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Abstract

In this paper, we apply the dual approach developed by A. Cham-

bolle for the Rudin–Osher–Fatemi model to regularization functionals

with higher order derivatives. We emphasize the linear algebra point

of view by consequently using matrix–vector notation. Numerical ex-

amples demonstrate the differences between various second order re-

gularization approaches.

AMS Subject Classification:

Key words:

1 Introduction

In this paper, we are interested in constructing for a given function f a
function u that minimizes

1

2

∫

Ω

(u− f)2 dx+ λ

∫

Ω

|J (u)| dx, (1)

where the regularization functional I(u) :=
∫

Ω
|J (u)| dx is convex and posi-

tive homogeneous of degree one, i.e., I(αu) = αI(u) for every u and α > 0.
By Ω we denote an interval [a, b] in the onedimensional setting and a rect-
angle [a, b] × [c, d] in the twodimensional case. There is a large amount of
literature on applications of (1) with various, in general nonlinear, regulariza-
tion functionals in image processing. Here we only refer to the books [1, 27]
for an overview.

A frequently applied approach in image denoising and segmentation is
the Rudin–Osher–Fatemi (ROF) model [23] with the gradient J (u) := ∇u.
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Meanwhile there exist various solution methods for the corresponding mini-
mization problem, see [26] and the references therein. Most of these methods
introduce a small additional smoothing parameter to cope with the non dif-
ferenciability of |∇u|. Legendre–Fenchel dualization techniques as proposed,
e.g., in [5, 3], avoid such parameter and will be the method of choice in this
paper. We remark that another wavelet inspired technique without addi-
tional smoothing parameter was presented in [28].

In recent years, there has been a growing interest in higher order varia-
tional methods. In [4], the minimizer of the functional

∫

Ω
(f −u)2 + λ1|∇u−

∇v| + λ2|∇2v| dx was studied and in [24] the asymptotical case λ1 → ∞
was considered. In [6], a second order term (directed Laplacian) was added
to the TV functional in order to reduce the staircasing effect known from
TV regularization. For the same purpose, a regularization functional of the
form

∫

Ω
ϕ(|△u|) dx with ϕ corresponding to the Perona–Malik diffusivity

[21] was considered in [29]. In [14], second order regularization functionals
were applied in magnetic resonance imaging and in [12] for denoising and
convexification. Higher order regularization functionals were embedded in a
scale–space context in [19].

In this paper, we will apply the dual approach developed by A. Chambolle
[3] for the ROF model to regularization functionals with higher order deriva-
tives. To be more concrete, we are only concerned with a discrete version of
(1), where the functions are considered at equispaced points. We arrange the
function values in corresponding vectors, where we reshape twodimensional
arrays columnwise. Then, with a discretization J of J and the usual vector
norms, we obtain

1

2
‖u− f‖2

2 + λ‖J(u)‖1 → min, (2)

where ‖J(u)‖1 is a lower–semicontinuous, proper convex function in u which
is again one–homogeneous. We will solve this problem by considering its dual
formulation. Problem (2) is equivalent to the computation of u = f − v,
where v satisfies the constrained convex optimization problem

‖f − v‖2
2 → min, subject to v ∈ Vλ, (3)

where Vλ := {v ∈ R
N : (v,w) ≤ λ‖J(w)‖1 ∀w ∈ R

N}, see Proposition 1
in the appendix. In the following, we apply this dual approach to various
regularization functionals with higher order derivatives. We prefer to use
matrix–vector notation which makes the MATLAB implementation of the
corresponding algorithms very comfortable. Our operators J are in general
of the form J(w) = g(Aw) with an (M,N) matrix A of rank smaller than

N and with a function g : R
M → R

M̃ satisfying g(0) = 0. Then it is not
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hard to prove that

Vλ = {v ∈ R(AT ) : (v,w) ≤ λ‖J(w)‖1 ∀w ∈ R
N},

where R(AT ) denotes the range of AT , see Proposition 2 in the appendix.
This paper is organized as follows. To make the general idea more com-

prehensible, we start by considering the onedimensional setting in Section 2.
Moreover, we explain the close relation of (3) to the support vector regres-
sion (SVR) problem with spline kernels. Section 3 deals with the twodimen-
sional problem. First, we recapitulate A. Chambolle’s approach for the ROF
model using our matrix–vector notation. Then we apply the idea to various
functionals with second order derivatives. Section 4 contains numerical ex-
periments. Finally, the appendix verifies the equivalence of (2) and (3) and
the restriction of Vλ.

2 Onedimensional Setting

We find it useful to consider the onedimensional case with derivative opera-
tors J (u) = u(m) of various orders m ∈ N first. As discretization of the first
derivative of u, we use the forward difference u′(jh) ≈ (u((j+1)h)−u(jh))/h,
j = 1, . . . , N−1 with h := (b−a)/N . For simplicity, we assume in the follow-
ing that h = 1. As disrete version of u(m) we use its m–th forward difference

J(u) := DN,mu with DN,m := D̃N,m · · · D̃N,1 ∈ R
N−m,N and forward differ-

ence matrices

D̃N,r :=











−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
...

0 0 −1 1











∈ R
N−r,N−r+1, r < N.

Regarding the discrete momentum properties of the finite forward differences,
we see that v ∈ R(DT

N,m) if and only if

N
∑

j=1

jrvj = 0, r = 0, . . . , m− 1. (4)

For r = 0, this condition is in particular fulfilled if v is white Gaussian noise.
The matrix DN,m has rank N − m. Hence, for any v ∈ R(DT

N,m), there

exists a unique V ∈ R
N−m such that v = DT

N,mV and

(v,w) = (DT
N,mV ,w) = (V ,DN,mw) ≤ ‖V ‖∞‖DN,mw‖1 ∀w ∈ R

N .
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The inequality is sharp in the sense that there exists no constant C < ‖V ‖∞
such that (v,w) ≤ C‖DN,mw‖1 holds true for all w ∈ R

N . Consequently,
Vλ = {v := DT

N,mV : ‖V ‖∞ ≤ λ, V ∈ R
N−m} and problem (3) is equivalent

to
‖f −DT

N,mV ‖2
2 → min, subject to ‖V ‖∞ ≤ λ. (5)

This problem which is just the Fenchel dual of (2) can be solved by quadratic
programming (QP) methods. The final solution is u = f −DT

N,mV . By (4),
the first m discrete moments of u coincide with those of f .

In [25] we have examined higher order TV regularization in one dimension
from a different point of view, namely with respect to its relation to spline
interpolation with variable knots and to SVR with discrete spline kernels.
Finishing [25], we became aware of its close relation to Legendre–Fenchel du-
alization techniques. Since this was indeed the motivation to write this paper,
we briefly want to explain the relation to [25]. By adding an appropriate last
row to D̃N,1 ∈ R

N−1,N , we introduce the Toeplitz matrix

D−1 ==















−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
0 0 0 . . . −1 1
0 0 0 . . . 0 −1















∈ R
N,N ,

which has the upper triangular matrix with coefficients −1 as inverse matrix.
Then the first N−m rows of Dm

−1 coincide with those ofDN,m. Now, for any
v ∈ R

N , there exists a unique V ∈ R
N such that v = (Dm

−1)
TV . Assuming

that VN−j = 0 for j = 0, . . . , m− 1 which is equivalent to the restrictions (4)

on v, we obtain with Ṽ := (V1, . . . , VN−m)T that

(v,w) =
(

(Dm
−1)

TV ,w
)

= (Ṽ ,DN,mw) ≤ ‖V ‖∞‖DN,mw‖1 ∀w ∈ R
N ,

where the inequality is sharp. Consequently, (5) can be rewritten as

‖f − (Dm
−1)

TV ‖2
2 → min,

subject to ‖V ‖∞ ≤ λ and VN−j = 0, j = 0, . . . , m− 1.

Defining F and U by f = (Dm
−1)

TF and u = (Dm
−1)

TU , respectively, this
problem becomes

‖(Dm
−1)

TU‖2
2 → min,

subject to ‖F −U‖∞ ≤ λ and FN−j = UN−j , j = 0, . . . , m− 1.
(6)
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For m = 1, the solution of (6) can be computed by the so–called taut–string

algorithm. This algorithm has complexity O(N) and is much faster than
QP methods, see [8, 15]. For tube methods in more than one dimension, we
refer to [11]. In [25], we have shown that for given F ∈ R

N , the solution
U of (6) is a discrete spline of degree 2m − 1 which interpolates F ± λ
at its spline knots. For discrete splines, we refer to [16]. On the other
hand, we have verified that U can be interpreted as sparse approximation
of F in the sense of [10] or as solution of a SVR problem with discrete
spline kernel. To see the last relation in the context of this paper, let us
consider u = Dm

−1(D
m
−1)

Tψ as discrete counterpart of u = ψ(2m). Then
ψ = k ∗ u, where k is the fundamental solution of the (2m)–th derivative
operator, i.e., the spline k(x) = x2m−1

+ . Here (x)+ := max{0, x}. With

K :=
(

Dm
−1(D

m
−1)

T
)−1

we have that ψ = Ku. Let U := ψ(m) = k ∗ u(m). Its
discrete version reads U = KDm

−1u. Setting c := Dm
−1u, our minimization

problem becomes
cTKc→ min,

subject to ‖F −Kc‖∞ ≤ λ and FN−j = (Kc)N−j, j = 0, . . . , m− 1.

This is the SVR problem with discrete spline kernel considered in [25].

3 Twodimensional Setting

For simplicity, we restrict our attention to quadratic (n, n) arrays and reshape
them columnwise into a vector of length N = n2. By adding a zero row to
the forward difference matrix D̃n,1 ∈ R

n−1,n, we define the matrix

D0 :=















−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
0 0 0 . . . −1 1
0 0 0 . . . 0 0















∈ R
n,n.

3.1 First order derivatives

In this subsection, we are concerned with the ROF model J (u) := ∇u. Since
we will apply similar ideas for regularization functionals with higher order
derivatives in the next subsection, we briefly reconsider the approach of A.
Chambolle [3] using our matrix–vector notation. As discrete versions of ∇u
and its adjoint ∇∗U = −divU we use Du and D

TU , respectively, where

D :=

(

In ⊗D0

D0 ⊗ In

)

∈ R
2N,N , D

T =
(

In ⊗DT
0 , D

T
0 ⊗ In

)

∈ R
N,2N
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and where ⊗ denotes the Kronecker product. Both matrices have rank N−1.
This is just the discretization considered in [3]. Now the discrete version of
|∇u| = (u2

x + u2
y)

1/2 reads J(u) = |Du|, where

∣

∣

∣

∣

(

F 1

F 2

)∣

∣

∣

∣

:=
(

(F 1)2 + (F 2)2
)1/2

=
(

F 1 ◦ F 1 + F 2 ◦ F 2
)1/2

∈ R
N

and ◦ denotes the componentwise vector product. Since the columns of D
T

add up to zero, we see that v ∈ R(DT ) if and only if

N
∑

j=1

vj = 0. (7)

Then we obtain for all V ∈ R
2N with v = D

TV that

(v,w) = (DTV ,w) = (V ,Dw) =
(

V 1, (In ⊗D0)w
)

+
(

V 2, (D0 ⊗ In)w
)

.

Applying Schwarz’s inequality to the sum of corresponding components in
both inner products, we get

(v,w) ≤ (|V |, |Dw|) ≤ ‖ |V | ‖∞‖ |Dw| ‖1 ∀w ∈ R
N .

By [2], we have that Vλ = Gd
λ := {v ∈ R(DT ) : ‖v‖Gd ≤ λ}, where d

abbreviates ’discrete’ and where ‖v‖Gd := inf
v=DT V

‖ |V | ‖∞ is the discrete

version of Meyer’s G–norm [18]. Recently, the G–norm was generalized to
second order derivatives in [20] in the continuous setting. This is related to
the next subsection. Instead of problem (3) we solve

‖f − D
TV ‖2 → min, subject to ‖ |V | ‖∞ ≤ λ. (8)

This is a quadratic problem with convex constraints. The Lagrangian of (8)
is given by

L(V ,α) = V T
DD

TV − 2fT
D

TV + fTf −αT
(

λ2e− (V 1)2 − (V 2)2
)

,

where e denotes the vector with components one and α ∈ R
N with α ≥ 0

componentwise. A necessary and sufficient condition for V to produce a
minimum of (8) is that the gradient of L with respect to V is the zero
vector, i.e.,

∇V L(V ,α) = 2 DD
TV − 2 Df + 2

(

α ◦ V 1

α ◦ V 2

)

= 0. (9)
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Let W := DD
TV − Df . If αj > 0, then, by the Karush–Kuhn–Tucker

conditions, the j–th constraint in (8) has to be the equality (V 1
j)

2 +(V 2
j)

2 =
λ2. Consequently, by (9), W 1

j = −αjV
1
j and W 2

j = −αjV
2
j so that

(

W 1
j

)2
+

(

W 2
j

)2
= α2

jλ
2. (10)

If αj = 0, then (10) holds obviousely true. Hence we can replace α in (9) by
(10) and obtain

W +
1

λ

(

|W |
|W |

)

◦ V = 0. (11)

By [7, Theorem 9.2-4], the Karush–Kuhn–Tucker conditions summarized in
(11) are also sufficient for V to provide a minimum of (8). To solve (11), A.
Chambolle [3] suggested the semi–implicit gradient descent approach

V (k+1) = V (k) − τ

(

W (k) +
1

λ

(

|W (k)|

|W (k)|

)

◦ V (k+1)

)

.

In summary, we obtain the following algorithm:

Algorithm 1.
Input: f and V (0) := 0.

Repeat for k = 0 until a stopping criterion is reached

W (k) := DD
TV (k) − Df ,

V (k+1) :=

(

1 +
τ

λ

(

|W (k)|

|W (k)|

))−1

◦
(

V (k) − τW (k)
)

,

k := k + 1,

where the inverse is taken componentwise.
Output: u := f − D

TV (k).

A. Chambolle proved that D
TV (k) converges for k → ∞ to the solution v of

(3) if
τ ≤ 1/‖DT‖2

2.

Now ‖DT‖2
2 = ρ(DT

D), where ρ denotes the spectral radius of the ma-
trix. The matrix D

T
D is well–known from the five point finite difference

discretization of the Laplacian with Neumann boundary conditions. The
eigenvalues of this matrix are given by 4(sin(jπ/(2n))2 + sin(kπ/(2n))2),
j, k = 0, . . . , n − 1. Thus, ‖DT‖2

2 = 8. However, in numerical experiments
convergence was observed for τ ≤ 1/4.
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3.2 Second order derivatives

Starting with the Hessian ∇2u :=

(

uxx uxy

uyx uyy

)

of u, we consider the follow-

ing functionals:

1. the trace of the Hessian, i.e., the Laplacian

J (u) := △u = uxx + uyy,

2. the Frobenius norm of the Hessian mentioned also in [9]

J (u) :=
(

u2
xx + u2

yy + u2
xy + u2

yx

)1/2
,

3. the modified Laplacian considered in [14]

J (u) := |uxx| + |uyy|.

The Laplacian and the Frobenius norm of the Hessian are the most straight-
forward functionals with second order derivatives that are rotationally in-
variant. Although the modified Laplacian lacks rotation invariance, we just
include it for comparisons. We will see that our discrete version of the Frobe-
nius norm of the Hessian can be handled as in the previous subsection by a
semi–implicit gradient descent method while the Laplacian and the modified
Laplacian lead to QP.

1. The Laplacian. As discretization of the Laplacian we use J(u) :=
D△u, where

D△ := D
T
D = In ⊗DT

0D0 +DT
0D0 ⊗ In

denotes the symmetric matrix of rank N −1 arising from the five point finite
difference discretization of the Laplacian with Neumann boundary condi-
tions. Since the columns of D

T
D add up to zero, we have that v ∈ R(D△)

if and only if (7) holds true. Then we obtain for all V ∈ R
N with v = D△V

that

(v,w) = (D△V ,w) = (V ,D△w) ≤ ‖V ‖∞‖D△w‖1 ∀w ∈ R
N . (12)

Regarding that the nullspace of D△ is given by {ce : c ∈ R}, we see that
v = D△V if and only if v = D△(V +ce). Choosing µ := (Vmin+Vmax)/2 with
the maximal and minimal components Vmin and Vmax of V , respectively, we
obtain that the components of Ṽ := V −µe fulfill −(Vmax − Vmin)/2 ≤ Ṽj ≤
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(Vmax−Vmin)/2, where we have lower and upper equality for some components
j− and j+, respectively. Thus, ‖Ṽ ‖∞ = (Vmax − Vmin)/2 and ‖Ṽ + ce‖∞ =
‖Ṽ ‖∞+|c|. Consequently, min

v=D△V

‖V ‖∞ = ‖Ṽ ‖∞. Choosing D△w as vector

consisting of zeros except for (D△w)j− := −1 and (D△w)j+ := 1, we obtain

in (12) the equality (v,w) = (Ṽ ,D△w) = 2‖Ṽ ‖∞ = ‖Ṽ ‖∞‖D△w‖1.
Finally, we solve

‖f − D△V ‖2
2 → min, subject to ‖V ‖∞ ≤ λ. (13)

2. The Frobenius norm of the Hessian. We discretize the Frobenius
norm of the Hessian by J(u) := |DHu|, where

DH :=









(In ⊗DT
0 )(In ⊗D0)

(DT
0 ⊗ In)(D0 ⊗ In)

(In ⊗DT
0 )(D0 ⊗ In)

(D0 ⊗ In)(In ⊗DT
0 )









=









In ⊗DT
0D0

DT
0D0 ⊗ In

DT
0 ⊗D0

D0 ⊗D
T
0









and where for F := ((F 1)T , (F 2)T , (F 3)T , (F 4)T )T with F i ∈ R
N , i =

1, . . . , 4,

|F | :=
(

(F 1)2 + (F 2)2 + (F 3)2 + (F 4)2
)1/2

∈ R
N .

We can just repeat the arguments from the previous subsection. Again, D
T
H

has rank N − 1 and its columns sum up to zeros. Therefore we have that
v ∈ R(DT

H) if and only if (7) holds true. Then we obtain for V ∈ R
4N with

v = D
T
HV that

(v,w) = (DT
HV ,w) = (V ,DHw) =

4
∑

i=1

(

V i, (DHw)i
)

.

Applying Schwarz’s inequality to the sum of the corresponding components
in the four inner products, we obtain (v,w) ≤ (|V |, |DHw|) and further
(v,w) ≤ ‖ |V | ‖∞‖ |DHw| ‖1 ∀w ∈ R

N . We solve the problem

‖f − DHV ‖2 → min, subject to ‖ |V | ‖∞ ≤ λ. (14)

by the following algorithm which can be deduced in the same way as Alg. 1
in the previous subsection:
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Algorithm 2.
Input: f and V (0) := 0.

Repeat for k = 0 until a stopping criterion is reached

W (k) := DHD
T
HV

(k) − DHf ,

V (k+1) :=

(

1 +
τ

λ

(

|W (k)|, |W (k)|, |W (k)|, |W (k)|
)T

)−1

◦
(

V (k) − τW (k)
)

,

k := k + 1,

where the inverse is taken componentwise.
Output: u := f − D

T
HV

(k).

Similarly as for Alg. 1 it can be proved that the iterative process converges
for step sizes τ ≤ 1/‖DT

H‖
2
2 = 1/ρ(DT

HDH). Having a closer look at the
special structure of D

T
HDH , we conclude by Gerschgorin’s circle theorem

that the eigenvalues of this matrix lie in a circle around 20 with radius 44.
Thus, ρ(DT

HDH) ≤ 64 and we can prove convergence for τ ≤ 1/64. However,
in numerical experiments, convergence can be observed for τ ≤ 1/32.

3. The modified Laplacian. Here we use the discretization J(u) :=
D△,1u, where

D△,1 :=

(

(In ⊗DT
0 )(In ⊗D0)

(DT
0 ⊗ In)(D0 ⊗ In)

)

=

(

In ⊗DT
0D0

DT
0D0 ⊗ In

)

.

We have that v ∈ R(DT
△,1) if and only if (7) is fulfilled. Using our standard

arguments, we arrive at the problem

‖f − D
T
△,1V ‖2 → min, subject to ‖V ‖∞ ≤ λ (15)

4 Numerical experiments

For the onedimensional setting, numerical experiments are already contained
in [25]. Therefore, we restrict our attention to two dimensions. All programs
are written in MATLAB.

For the solution of the QP problems arising for the Laplacian and the
modified Laplacian we have used the ILOG CPLEX Barrier Optimizer ver-
sion 7.5. This routine uses a modification of the primal–dual predictor–
corrector interior point algorithm described in [17]. The algorithms termi-
nates if the relative complementary gap is smaller than 10−5. The main
reason for using this solver instead of, e.g., the MATLAB ’quadprog’ rou-
tine was that CPLEX supports sparse matrix operations. Of course other
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Figure 1: Left: Original clown image. Right: Part of the clown image.

QP techniques may be applied, e.g., an adaptation of the recently developed
semi–smooth Newton method (primal–dual active set method) [13] to our
setting with higher order derivatives. However, we will see in our experi-
ments that the Frobenius norm of the Hessian seems to be superior to both
the Laplacian and the modified Laplacian. Therefore, we will not focus our
attention on the best QP method for the later problems.

In case of the ROF functional, we have applied Alg. 1 with step size
τ = 1/4. For the Frobenius norm of the Hessian, we have used Alg. 2 with
step size τ = 1/64.

We applied the four algorithms to the part (50 : 150, 100 : 200) of the
clown image in Fig. 1, where we stop the iterations in Alg. 1 and Alg. 2 if
the relative error fulfills ‖V − Vold‖2/‖V ‖2 < 10−3. The required number of
iterations for Alg. 1 and 2 is given by the following table.

λ 5 10 20
Alg. 1 (ROF) 131 159 192
Alg. 2 (Hessian) 272 347 432

The images transformed by our four algorithms with regularization pa-
rameter λ = 10 are shown in Fig. 2. Our findings can be summarized as
follows:

• The images corresponding to higher order regularization functionals
look smoother than the image related to the ROF functional. The
later shows the typical staircasing effects.

• The image belonging to the Laplacian contains visible artefacts in form
of white points. These artefacts also appear for other regularization
parameters. Therefore we cannot recommend this method at least not
with the current discretization.
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• The images corresponding to the Frobenius norm of the Hessian and to
the modified Laplacian are very similar. However, the second method
is not rotationally invariant. This behaviour is demonstrated in Fig. 3.
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Figure 2: Transformed clown image (part) for λ = 5. Top left: Alg. 1 (ROF).
Top right: QP (13) (Laplacian). Bottom left: Alg. 2 (Frobenius norm of the
Hessian). Bottom right: QP (15) (modifiid Laplacian).

Appendix

We briefly derive the equivalence of (2) and (3) following mainly the lines of
[2, 3].

Proposition 1. The problems (2) and (3) are equivalent.

Proof. Set I(u) := ‖J(u)‖1. Since (2) is a convex functional, its mini-
mizer has to fulfill the necessary and sufficient condition

0 ∈ u− f + λ∂I(u), i.e.,
f − u

λ
∈ ∂I(u), (16)
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where ∂I denotes the subgradient of I. By [22, Theorem 23.5], condition
(16) is equivalent to

u ∈ ∂I∗
(

f − u

λ

)

i.e., f − λṽ ∈ ∂I∗(ṽ), (17)

where λṽ := f −u and where I∗ denotes the Legendre–Fenchel conjugate of
I. Now ṽ fulfills inclusion (17) if and only if ṽ minimizes the functional

1

2
‖
f

λ
− ṽ‖2

2 +
1

λ
I∗(ṽ). (18)

By definition of the conjugate function and since I is one–homogeneous, we
have for arbitrary λ > 0 that

I∗(ṽ) := sup
w∈RN

{(ṽ,w) − I(w)} = sup
w∈RN

{(ṽ,w) − λI(w/λ)} = λI∗(ṽ).

(19)
Therefore and since I∗ is proper, either I∗(ṽ) = 0 or I∗(ṽ) = ∞ holds
true. In the second case, the vector ṽ cannot become a minimum of (18).
Consequently, problem (18) can be rewritten as

‖f − λṽ‖2
2 → min, subject to I∗(ṽ) = 0.

Setting v := λṽ, we see by (19) that this problem is equivalent to (3). �

For special I, the set Vλ can be further restricted as follows:

Proposition 2. Let J(w) := g(Aw) with an (M,N) matrix A of rank

smaller than N and a function g : R
M → R

M̃ satisfying g(0) = 0. Let
Vλ := {v ∈ R

N : (v,w) ≤ λ‖J(w)‖1 ∀w ∈ R
N}. Then v ∈ Vλ implies that

v ∈ R(AT ).

Proof. Assume that there exists v ∈ Vλ with v 6∈ R(AT ). Since
R

N = R(AT ) ⊕ N (A), where N (A) denotes the nullspace of A and ⊕
the orthogonal sum, the vector v can be written as v = v0 + ATV with
v0 ∈ N (A), v0 6= 0. Then we obtain for w := v0 that

(v,w) = (v0 +ATV ,v0) = ‖v0‖
2
2 + (V ,Av0) = ‖v0‖

2
2 > 0.

On the other hand, we have that

‖J(w)‖1 = ‖g(Av0)‖1 = ‖g(0)‖1 = 0,

so that we conclude by definition of Vλ that v 6∈ Vλ. This contradicts our
assumption. �
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Figure 3: Top left: Original image consisting of concentric circles. Top right:
Transformed image by (13) (Laplacian). Bottom left: Transformed image by
Alg. 2 (Frobenius norm of the Hessian). Bottom right: Transformed image
by (15) (modified Laplacian). This method is not rotationally invariant. In
all transforms we have used λ = 1500.
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