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where AN 2 C N;N are positive de�nite Hermitian Toeplitz matrices generated by a contin-uous non{negative function f which has only a �nite number of zeros. Often these systemsare obtained by discretization of continuous problems (partial di�erential equation, integralequation with weakly singular kernel) and the dimension N is related to the grid parameterof the discretization. For further applications see [12] and the references therein.Iterative solution methods for Toeplitz systems, in particular the conjugate gradient method(CG{method), have attained much attention during the last years. The reason for this is thatthe essential computational e�ort per iteration step, namely the multiplication of a vectorwith the Toeplitz matrix AN , can be reduced to O(N logN) arithmetical operations by fastFourier transforms (FFT). However, the number of iteration steps depends on the distribu-tion of the eigenvalues of AN . If we allow the generating function f to have isolated zeros,then the condition numbers of the related Toeplitz matrices grow polynomial with N and theCG{method converges very slow [8, 27, 44]. Therefore, the really task consists in the con-struction of suitable preconditionersMN of AN so that the number of iteration steps of thecorresponding preconditioned CG{method (PCG{method) becomes independent of N . Hereit is useful to recall a result of O. Axelsson [1, p. 573] relating the spectrum of the coe�cientmatrix to the number of iteration steps to achieve a prescribed precision:Theorem 1.1. Let A be a positive de�nite Hermitian (N;N){matrix which has p and qisolated large and small eigenvalues, respectively:0 < �1 � �2 � : : : � �q < a � �q+1 � : : : �N�p � b< �N�p+1 � �N�p+2 � : : : � �N (0 < a < b <1):Let dxe denote the smallest integer � x. Then the CG{method for the solution of Ax = brequires at most n = &(ln 2� + qXk=1 ln b�k ) = ln 1 + (ab )1=21� (ab )1=2' + p+ qiteration steps to achieve precision � , i.e.jjxn � xjjAjjx0 � xjjA � � ;where jjxjjA := p�x0Ax and where xn denotes the numerical solution after n iteration steps.In literature two kinds of preconditioners were mainly exploited, namely banded Toeplitzmatrices and matrices arising from a matrix algebra AON := f �O0N (diagd)ON : d 2 C N g,where ON denotes a unitary matrix.For another approach by multigrid methods see for example [22].Various banded Toeplitz preconditioners were examined [10, 5, 39, 35, 40]. It was provedthat the corresponding PCG{methods converge in a number of iteration steps independentof N . However, there is the signi�cant constraint that the cost per iteration of the proposedprocedure should be upper-bounded by O(N logN). This implies some conditions on thegrowth of the bandwidth of the banded Toeplitz preconditioners [40].The above constraint is trivially ful�lled if we chose preconditioners from matrix algebras,where the unitary matrixON has to allow an e�cient multiplication with a vector inO(N logN)arithmetical operations. Up to now, the only preconditioners of the matrix algebra class which2



ensure the desired convergence of the corresponding PCG{method are the preconditioners pro-posed in [30, 24]. Unfortunately, the construction of these preconditioners requires the explicitknowledge of the generating function f .Extensive examinations were done with natural and optimal Tau preconditioners [6, 3]. Onlyfor su�ciently smooth functions, where the necessary smoothness depends on the order of thezeros of f , the natural Tau preconditioners become positive de�nite and lead to the desiredlocation of the eigenvalues of the preconditioned matrices. The optimal Tau preconditioneris in general a bad choice if f has zeros of order > 2. The reason for this will become clear inthe following sections.In this paper, we combine our approach in [30] with the approximation of f by its convolutionwith a reproducing kernel KN . The kernel approach was given in [15] for positive generatingfunctions. Interesting tests with B{spline kernels were performed by R. Chan et al. in [14].The advantage of the kernel approach is that it does not require the explicit knowledge of thegenerating function. However, for our theoretical proofs we need some knowledge about thelocation of the zeros of the generating function f . See remarks at the end of this section. Werestrict our attention to positive kernels. This ensures that our preconditioners are positivede�nite. Suppose that f has only zeros of even order � 2s. Then we prove that under the"moment condition" �Z�� t2kKN (t) dt � CN�2k (k = 0; : : : ; s)on the kernels KN , the eigenvalues of M�1N AN are contained in some interval [a; b] (0 < a �b < 1) except for a �xed number (independent of N) of eigenvalues falling into [b;1) suchthat PCG converges in O(1) steps.Note that the above kernel property with s = 1 implies for su�ciently smooth f the Jacksonresult jjf �KN � f jj1 � N�2!(f (2); 1=N) ;where ! denotes the modulus of continuity. On the other hand, the classical saturation resultof P. P. Korovkin [28, 20] states that we cannot expect a convergence speed of jjf �KN �f jj1better than N�2 even in the presence of very regular functions f .This paper is organized as follows: In Section 2, we introduce our w{circulant positive de�nitepreconditioners. We show how the corresponding PCG{method can be implemented withonly O(N) arithmetical operations per step more than the original CG{method. Section 3is concerned with the location of the eigenvalues of the preconditioned matrices. We will seethat under some assumptions on the kernel the number of CG{iterations is independent ofN . Special kernels as Jackson kernels and B{spline kernels are considered in Section 5. InSection 6, we sketch how our ideas can be extended to (real) symmetric Toeplitz matrices withtrigonometric preconditioners and to doubly symmetric block Toeplitz matrices with Toeplitzblocks. Finally, Section 7 contains numerical results.After sending our manuscript to SIAM J. Sci. Comput., R. H. Chan informed us that hisgroup has got similar results as in our preprint. See [16] and for a re�ned version [17]. Theconstruction of circulant preconditioners of R. H. Chan et al. is only based on Jackson kernelsand the proofs are di�erent from ours. By a trick, which can also be applied to our !{circulantpreconditioners, the authors need no knowledge about the location of the zeros of f . In [16],the authors prove convergence of the corresponding PCG{method in O(logN) iteration steps.3



2 Preconditioners from kernelsLet C2� denote the Banach space of 2�{periodic real{valued continuous functions with normkfk1 := maxx2[��;�] jf(x)j :We are interested in the solution of Hermitian Toeplitz systemsANx = b; AN = AN (f) := (aj�k)N�1j;k=0 (2.1)ak = ak(f) := 12� 2�Z0 f(x) e�ikx dxgenerated by a non{negative function f 2 C2� which has only a �nite number of zeros. By[10], the matricesAN (f) are positive de�nite such that (2.1) can be solved by the CG{method.Unfortunately, since the generating function f 2 C2� has zeros, the related Toeplitz matricesare asymptotically ill{conditioned and the CG{method converges very slow. To acceleratethe convergence of the CG{method, we are looking for suitable preconditioners of AN , wherewe do not suppose the explicit knowledge of the generating function f . To reach our aim, weuse reproducing kernels. This method was originally proposed for Toeplitz matrices arisingfrom positive functions f 2 C2� in [15].In [14], R. Chan et al. showed by numerical tests that preconditioners from special kernelsrelated to B{splines can improve the convergence of the CG{method also if f � 0 has zerosof various order. A theoretical proof of R. Chan's results was open up to now.In this paper, we restrict our attention to even trigonometric polynomialsKN (x) := cN;0 + 2N�1Xk=1 cN;k cos kx ; cN;k = ak(KN ) : (2.2)If 12� 2�Z0 KN (x)dx = cN;0 = 1 (2.3)and KN � 0; then KN is called a positive (trigonometric) kernel. As main examples of suchkernels we consider generalized Jackson polynomials and B{spline kernels in Section 4. Forf 2 C2�; let fN denote the convolution of f with KN , i.e.fN (x) = (f �KN )(x) := 12� 2�Z0 f(t)KN (x� t) dt (2.4)or equivalently in the Fourier domainfN (x) = N�1Xk=�(N�1) ak(f)cN;k eikx : (2.5)4



We consider so{called reproducing kernels KN (N 2 N) with the property thatlimN!1 kf � fNk1 = 0 (2.6)for all f 2 C2�.We chose grids GN (N 2 N) consisting of equispaced nodesxN;l := wN + 2�lN (l = 0; : : : ; N � 1; wN 2 [0; 2�N )) (2.7)such that f(xN;l) 6= 0 for all l = 0; : : : ; N � 1. Note that the choice of the grids requiressome preliminary information about the location of the zeros of f . By a trick (cf. [16]) thisrestriction can be neglected if we accept some more outlyers. We consider matrices of theform MN (f) :=WNFNDN (f) �FN �WN (2.8)withFN := 1pN � e�2�ijk=N�N�1j;k=0 ; WN := diag ( e�ikwN )N�1k=0 ; DN (f) = diag (f(xN;l))N�1l=0 :Obviously, the matrices MN can be written asMN (f) = 0BBB@ ~a0 ~aN�1 eiNwN � � � ~a1 eiNwN~a1 ~a0... . . . ...~aN�1 : : : : : : ~a0 1CCCAwith ~ak = ~ak(f) := 1N N�1Xl=0 f(xN;l) e�ikwN e�2�ikl=N : (2.9)These are ( eiNwN ){circulant matrices (see [19]). In particular, we obtain circulant matricesfor wN = 0 and skew{circulant matrices for wN = �N .As preconditioners for (2.1), we suggest matrices of the formMN :=MN (fN ) (2.10)with suitable positive reproducing kernels KN . By (2.5), the construction of these precondi-tioners requires only the knowledge of the Toeplitz matrices AN . It is not necessary to knowthe generating function f explicitly. However, for the theoretical results in this paper, wemust have some information about the location of the zeros of f . Note that by a trick in [16]this information is also super
uous. Here we point out that the auxiliary nontrivial problemof �nding some crucial analytic properties of the generating function f has been treated andpartially solved in [39].Moreover, our preconditioners have the following desirable properties:1. Since f � 0 with a �nite number of zeros and KN is a positive kernel, it follows by (2.4)that fN > 0. Thus, the matrices MN (fN ) are positive de�nite.5



2. In the following section, we will prove that under certain conditions on the kernels KNthe eigenvalues ofM�1N AN are bounded from below by a positive constant independentof N and that the number of isolated eigenvalues ofM�1N AN is independent of N . Then,by Theorem 1.1, the number of PCG{steps to achieve a �xed precision is independentof N .3. By construction (2.8), the multiplication ofMN with a vector requires only O(N logN)arithmetical operations by using FFT{techniques. By a technique presented in [25] it ispossible to implement a PCG{method with preconditionerMN which takes only O(N)instead of O(N logN) arithmetical operations per iteration step more than the originalCG{method with respect to AN .3 Eigenvalues of M�1N ANIn this section, we prove that under certain assumptions on the kernels KN the eigenvaluesof M�1N AN are bounded from below by a positive constant independent of N and that thenumber of isolated eigenvalues of M�1N AN is independent of N . For the proof of our mainresult, we need some preliminary lemmata.Lemma 3.1 Let p 2 C2� be a non{negative function which has only a �nite number of zeros.Let h 2 C2� be a positive function withhmin := minx2[0;2�]h(x) ; hmax := maxx2[0;2�]h(x) :Then, for f := ph and any N 2 N, the eigenvalues of A�1N (p)AN (f) lie in the interval[hmin; hmax].The proof can be found for example in [5, 10, 30]. A more sophisticated version for f; g 2 L1was proved in [37, 36].Lemma 3.2 Let p be a real{valued non{negative trigonometric polynomial of degree � s.Let N � 2s: Then at most 2s eigenvalues of MN (p)�1AN (p) di�er from 1.Proof: For arbitrary f 2 C2� with pointwise convergent Fourier series, we obtain by replacingf(xN;l) in (2.9) by the Fourier series of f at xN;l~ak = 1N N�1Xl=0 Xj2Zaj eijxN;l e�2�ilk=N e�ikwN= N�1Xj=0 aj e�iwNk eiwN j  1N N�1Xl=0 e�2�ilk=N e2�ilj=N!+N�1Xj=0 Xr2Znf0gaj+rNe�iwNk eiwN (j+rN)  1N N�1Xl=0 e�2�ilk=N e2�ilj=N!= ak + Xr2Znf0gak+rN eiwN rN : 6



This is well{known as aliasing e�ect. Then it follows thatAN (f) =MN (f)�BN (f) ; (3.1)where BN (f) := (bj�k(f))N�1j;k=0 ; bk(f) := Xr2Znf0gak+rN (f) eiwNrN :We consider f = p. Since p is of degree smaller than s � N2 , we have that bk(p) = 0 forjkj � N � 1� s. Consequently, BN (p) is of rank � 2s. Now the assertion follows by (3.1).In the sequel, we restrict our attention to Toeplitz matrices having a non{negative generatingfunction f 2 C2� with a zero of even order 2s (s 2 N) at x = 0.We use the trigonometric polynomialps(x) := (2� 2 cos x)s = (2 sin x2 )2s = sXk=0�k cos kx (s � 1) (3.2)of degree s which has also a zero of order 2s at x = 0.The convergence of our PCG{method is related to the behaviour of the grid functionsqs;N(x) := ps;N(x)ps(x) (x 2 GN ) ; (3.3)where ps;N(x) := (ps �KN )(x). More precisely, for the proof of our main theorem, we needthat fqs;N (x)gN2N is bounded for all x 2 GN from above and below by positive constantsindependent of N . This will be the content ot the following lemmata.First, we see that the above property follows immediately for all grid points x 2 GN havingsome distance independent of N from the zero of f :Lemma 3.3 Let GN be de�ned by (2.7) with wN 6= 0. Let fKNgN2N be a sequence ofpositive even reproducing kernels and let qs;N be given by (3.3). Then, for xN 2 GN \ [a; b][a; b] � (0; 2�) and for every " > 0 there exists N(") such that1� " � qs;N(xN ) � 1 + "for all N � N(").Proof: Since xN 2 [a; b] (N 2 N) for some a > 0; b < 2�, we have thatps(xN ) � minfps(a); ps(b)g > 0 :Further, we obtain by (2.6) that for every " > 0 there exists N(") such thatjps(x)� ps;N (x)j � "minfps(a); ps(b)g (x 2 [0; 2�))for all N � N("). By rewriting (3.3) in the formqs;N(xN ) = 1 + ps;N (xN )� ps(xN )ps(xN )7



we obtain the assertion.By Lemma 3.3, it remains to consider the sequences fqs;N(xN )gN2N for xN 2 GN withxN ! 0 for N ! 1 or with xN ! 2� for N ! 1. Since both cases require the same ideas,we consider xN 2 GN with limN!1xN = 0 :The existence of a lower bound of fqs;N(xN )gN2N does also not require additional propertiesof the kernel KN :Lemma 3.4 Let GN be de�ned by (2.7) with wN 6= 0. Let fKNgN2N be a sequence ofpositive even reproducing kernels and let qs;N be given by (3.3). Then, for xN 2 GN withlimN!1xN = 0, there exists a constant � > 0 independent of N such that� � qs;N(xN ) :Proof: By de�nition of qs;N and ps;N , we have thatqs;N(xN ) = 12� 2�Z0 ps(t)ps(xN ) KN (xN � t) dtand since ps � 0 and KN � 0, we obtain for xN < � thatqs;N(xN ) � 12� �ZxN ps(t)ps(xN ) KN (xN � t) dt :The polynomial ps is monotonely increasing on [0; �]. Thusqs;N(xN ) � 12� �ZxN KN (xN � t) dt :SinceKN is even and ful�lls (2.3), we get for any sequence xN 2 GN (xN < �) with limN!1xN =0 that qs;N(xN ) � 12� ��xNZ0 KN (t) dt � const :It remains to examine if qs;N(xN ) = ps;N(xN )ps(xN ) � �for any xN 2 GN with limN!1xN = 0. Here the "moment property" comes into the play.Lemma 3.5 Let GN (n 2 N) be de�ned by (2.7) with0 < w � wNN � ~w < 2� : (3.4)8



Let fKNgN2N be a sequence of positive even kernels and let qs;N (s � 1) be given by (3.3).Then there exists a constant � <1 independent of N such thatqs;N(xN ) � �for all xN 2 GN with limN!1xN = 0 if and only if KN ful�lls the "moment property"�Z�� t2kKN (t) dt = O(N�2k) (k = 0; : : : ; s) : (3.5)Note that the restriction (3.4) on the grids GN means that we have for any xN 2 GN thatw=N � xN .Proof: Since sin2 x � x2 for all x 2 R, we obtain by (3.2) thatps(x) � x2s (x 2 R) : (3.6)Similarly, we have for any �xed 0 � y � �=2 thatsin2 x � � 2� �2 � y�2 + y�2 x2 (x 2 [��2 � y; �2 + y])and hence ps(x) � � 2��2s� �2 � y�2 + y�2s x2s (x 2 [�� � 2y; � + 2y]) : (3.7)Using (3.6), we conclude by KN � 0 thatps;N(x) = 12� �Z�� ps(x� t)KN (t) dt� 12� �Z�� (x� t)2sKN (t) dt= 12� 2sXk=0�2sk �(�1)kx2s�k �Z�� tkKN (t) dt (x 2 [��; �))and since KN is even ps;N(x) � 12� sXk=0�2s2k�x2s�2k �Z�� t2kKN (t) dt :Let KN satisfy (3.5). Then ps;N(x) � c2� sXk=0�2s2k�x2s�2kN�2k :9



By (3.4), we have for any grid sequence xN 2 GN that xN � w=N . Consequently,ps;N(xN ) � C x2sN :By (3.7) this implies that there exists � <1 independent of N so that qs;N(xN ) � �.On the other hand, we see by (3.7) with y = �=4 thatps;N (x) = 12� �Z�� ps(x� t)KN (t) dt� 12� � 2��2s�� � x� + x�2s sXk=0�2s2k�x2s�2k �Z�� t2kKN (t) dt (x 2 [��2 ; �2 ]) :By de�nition of GN , there exists a grid sequence fxNgN2N so that xN approaches zero as N�1(N !1). Assume that KN does not ful�ll (3.5). Then we obtain for the above sequence thatps;N(xN ) � cN�2s+" " > 0, while we have by (3.6) that ps(xN ) = O(N�2s). Thus qs;N(xN )cannot be bounded from above. This completes the proof.By Lemma 3.3 { Lemma 3.5, we obtain that for grids GN de�ned by (2.7) and (3.4) and foreven positive reproducing kernels with (3.5) there exist0 < � := inffqs;N (x) : x 2 GN ;N 2 Ng1 > � := supfqs;N (x) : x 2 GN ;N 2 Ng (3.8)Now we can prove our main theorem.Theorem 3.7 Let fAN (f)gN2N be a sequence of Toeplitz matrices generated by a non{negative function f 2 C2� which has only a zero of order 2s (s 2 N) at x = 0. Let thegrids GN be de�ned by (2.7) and (3.4). Assume that fKNgN2N is a sequence of even positivereproducing kernels satisfying (3.5). Finally, letMN (fN ) be de�ned by (2.10). Then we have:i) The eigenvalues of M�1N (fN )AN (f) are bounded from below by a positive constant inde-pendent of N .ii) For N � 2s, at most 2s eigenvalues ofMN (fN )�1AN (f) are not contained in the interval[ hmin� hmax ; hmax�hmin ]. Here �, � are given by (3.8) and hmin; hmax are de�ned as in Lemma 3.1,where h := f=ps.Proof: 1. To show ii), we consider the Rayleigh quotient�u0AN (f)u�u0MN (fN )u = �u0AN (f)u�u0AN (ps)u �u0AN (ps)u�u0MN (fN )u (u 6= oN ) : (3.9)By Lemma 3.1, we have that �u0AN (f)u�u0AN (ps)u 2 [hmin; hmax]and thus, since the second factor on the right{hand side of (3.9) is positivehmin �u0AN (ps)u�u0MN (fN )u � �u0AN (f)u�u0MN (fN )u � hmax �u0AN (ps)u�u0MN (fN )u : (3.10)10



By Lemma 3.2, we know that AN (ps) = MN (ps) + RN (2s)with a matrix RN (2s) of rank 2s and consequently�u0AN (f)u�u0MN (fN )u � hmax �u0MN (ps)u�u0MN (fN )u + �u0 hmaxRN (2s)u�u0MN (fN )u ;and �u0 (AN (f)� hmaxRN (2s))u�u0MN (fN )u � hmax �u0MN (ps)u�u0MN (fN )u :Since KN and ps are non{negative, we obtain by (2.4) and by de�nition of h thathmin ps;N(x) � fN (x) � hmax ps;N(x) x 2 [0; 2�] :This implies by de�nition of MN (fN ) that�u0 (AN (f)� hmaxRN (2s))u�u0MN (fN )u � hmaxhmin �u0MN (ps)u�u0MN (ps;N )uand further by (3.3), (3.8) and since 0 < � � � <1 that�u0 (AN (f)� hmaxRN (2s))u�u0MN (fN )u � hmax�hminfor all u 6= oN . Assume that RN (2s) has s1 positive eigenvalues. Then, by propertiesof the Rayleigh quotient and by Weyl's theorem [23, p. 184] at most s1 eigenvalues ofMN (fN )�1AN (f) are larger than hmax�hmin . Similarly, we obtain by consideration of the left{hand inequality of (3.10) that at most 2s � s1 eigenvalues of MN (fN )�1AN (f) are smallerthan hmin� hmax .2. To show i), we rewrite (3.9) as�u0AN (f)u�u0MN (fN )u = �u0AN (f)u�u0AN (ps)u �u0MN (ps)u�u0MN (fN )u �u0AN (ps)u�u0MN (ps)u (u 6= oN ) :As in the �rst part of the proof, we see that this implies�u0AN (f)u�u0MN (fN )u � hmin� hmax �u0AN (ps)u�u0MN (ps)u :Consequently, it remains to show that there exists a constant 0 < c <1 such that�u0AN (ps)u�u0MN (ps)u � 1c :By (3.1), this is equivalent to 1 + �u0BN (ps)u�u0AN (ps)u � c :By the special structure ofBN (ps) andAN (ps), assertion i) follows as in the proof of Theorem4.3 in [3]. This completes the proof. 11



By the following theorem, property (3.5) of the kernels is also necessary to obtain good pre-conditioners.Theorem 3.8 Let fAN (f)gN2N be a sequence of Toeplitz matrices generated by a non{negative function f 2 C2� which has only a zero of order 2s (s 2 N) at x = 0. Let the gridsGN be de�ned by (2.7) and (3.4). Assume that fKNgN2N is a sequence of even positive re-producing kernels which do not ful�ll (3.5). Finally, letMN (fN ) be de�ned by (2.10). Then,for arbitrary " > 0 and arbitrary c 2 N, there exist N("; c) such that for all N � N("; c) atleast c eigenvalues of MN (fN )�1AN (f) are contained in (0; ").The proof follows again the lines of the fundamental paper of F. Di Benedetto [3, Theorem5.4]. We include the short proof with respect to our background.Proof: By the proof of Theorem 3.7, we have for all u 6= o that�u0AN (f)u�u0MN (fN )u � hmaxhmin �u0AN (ps)u�u0MN (ps;N)u :Hence it remains to show that MN (ps;N )�1AN (ps) has an arbitrary number of eigenvaluesin (0; ") for N su�ciently large. By (3.2) and [31, Theorem 3.1], we have thatTN+2s�2 := SIN+2s�2 diag  �2 sin j�2(N + 2s� 1)�2s!N+2s�2j=1 SIN+2s�2= SIN+2s�2 diag  sXk=0�k cos jk�N + 2s� 1!N+2s�2j=1 SIN+2s�2= 12 stoep(2�0; : : : ; �s; 0; : : : ; 0) � 12 shank(�2; : : : ; �s; 0; : : : ; 0) ;where SIN�1 := (2=N)1=2(sin (j+1)(k+1)�N )N�2j;k=0 is an orthogonal matrix and where stoepa0and shanka0 denote the symmetric Toeplitz matrix and the persymmetric Hankel matrixwith �rst row a0, respectively. Deleting the �rst s� 1 and the last s� 1 rows and columns ofTN+2s�2 we obtain AN (ps). Thus, we have by Courants minimax theorem for the eigenvalues�1(AN (ps)) � : : : � �N (AN (ps)) of AN (ps) that�j(AN (ps)) � �j+2s�2(TN+2s�2) = �2 sin j + 2s� 22(N + 2s� 1)�2s � � j + 2s� 2N + 2s� 1�2s :The later result is due to a technique of D. Bini et al. [7, Proposition 4.2]. ConsiderAN (ps)�tMN (ps;N ). For t = 0, this matrix has positive eigenvalues, while we have for arbitrary " > 0that �j(AN (ps)� "MN (ps;N)) � �j(AN (ps)) � " �min(MN (ps;N))� � j + 2s� 2N + 2s� 1�2s � " ps;N(wN )= N�2s 0@ j + 2s� 21 + 2s�1N !2s � " ps;N(wN )N2s 1A :12



Since KN does not ful�ll (3.5), we have by Lemma 3.5 thatlimN!1 ps;N(wN )N2s =1 :Thus, for j � c independent of N and for su�ciently large N � N("; c) the values �j(AN (ps)�"MN (ps;N )) become negative. The eigenvalues of AN (ps)� tMN (ps;N ) are continuous func-tions of t. Since the smallest c eigenvalues pass from a positive value for t = 0 to a negativevalue for t = ", there exist "1; : : : ; "c 2 (0; ") such that AN (ps)� "jMN (ps;N ) has eigenvaluezero. This is equivalent to the fact thatMN (ps;N)�1AN (ps) has an eigenvalue "j 2 (0; ") andwe are done.The generalization of the above results for generating functions with di�erent zeros of evenorder f(x) = (x� y1)2s1 : : : (x� ym)2sm ~f(x) ( ~f > 0)is straighforward. By applying the polynomialp(x) := mYi=1 psi(x� yi)instead of ps and following the above lines, we can show that for grids GN of the form (2.7)with xN;l 6= yi (l = 0; : : : ; N � 1; i = 1; : : : ;m) and for kernels KN ful�lling (3.5) withs := maxfsj : j = 1; : : : ;mg, there exist constants 0 < � � � <1 such that for all x 2 GN� � (p �KN )(x)p(x) � � :4 Jackson polynomials and B{spline kernelsIn this section, we consider concrete positive reproducing kernels KN with property (3.5).The generalized Jackson polynomials of degree � N � 1 are de�ned byJm;N (x) = �m;N �sin(nx=2)sinx=2 �2m (m 2 N) ;where n := bN�1m c + 1 and where �m;N is determined by (2.3) [21, p. 203]. It is well{known[21, p. 204], that the generalized Jackson polynomials Jm;N are even positive reproducingkernels which satisfy property (3.5) for m � s+ 1 :In particular, J1;N is the Fej�er kernel which is related to the optimal circulant preconditioner[18, 15]. However, the Fej�er kernel does not ful�ll (3.5) for s � 1 such that we cannot expecta fast convergence of our PCG{method if f has a zero of order � 2. Our numerical testscon�rm this result.By Theorem 3.7, the generalized Jackson polynomialsKN = Jm;N withm � s+1 can be usedfor the construction of preconditioners. Note that preconditioners related to Jackson kernelswere also suggested in [38]. However, the construction of the Fourier coe�cients of Jm;N seemsto be rather complicated. See also [10]. Therefore we prefer the following B{spline kernels.13



The \B{spline kernels" were introduced by R. Chan et al. in [14]. The authors showed bynumerical tests that preconditioners from B{spline kernels of certain order seem to be goodcandidates for the PCG{method. Applying the results of the previous section, we are able toshow the theoretical reasons for these results, at least for the positive B{spline kernels.Let �[0;1) denote the characteristic function of [0; 1). The cardinal B{splines Nm (m � 1) oforder m are de�ned by N1 := �[0;1) ; Nm+1 := 1Z0 N1(t) Nm(� � t) dtand their centered version by Mm := Nm(�+ m2 ) :Note that Mm is an even function with suppMm = [�m2 ; m2 ] and that1Z�1 Mm(t) e�ixt dt = �sinc x2�m ; (4.1)where sincx := ( sinxx x 6= 0 ;1 x = 0 :Let the B{spline kernels Bm;N be de�ned by [14]Bm;N (x) := 1 + 2M2m(0) N�1Xk=1 M2m�mkN � cos kx :Note that B1;N again coincides with the Fej�er kernel.For the construction of the preconditioner, it is important, that the Fourier coe�cient cN;k =M2m(mkN )=M2m(0) can be computed in a simple way for example by applying a simpli�edversion of de Boor's algorithm [9, p. 54].By (4.1), it is easy to check that Bm;N is a dilated, 2�{periodized version of (sinc x2 )2m, i.e.Bm;N (x) = Nm 1M2m(0) Xr2Z�sinc �Nm �x+ 2�r2 ���2m : (4.2)Thus Bm;N � 0 (m 2 N) :Moreover, we obtain similar to the generalized Jackson polynomials:Lemma 4.1 The B{spline kernels Bm;N satisfy (3.5) if and only if m � s+ 1.
14



Proof: By (4.2), we obtain that�Z�� t2k Bm;N (t) dt = Nm 1M2m(0) �Z�� t2k Xr2Z�sinc �Nm � t+ 2�r2 ���2m dt� Nm 1M2m(0) 1Z�1 t2k  sin �Nm t2�Nm t2 !2m dt= 2M2m(0) 1Z�1 �2muN �2k �sinuu �2m du� cN�2k 1Z�1 u2k�2m du � C N�2kfor m � k + 1. Thus, for m � s+ 1 the kernels Bm;N satisfy property (3.5).On the other hand, we have that�Z�� t2k Bm;N (t) dt � Nm 1M2m(0) �Z�� t2k  sin Nm � t2�Nm � t2� !2m dt= 2M2m(0) N�=(2m)Z�N�=(2m) �2muN �2k �sinuu �2m du= 2 (2m)2kM2m(0) N�2k N�=(2m)Z�N�=(2m) (sinu)2mu2m�2k du :If m � k, then the last integral is not bounded for N !1. Thus, for m � s, the kernel Bm;Ndoes not ful�ll property (3.5).Note that it is also simple to check (??) instead of (3.5) by using properties of B{splines.By Theorem 3.7, the B{spline kernels KN = Bm;N with m � s + 1 produce good precondi-tioners.5 Generalizations of the preconditioning techniqueIn this section, we sketch how our preconditioners can be generalized to (real) symmetricToeplitz matrices and to doubly symmetric block Toeplitz matrices with Toeplitz blocks. Wewill do this in a very short way since both cases do not require new ideas. However, we haveto introduce some notation to understand the numerical tests in Section 7.Symmetric Toeplitz matricesFirst, we suppose in addition to Section 2 that the Toeplitz matrices AN 2 RN;N are symmet-ric, i.e. the generating function f 2 C2� is even. Note that in this case, the multiplication of15



a vector with AN can be realized using fast trigonometric transforms instead of fast Fouriertransforms (see [31]). In this way, complex arithmetic can be completely avoided in the it-erative solution of (2.1). This is one of the reasons to look for preconditioners of type (2.8),where the Fourier matrix FN is replaced by trigonometric matrices corresponding to fasttrigonometric transforms. In practice, four discrete sine transforms (DST I { IV) and fourdiscrete cosine transforms (DCT I { IV) were applied (see [45]). Any of these eight trigono-metric transforms can be realized with O(N logN) arithmetical operations (see for example[2, 43]). Likewise, we can de�ne preconditioners with respect to any of these transforms. Inthis paper, we restrict our attention to the DST{II and DCT{II, which are determined by thefollowing transform matrices:DCT{II : CIIN := � 2N�1=2 �"Nj cos j(2k + 1)�2N �N�1j;k=0 2 RN;N ;DST{II : SIIN := � 2N�1=2 �"Nj+1 sin (j + 1)(2k + 1)�2N �N�1j;k=0 2 RN;N ;where "Nk := 2�1=2 (k = 0; N) and "Nk := 1 (k = 1; : : : ; N � 1). Similar to (2.10), (2.8), weintroduce the preconditioners (see [30])DCT� II : MN (fN ;CIIN ) := (CIIN )0 diag�fN � l�N��N�1l=0 CIIN ;DST� II : MN (fN ;SIIN ) := (SIIN )0 diag�fN � l�N��Nl=1 SIIN : (5.1)We recall, that for the construction these preconditioners no explicit knowledge of the gener-ating function is required. Since f is even, the grids GN are simply chosen as GN := fxN;l :=l�N : l = 0 : : : ; N � 1g and GN := fxN;l := (l+1)�N : l = 0; : : : ; N � 1g for the DCT{II andthe DST{II preconditioners, respectively. If f(xN;l) 6= 0 (l = 0; : : : ; N), then we can proveTheorem 3.7 with respect to the preconditioners (5.1) in a completely similar way. We haveonly to replace the decomposition (3.1) byAN (f) = MN (f;CIIN )� shank(a1; : : : ; aN�1; 0)AN (f) = MN (f;SIIN ) + shank(a1; : : : ; aN�1; 0)for the DCT{II and for the DST{II, respectively. See also [30].Remark: Let AON := f �O0N (diagd)ON : d 2 RN gdenote the matrix algebra with respect to the unitary matrix ON . Then the optimal precon-ditioner MN 2 AON of AN in AON is de�ned byjjMN �AN jjF = minfjjP �AN jjF : P 2 AONg ;where k � kF denotes the Frobenius norm. As mentioned in the previous section, the optimalpreconditioner in AFN coincides with our preconditioner (2.10) de�ned with respect to theFej�er kernel B1;N and with wN = 0 in (2.7). It is easy to check (see [32]) that the optimalpreconditioner in AON , where ON 2 fCIVN ;SIVN g is equal to our preconditionerMN (fN ;ON )16



in (5.1) de�ned with respect to ON and with respect to the Fej�er kernel. Unfortunately,the Fej�er kernel preconditioners do not lead to a fast convergence of the PCG{method if thegenerating function f of AN has a zero of order 2s � 2.In contrast to these results, the optimal preconditioners in AON with ON de�ned by the DCTI { III or by the DST I { III do not coincide with the corresponding Fej�er kernel preconditionerMN (fN ;ON ) in (5.1). In literature [6, 3], so{called optimal Tau preconditioners were of spe-cial interest. Using our notation, optimal Tau preconditioners are the optimal preconditionerswith respect to the DST{I as unitary transform. The optimal Tau preconditioner realizes afast convergence of the PCG{method if the generating function f of AN has only zeros oforder 2s � 2 [6].Block Toeplitz matrices with Toeplitz blocksNext we are interested in the solution of doubly symmetric block Toeplitz systems withToeplitz blocks. The construction of preconditioners with the help of reproducing kernelswas applied to well{conditioned block Toeplitz systems in [26]. Following these lines, wegeneralize our univariate construction to ill{conditioned block Toeplitz systems with Toeplitzblocks. In the next Section we will show good numerical results also for the block case. How-ever, in general it is not possible to prove the convergence of PCG in a number of iterationsteps independent of N . Here we refer to [33].Note that as in the univariate case there exist banded block Toeplitz preconditioners withbanded Toeplitz blocks which ensure a fast convergence of the corresponding PCG{method[34]. See also [4, 29].We consider systems of linear equationsAM;Nx = b ;where AM;N denotes a positive de�nite doubly symmetric block Toeplitz matrix with Toeplitzblocks (BTTB matrix), i.e.AM;N := (Ar�s)M�1r;s=0 with Ar := (ar;j�k)N�1j;k=0and ar;j = ajrj;jjj. We assume that the matrices AM;N are generated by a real{valued 2�{periodic continuous even function in two variables, i.e.aj;k := 14�2 2�Z0 2�Z0 '(s; t) e�i(sj+tk) ds dt :Note that the multiplication of a vector with a BTTB matrix requires only O(MN log(MN))arithmetical operations (see [32]). We de�ne our so{called \level{2" preconditioners byMM;N ('M;N ;CIIM 
CIIN )) := (CIIM 
CIIN )0 diag(col �'M;N (r�M ; j�N )�N�1;M�1j;k=0 ) �(CIIM 
CIIN ) ;MM;N ('M;N ;SIIM 
 SIIN )) := (SIIM 
 SIIN )0 diag(col �'M;N (r�M ; j�N )�N;Mj;k=1) �(SIIM 
 SIIN ) ; (5.2)17



with 'M;N = ' �KM;N and KM;N (x; y) := KM (x)KN (y). Here col: RN;M ! RMN is de�nedby col (xj;k)N�1;M�1j=0;k=0 := (xr)MN�1r=0 with xkN+j := xj;k :6 Numerical ExamplesIn this section, we con�rm our theoretical results by various numerical examples. The fastcomputation of the preconditioners and the PCG{method were implemented in MATLAB,where the C{programs for the fast trigonometric transforms were included by cmex. Thealgorithms were tested on a Sun SPARCstation 20.As transform length we choose N = 2n and as right{hand side b of (2.1) the vector consisting ofN entries \1". The PCG{method started with the zero vector and stopped if kr(j)k2=kr(0)k2 <10�7, where r(j) denotes the residual vector after j iterations.We restrict our attention to preconditioners (2.10) and (5.1) constructed from B{spline ker-nels KN = Bm;N . The following tables show the number of iterations of the correspondingPCG{method to achieve a �xed precision. The �rst row of each table contains the exponentn of the transform length N = 2n in the univariate case and the block length N in the blockToeplitz case. The kernels are listed in the �rst column and the applied unitary transform inthe second column of each table. Here FwN := WNFN with WN := diag( e�ik�=N )N�1k=0 , i.e.wN := �=N in (2.7). For comparison, the second row of each table contains the number ofPCG{steps with preconditioner MN (f) de�ned by (2.8). These preconditioners, which canbe constructed only if the generating function f is known, were examined in [30].We begin with symmetric ill{conditioned Toeplitz matrices AN (f) arising from the generatingfunctionsi) (see [13, 14, 32]): f(x) := x2 (x 2 [��; �)) :ii) (see [3, 10, 11, 14, 30, 35]): f(x) := x4 (x 2 [��; �)) :The Tables 1 and 2 present the number of iteration steps with di�erent preconditioners.As expected, for f(x) = x2 it is not su�cient to choose a preconditioner based on the Fej�erkernel KN = B1;N and for f(x) = x4 it is not su�cient to choose a preconditioner based onthe cubic B{spline kernel KN = B2;N in order to keep the number of iterations independentof N .On the other hand, we have a similar convergence behaviour for the di�erent unitary trans-forms. This is no surprise for FwN and for SIIN . However, for FN and forCIIN , the correspondinggrids GN contain the zero of f , namely xN;0 = 0. This was excluded in Theorem 3.7. In ournumerical tests it seems to play no rule that a grid point meets the zero of f .Our next example in Table 3 con�rms our theoretical results for the function f(x) = (x2�1)2with zeros of order 2 in x = �1.Finally, let us turn to BTTB matrices AN;N . In our examples, the matrices AN;N are gener-ated by the functionsiv) (see [4]): '(s; t) = s2 + t2 + s2 t2 (s; t 2 [��; �)) :v) (see [29, 30]): '(s; t) = s2 t4 (s; t 2 [��; �)) :18



KN ON 4 5 6 7 8 9 10 11 12f FwN 4 4 4 5 6 6 6 6 6B1;N FN 7 8 11 12 14 18 22 29 39B1;N FwN 7 8 9 11 13 17 20 26 37B1;N CIIN 7 8 10 11 13 16 20 25 33B1;N SIIN 7 8 9 11 14 17 21 27 38B2;N FN 6 6 6 7 7 7 6 6 6B2;N FwN 6 6 5 5 5 6 6 6 6B2;N CIIN 6 6 6 6 6 6 5 5 5B2;N SIIN 6 6 5 5 5 7 7 7 7B3;N FN 6 6 6 7 7 7 7 6 6B3;N FwN 6 6 6 6 5 6 6 6 6B3;N CIIN 6 6 6 6 6 6 6 5 5B3;N SIIN 6 6 5 7 6 7 7 7 7Table 1: f(x) = x2 (x 2 [��; �))vi) (see [29, 30]): '(s; t) = (s2 + t2)2 (s; t 2 [��; �)) :These matrices are ill{conditioned and the CG{method without preconditioning, with Strang{type{preconditioning or with optimal trigonometric preconditioning converges very slow (see[29, 32, 4]). Our preconditioning (5.2) leads to the number of iterations in the Tables 4 { 6.Here Bk;N;N(x; y) := Bk;N(x) Bk;N (y). In [33], we proved that the number of iteration stepsof PCG is independent of N in Example iv) and explained the convergence behaviour of PCGfor the other examples. To our knowledge, there does not exist a faster PCG{method if thegenerating function ' is unknown up to now.Note that by [41, 42] any multilevel preconditioner is not optimal in the sense that a clustercannot be proper [44].Summary. We suggested new positive de�nite !{circulant preconditioners for sequences ofToeplitz systems with polynomial increasing condition numbers. The construction of our pre-conditioners is based on the convolution of the generating function with positive reproducingkernels and ,by working in the Fourier domain, do not require the explicit knowledge of thegenerating function. As main result we proved that the quality of the preconditioner dependson a "moment property" of the corresponding kernel which is related to the order of the zerosof the generating function. This explains why optimal circulant preconditioners arising fromconvolutions with the Fejer kernel fail to be good preconditioners if the generating functionhas zeros of order � 2.
19



KN ON 4 5 6 7 8 9 10 11 12f FwN 6 6 6 8 11 11 11 12 14B1;N FN 8 15 23 36 61 153 391 > 800 > 800B1;N FwN 8 15 23 36 61 153 390 > 800 > 800B1;N CIIN 8 13 20 32 53 129 319 > 800 > 800B1;N SIIN 8 16 24 38 65 158 402 > 800 > 800B2;N FN 9 9 11 11 13 15 18 22 27B2;N FwN 9 9 10 10 13 14 17 20 26B2;N CIIN 8 8 9 9 9 11 13 14 16B2;N SIIN 10 10 10 11 13 14 18 19 22B3;N FN 9 11 11 12 12 12 13 15 14B3;N FwN 9 9 10 10 12 12 13 13 13B3;N CIIN 8 9 9 9 9 9 10 10 9B3;N SIIN 10 10 12 12 14 14 14 15 16Table 2: f(x) = x4 (x 2 [��; �))References[1] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1996.[2] G. Baszenski and M. Tasche. Fast polynomial multiplication and convolution related tothe discrete cosine transform. Linear Algebra Appl., 252:1 { 25, 1997.[3] F. Di Benedetto. Analysis of preconditioning techniques for ill{conditioned Toeplitzmatrices. SIAM J. Sci. Comput., 16:682 { 697, 1995.[4] F. Di Benedetto. Preconditioning of block Toeplitz matrices by sine transforms. SIAMJ. Sci. Comput., 18:499 { 515, 1997.[5] F. Di Benedetto, G. Fiorentino, and S. Serra. C.G. preconditioning for Toeplitz matrices.Comp. Math. Appl., 25:35 { 45, 1993.[6] F. Di Benedetto and S. Serra Capizzano. A unifying approach to abstract matrix algebrapreconditioning. Numer. Math., in print.[7] D. Bini and M. Capovani. Spectral and computational properties of band symmetricToeplitz matrices. Linear Algebra Appl. 52/53:99 { 126, 1983.[8] A. B�ottcher and A. M. Grudsky. Toeplitz band matrices with exponentially growingcondition numbers. Preprint Univ. Chemnitz 1999.20



KN ON 4 5 6 7 8 9 10 11 12f FwN 7 5 5 7 8 8 7 7 7B1;N FN 7 13 15 20 27 34 46 63 86B1;N FwN 7 14 16 20 26 32 44 59 83B1;N CIIN 8 13 15 18 25 30 41 55 75B1;N SIIN 8 14 16 19 26 33 43 57 79B2;N FN 8 9 9 9 9 10 9 9 9B2;N FwN 8 9 9 9 9 8 10 9 9B2;N CIIN 8 8 8 8 9 10 10 9 9B2;N SIIN 8 10 10 10 9 8 9 9 9B3;N FN 8 10 10 10 10 9 9 11 11B3;N FwN 8 10 9 9 9 10 10 9 9B3;N CIIN 8 9 9 9 9 8 9 10 10B3;N SIIN 8 11 10 10 10 10 9 9 10Table 3: f(x) = (x2 � 1)2 (x 2 [��; �))KN;N ON 8 16 32 64 128 256 512' SIIN 8 9 9 10 10 10 10B1;N;N SIIN 10 12 14 16 20 26 36B2;N;N SIIN 10 10 11 11 11 11 11B3;N;N SIIN 10 10 11 11 11 11 11Table 4: '(s; t) = s2 + t2 + s2t2 (s; t 2 [��; �)) :[9] C. de Boor. Splinefunktionen. Birkh�auser, Basel, 1990.[10] R. H. Chan. Toeplitz preconditioners for Toeplitz systems with nonnegative generatingfunctions. IMA J. Numer. Anal., 11:333 { 345, 1991.[11] R. H. Chan and M. K. Ng. Toeplitz preconditioners for Hermitian Toeplitz systems.Linear Algebra Appl., 190:181 { 208, 1993.[12] R. H. Chan and M. K. Ng. Conjugate gradient methods of Toeplitz systems. SIAMReview, 38:427 { 482, 1996. 21



KN;N ON 8 16 32 64 128 256 512' SIIN 13 16 22 29 36 43 52B1;N;N SIIN 18 67 184 631 2363 > 3000 > 3000B2;N;N SIIN 16 29 39 56 77 106 158B3;N;N SIIN 17 29 34 48 63 79 91Table 5: '(s; t) = s2 t4 (s; t 2 [��; �)) :KN;N ON 8 16 32 64 128 256 512' SIIN 9 12 14 19 25 35 49B1;N;N SIIN 10 19 31 63 144 381 1413B2;N;N SIIN 10 13 15 18 26 39 62B3;N;N SIIN 10 14 15 18 25 37 48Table 6: '(s; t) = (s2 + t2)2 (s; t 2 [��; �)) :[13] R. H. Chan, M. K. Ng, and C. K. Wong. Sine transform based preconditioners forsymmetric Toeplitz systems. Linear Algebra Appl., 232:237 { 259, 1996.[14] R. H. Chan, T. Tso, and H. Sun. Circulant preconditioners from B-splines. In F. Luk,editor, Algorithms, Architectures, and Implementations, vol. 3162, 338 { 347, San DiegoCA, 1997.[15] R. H. Chan and M. C. Yeung. Circulant preconditioners constructed from kernels. SIAMJ. Numer. Anal., 29:1093 { 1103, 1992.[16] R. H. Chan, A. M. Yip and M. K. Ng. Circulant preconditioners for ill{conditionedHermitian Toeplitz matrices. Preprint Chinese Univ. Hong Kong 1999.[17] R. H. Chan, A. M. Yip and M. K. Ng. The best circulant preconditioners for HermitianToeplitz systems. Preprint Chinese Univ. Hong Kong 1999.[18] T. F. Chan. An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci.Statist. Comput., 9:766 { 771, 1988.[19] P. Davis. Circulant Matrices. John Wiley and Sons, New York, 1979.[20] R. A. DeVore. The Approximation of Continuous Functions by Positive Linear Operators.Lecture Notes in Mathematics, vol. 293, Springer, Berlin.[21] R. A. DeVore and G. G. Lorentz. Constructive Approximation. Springer{Verlag, Berlin,1993. 22
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