now applied to a matrix now, i.e. to itseigenvalues, and the tra
e is taken afterwards. This provides the motivationfor a novel fun
tional to be introdu
ed in the next se
tion.9



5 New fun
tionals for matrix-�eldsInstead of (9) we propose to use the fun
tional
J (U) :=

∫

Ω
‖F − U‖2

F + α tr
(

Φ(U2
x + U2

y )
)

dxdy (17)In 
ontrast to (9), the tra
e is taken after applying the fun
tion Φ to thematrix U2
x + U2

y . Inspired by (5), we also 
onsider
J (U) :=

∫

Ω
‖F − U‖2

F + α tr
(

Φ(U2
x) + Φ(U2

y )
)

dxdy. (18)Again we are only interested in the absolute value fun
tion Φ(s2) = |s|.The next proposition shows that the fun
tional (17) has an interestingGâteaux derivative.Theorem 5.1. Let Φ be a di�erentiable fun
tion. Then the Euler-Lagrangeequations for minimizing the fun
tional (17) are given by
U − F

α
= ∂x

(

Φ′(U2
x + U2

y ) • Ux

)

+ ∂y

(

Φ′(U2
x + U2

y ) • Uy

)

. (19)Proof. Let ϕ(Ux, Uy) := tr
(

Φ(U2
x + U2

y )
). The Euler-Lagrange equationsof (17) are given, for i, j = 1, ..., n; i ≥ j, by

0 =
∂

∂uij
‖F − U‖2

F − α

(

∂

∂x

(

∂ϕ

∂uijx

)

+
∂

∂y

(

∂ϕ

∂uijy

))

.For a s
alar-valued fun
tion f and an n × n matrix X, we set ∂f(X)
∂X :=

(

∂f(X)
∂xij

)n

i,j=1
. Then, by symmetry of F and U , the Euler-Lagrange equations
an be rewritten in matrix-ve
tor form as

Wn ◦ U − F

α
=

1

2

(

∂

∂x

(

∂ϕ

∂Ux

)

+
∂

∂y

(

∂ϕ

∂Uy

))

, (20)where Wn denotes the n × n matrix with diagonal entries 1 and other 
oef-�
ients 2.We 
onsider f(X) := tr Φ(X2). Then we obtain by [21, p. 178℄ and
tr (ATB) = (vecA)TvecB that

vec
∂f(X)

∂X
= vec

(

tr (Φ′(X2)
∂(X2)

∂xij
)

)n

i,j=1

= vec

(

(vecΨ)Tvec∂(X2)

∂xij

)n

i,j=110



where Ψ := Φ′(X2). By [21, p. 182℄ and sin
e Ψ is symmetri
 this 
an berewritten as
vec

∂f(X)

∂X
= vecWn ◦ ((In ⊗ X) + (X ⊗ In)) vecΨand using that vec(ABC) = (CT ⊗ A)vecB we infer that

vec
∂f(X)

∂X
= vecWn ◦ vec(XΨ + ΨX).This implies that

∂f(X)

∂X
= 2Wn ◦ (Ψ • X). (21)Applying (21) with f(Ux) := ϕ(Ux, Uy) and f(Uy) := ϕ(Ux, Uy), respe
-tively, in (20) we obtain the assertion. �Univariate matrix�valued fun
tions. We start by 
onsidering matrix-valued fun
tions F and U in one spatial variable. In this 
ase, the fun
tionals(17) and (18) 
oin
ide and 
an be written as

J (U) :=

∫

Ω
‖F − U‖2

F + α tr |Ux| dx (22)with some interval Ω.Proposition 5.2. i) The fun
tional (22) is stri
tly 
onvex.ii) For matri
es in Sym2(R) and Ux := (ujkx)
2
j,k=1, the fun
tional (22) 
anbe rewritten as

J (U) =

∫

Ω
‖F −U‖2

F +α max{
(

4u2
12x +(u11x −u22x)2

)1/2
, |u11x +u22x|} dx.(23)Proof. i) Let λ : Symn(R) → R

n denote the mapping of a matrix to theve
tor of its eigenvalues in nonin
reasing order and let f(x) := |x1|+. . .+|xn|.Obviously, f is a symmetri
 fun
tion, i.e., permuting 
omponents does not
hange the fun
tion value. Moreover, f is lower semi
ontinuous and 
onvex.Then, by [6, p. 105℄, the fun
tion f ◦ λ is also 
onvex. Sin
e the �rstsummand in (22) is stri
tly 
onvex and the penalizing term 
oin
ides with
f ◦ λ(Ux) the whole fun
tional is stri
tly 
onvex.ii) Let λ1 and λ2 be the eigenvalues of Ux. Then straightforward 
omputationyields

tr |Ux| = |λ1| + |λ2| =
(

tr U2
x + 2 |det Ux|

)1/2
. (24)If det Ux = u11xu22x − u2

12x ≥ 0, then we obtain by (24) that
|λ1| + |λ2| = |u11x + u22x| ≥

(

(u11x − u22x)2 + 4u2
12x

)1/2
.11



For detUx < 0, we get
|λ1| + |λ2| =

(

(u11x − u22x)2 + 4u2
12x

)1/2 ≥ |u11x + u22x|.This implies (23). �For 
omputations, we 
onsider the dis
rete 
ounterpart of (23), wherewe repla
e the derivative operator by a simple forward di�eren
e operator
Jd(U) =

N−1
∑

i=0

(

‖F (i) − U(i)‖2
F + α tr |U(i) − U(i − 1)|

) (25)with U(−1) := 0. Unfortunately, the minimizer of (25) does in general notpreserve positive de�niteness. This is illustrated by the following remark.Remark 5.3. We 
onsider the following intuitive example with only two ma-tri
es F (0), F (1) ∈ Sym+
2 (R). Via the embedding (6) we obtain F (i) 7→ f :=

(f1(i), f2(i), f3(i))
T. Further, we set f̃(i) := (f1(i), f2(i))

T and similarly for
U . Then, (25) reads

Jd(U) =

1
∑

i=0

(

‖f̃(i) − ũ(i)‖2
2 + (f3(i) − u3(i))

2

+ α max{‖ũ(1) − ũ(0)‖2, |u3(1) − u3(0)|
)

.Let (

u∗
1(i), u

∗
2(i)

)T, i = 0, 1, be the minimizer of
Jd,1(ũ) =

1
∑

i=0

(

‖f̃(i) − ũ(i)‖2
2 + + α ‖ũ(1) − ũ(0)‖2

)

.Set u∗
3(i) := f3(i), i = 0, 1. Then it is easy to 
he
k that in 
ase of

‖ũ∗(1) − ũ∗(0)‖2 ≥ |u∗
3(1) − u∗

3(0)| (26)the ve
tor �eld (u∗
1(i), u

∗
2(i), u

∗
3(i))

T, i = 0, 1, minimizes Jd. Now the mini-mizer of Jd,1(ũ) 
an be 
omputed for α ≤ ‖f̃(1)− f̃ (0)‖2 as shown in Remark4.2. Let f(0) := (3, 4, 5)T, f(1) := (7, 1, 8)T ∈ C3 so that f(1) − f(0) =
(4,−3, 1)T 6∈ C3 and α := 1. Then, by (13) and (26) the minimizer of Jd isgiven by

u(0) = f(0) +
1

10
(4,−3, 0)T, u(1) = f(1) − 1

10
(4,−3, 0)Tand u(0) 6∈ C3. 12



By Proposition 5.2 ii), problem (25) 
an be reformulated as a SOCP. Sin
ethis is 
ompletely analogeous to (28) in the bivariate 
ase, we formulate theSOCP for the bivariate setting. Positive de�niteness of the solution 
an beensured by adding the 
orresponding 
one 
ondition in the SOCP. For theexample in Remark 5.3 this results in the solution
u(0) = f(0)+

1

10
(3.919,−3.086, 0.131), u(1) = f(1)− 1

10
(4.008,−2.990, 0).Bivariate matrix�valued fun
tions. The fun
tional (18) 
an be rewrit-ten as

J (U) =

∫

Ω
‖F − U‖2

F + α tr (|Ux| + |Uy|) dxdy. (27)This fun
tional 
an be handled similarly as in the univariate 
ase. By Propo-sition 5.2 and using (14), the 
orresponding minimization problem 
an bereformulated as SOCP as follows:
t + α1TN2(vx + vy) → min

s.t.





(

(1,
√

2, 1) ⊗ IN2

)

(f − u)
t

1/2



 ∈ K3N2+2,

(

u11x, u11y, u12x, u12y , u22x, u22y

)T
=

(

13 ⊗D
)

u, (28)
(2u12x(i, j), u11x(i, j) − u22x(i, j), vx(i, j))T ∈ C3,

(2u12y(i, j), u11y(i, j) − u22y(i, j), vy(i, j))T ∈ C3,

(u11x(i, j) + u22x(i, j), vx(i, j))T ∈ C2,

(u11y(i, j) + u22y(i, j), vy(i, j))T ∈ C2, i, j = 0, . . . ,N − 1.To ensure positive semi-de�niteness of the solution we 
an simply add the
one 
ondition (2u12(i, j), u11(i, j) − u22(i, j), u11(i, j) + u22(i, j))
T ∈ C3 to(28).The fun
tional (17) 
an be rewritten as

J (U) =

∫

Ω
‖F − U‖2

F + α tr
√

U2
x + U2

y dxdy (29)and in parti
ular in 
ase Sym2(R) as
J (U) =

∫

Ω
‖F − U‖2

F + α
√

η dxdy,where η = η(u11x, u12x, u22x, u11y, u12y , u22y) is given by13



η = u2
11x + 2u2

12x + u2
22x + u2

11y + 2u2
12y + u2

22y

+ 2
(

(u11xu22x − u2
12x)2 + (u11yu22y − u2

12y)
2 + (u11xu22y − u12xu12y)

2

+(u11yu22x−u12xu12y)
2+ (u11xu12y−u12xu11y)

2+(u12yu22x−u12xu22y)
2
)1/2.To 
ompute a minimizer of (29) we apply Theorem 5.2 and solve the
orresponding rea
tion�di�usion equation for t → ∞

Ut = F − U + α
(

∂x

(

Φ′(U2
x + U2

y ) • Ux

)

+ ∂y

(

Φ′(U2
x + U2

y ) • Uy

))with Φ as in (4), homogeneous Neumann boundary 
onditions and initialvalue F by a di�eren
e method. More pre
isely, we use the iterative s
heme
U (k+1) = (1 − τ)U (k) + τF + τα

(

∂x

(

G(k) • U (k)
x

)

+ ∂y

(

G(k) • U (k)
y

))with su�
iently small time step size τ and G(k) := Φ′((U
(k)
x )2 + (U

(k)
y )2).The inner derivatives in
luding those in G were approximated by forwarddi�eren
es and the outer derivatives by ba
kward di�eren
es so that thepenalizing term be
omes

1

h1

(

G(i, j) • U(i + 1, j) − U(i, j)

h1
− G(i − 1, j) • U(i, j) − U(i − 1, j)

h1

)

+
1

h2

(

G(i, j) • U(i, j + 1) − U(i, j)

h2
− G(i, j − 1) • U(i, j) − U(i, j − 1)

h2

)

,where hi, i = 1, 2 denote the pixel distan
es in x and y�dire
tion. Alterna-tively, we have also worked with symmetri
 di�eren
es for the derivatives.Then we have to repla
e e.g. G(i, j) in the �rst summand by G̃(i + 1, j) +
G̃(i, j))/2 and G̃ is now 
omputed with symmetri
 di�eren
es.6 Numeri
al ResultsFinally, we present some numeri
al results demonstrating the performan
eof the various methods. All algorithms were implemented in MATLAB.Moreover, we have used the software pa
kage MOSEK for SOCP. We restri
tour attention to Sym2(R).We start with the 1D matrix�valued fun
tion in Fig. 2. To all 
ompo-nents of the original data in [0, 1] we added white Gaussian noise with stan-dard deviation 0.1. We 
omputed the minimizer of the Deri
he-Ts
humperléfun
tional (9) (left) and of our new fun
tional (23) (right) by SOCP. Thebottom of the �gure shows the ℓ2�norm (of three matrix 
omponents) andthe Frobenius norm of the di�eren
e betweenof the original and the denoisedsignal (

∑ ‖F (i)− Û (i)‖2
F )1/2 in dependen
e on the regularization parameter

α. Note that the shape of the 
urve and its minimal point does not 
hange14



if we use ∑ ‖F (i) − Û(i)‖F instead. The a
tual minima w.r.t. the Frobe-nius norm are given by α = 0.8 and min = 0.2665 for (9) and α = 0.8 and
min = 0.2276 for (23). The denoised signals 
orresponding to the smallesterror in the Frobenius�norm are depi
ted in the middle of the �gure. It ap-pears that the new method performs slightly better w.r.t. these error norms.The visual results 
on�rm this impression. The larger ellipses obtained bythe �rst method (9) slightly overlap while there are gaps between the smallerones. We do not have this e�e
t for the minimizer of (23) at the left�handside.Now we turn to 2D matrix�valued fun
tions. We 
ompare the minimizerof the Deri
he-Ts
humperlé fun
tional (9) with those of our new fun
tionals(27) and (29) For the �rst two fun
tionals we applied SOCP while the thirdone was 
omputed via the rea
tion�di�usion equation with time step size τ =
0.00025. The iterations were stopped when the relative error in the ℓ2-normbetween two 
onse
utive iterations be
ame smaller than 10−8 (approximately20000 iterations) although the result remains visually stati
 mu
h earlier.In Fig. 3 we added white Gaussian noise with standard deviation 0.1 toall 
omponents of the original data. The bottom of the �gure 
ontains againthe error plots. The a
tual minima w.r.t. the Frobenius norm are given by
α = 0.28 and min = 0.7128 for (9), α = 0.18 and min = 0.6489 for (27)and α = 0.18 and min = 0.7426 for (29). Regarding these errors, method(27) performs best, however visually it is hard to distinguish between themethods.Our third example in Fig. 4 is similar to the se
ond one ex
ept that wehave to apply another visualization te
hnique based on OpenGL for the largermatrix-�eld. To all 
omponents of the original data in [0,2℄ we added whiteGaussian noise with standard deviation 0.6. We use the same parametersas in Fig. 3. The bottom of the �gure 
ontains the error plots for thethree methods. The a
tual minima w.r.t. the Frobenius norm are given by
α = 1.75 and min = 12.19 for (9), α = 1.15 and min = 11.6 for (27) and
α = 1.2 and min = 10.79 for (29). With respe
t to the 
omputed errorsthe new methods outperform the one based on the Deri
he-Ts
humperléfun
tional, where the third method performs best.Finally, we remark that we have restri
ted our attention to small arti�
ialexamples to see some di�eren
es between the various methods. In general itis no problem to use SOCP for matrix�valued images of size e.g. 128 × 128.Referen
es[1℄ A. Barvinok. A Course in Convexity, Graduate Studies in Mathemati
s.AMS, Providen
e, RI, 2002.
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Figure 2: Denoising of a matrix�valued signal. Top: Original signal (left),noisy signal (right). Middle: Denoised image for α 
orresponding to thesmallest error in the Frobenius norm for (9) and (23) (left to right). Bottom:
l2�error and error of the Frobenius norm in dependen
e on the regularizationparameter α for the minimizers of (9) and (23) (left to right).16
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Figure 3: Denoising of a matrix�valued image. Top: Original signal (left),noisy signal (right). Middle: Denoised image for α 
orresponding to thesmallest error in the Frobenius norm for (9), (27) and (29) (left to right).Bottom: l2�error and error of the Frobenius norm in dependen
e on theregularization parameter α for the minimizers of (9), (27) and (29) (left toright).
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Figure 4: Denoising of a matrix�valued image. Top: Original signal (left),noisy signal (right). Middle: Denoised image for α 
orresponding to thesmallest error in the Frobenius norm for (9), (27) and (29) (left to right).Bottom: l2�error and error of the Frobenius norm in dependen
e on theregularization parameter α for the minimizer of (9), (27) and (29) (left toright).
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