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Abstract. In this paper, we are interested in the iterative solution of ill-conditioned Toeplitz
systems generated by continuous non-—negative real-valued functions f with a finite number
of zeros. We construct new w—circulant preconditioners without explicit knowledge of the
generating function f by approximating f by its convolution f * Ky with a suitable positive
reproducing kernel Ky. By the restriction to positive kernels we obtain positive definite
preconditioners. Moreover, if f has only zeros of even order < 2s, then we can prove that the
property [T t**Kn(t)dt < CN % (k=0,...,s) of the kernel is necessary and sufficient to
ensure the convergence of the PCG—method in a number of iteration steps independent of the
dimension N of the system. Our theoretical results were confirmed by numerical tests.
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1 Introduction

In this paper, we are concerned with the iterative solution of sequences of “mildly” ill-
conditioned Toeplitz systems
Ayzn =by,



where Ay € CV'V are positive definite Hermitian Toeplitz matrices generated by a contin-
uous non—-negative function f which has only a finite number of zeros. Often these systems
are obtained by discretization of continuous problems (partial differential equation, integral
equation with weakly singular kernel) and the dimension N is related to the grid parameter
of the discretization. For further applications see [12] and the references therein.

Iterative solution methods for Toeplitz systems, in particular the conjugate gradient method
(CG-method), have attained much attention during the last years. The reason for this is that
the essential computational effort per iteration step, namely the multiplication of a vector
with the Toeplitz matrix Ay, can be reduced to O(N log N) arithmetical operations by fast
Fourier transforms (FFT). However, the number of iteration steps depends on the distribu-
tion of the eigenvalues of Ay. If we allow the generating function f to have isolated zeros,
then the condition numbers of the related Toeplitz matrices grow polynomial with N and the
CG-method converges very slow [8, 27, 44]. Therefore, the really task consists in the con-
struction of suitable preconditioners M y of Ay so that the number of iteration steps of the
corresponding preconditioned CG—method (PCG—method) becomes independent of N. Here
it is useful to recall a result of O. Axelsson [1, p. 573] relating the spectrum of the coefficient
matrix to the number of iteration steps to achieve a prescribed precision:

Theorem 1.1. Let A be a positive definite Hermitian (N, N)-matrix which has p and ¢
isolated large and small eigenvalues, respectively:

0<)‘1S)‘2§---§>\q < GS)‘(]%*].S---)\prSb
< )\N,erlS)\N,pJFQS...S)\N (0<a<b<oo).

Let [x] denote the smallest integer > z. Then the CG-method for the solution of Ax = b
requires at most
2 b 1+ (Y2
= |(In= In—~)/ In—2—
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iteration steps to achieve precision 7, i.e.
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where ||z||4 := VZ Az and where x,, denotes the numerical solution after n iteration steps.

In literature two kinds of preconditioners were mainly exploited, namely banded Toeplitz
matrices and matrices arising from a matrix algebra Ag, := {O'y(diagd)Oy : d € CN},
where Oy denotes a unitary matrix.

For another approach by multigrid methods see for example [22].

Various banded Toeplitz preconditioners were examined [10, 5, 39, 35, 40]. It was proved
that the corresponding PCG—methods converge in a number of iteration steps independent
of N. However, there is the significant constraint that the cost per iteration of the proposed
procedure should be upper-bounded by O(Nlog N). This implies some conditions on the
growth of the bandwidth of the banded Toeplitz preconditioners [40].

The above constraint is trivially fulfilled if we chose preconditioners from matrix algebras,
where the unitary matrix Oy has to allow an efficient multiplication with a vector in O(N log N)
arithmetical operations. Up to now, the only preconditioners of the matrix algebra class which



ensure the desired convergence of the corresponding PCG—method are the preconditioners pro-
posed in [30, 24]. Unfortunately, the construction of these preconditioners requires the explicit
knowledge of the generating function f.

Extensive examinations were done with natural and optimal Tau preconditioners [6, 3]. Only
for sufficiently smooth functions, where the necessary smoothness depends on the order of the
zeros of f, the natural Tau preconditioners become positive definite and lead to the desired
location of the eigenvalues of the preconditioned matrices. The optimal Tau preconditioner
is in general a bad choice if f has zeros of order > 2. The reason for this will become clear in
the following sections.

In this paper, we combine our approach in [30] with the approximation of f by its convolution
with a reproducing kernel K. The kernel approach was given in [15] for positive generating
functions. Interesting tests with B—spline kernels were performed by R. Chan et al. in [14].
The advantage of the kernel approach is that it does not require the explicit knowledge of the
generating function. However, for our theoretical proofs we need some knowledge about the
location of the zeros of the generating function f. See remarks at the end of this section. We
restrict our attention to positive kernels. This ensures that our preconditioners are positive
definite. Suppose that f has only zeros of even order < 2s. Then we prove that under the

"moment condition”
™

/tQkKN(t) dt<CN™2* (k=0,...,s)

—T

on the kernels Ky, the eigenvalues of M ' Ay are contained in some interval [a,b] (0 < a <
b < o0) except for a fixed number (independent of N) of eigenvalues falling into [b, c0) such
that PCG converges in O(1) steps.
Note that the above kernel property with s = 1 implies for sufficiently smooth f the Jackson
result

1f = En * fllo < N72w(f®),1/N),

where w denotes the modulus of continuity. On the other hand, the classical saturation result
of P. P. Korovkin [28, 20] states that we cannot expect a convergence speed of || f — Kn * f||o
better than N2 even in the presence of very regular functions f.

This paper is organized as follows: In Section 2, we introduce our w—circulant positive definite
preconditioners. We show how the corresponding PCG-method can be implemented with
only O(N) arithmetical operations per step more than the original CG-method. Section 3
is concerned with the location of the eigenvalues of the preconditioned matrices. We will see
that under some assumptions on the kernel the number of CG-iterations is independent of
N. Special kernels as Jackson kernels and B-spline kernels are considered in Section 5. In
Section 6, we sketch how our ideas can be extended to (real) symmetric Toeplitz matrices with
trigonometric preconditioners and to doubly symmetric block Toeplitz matrices with Toeplitz
blocks. Finally, Section 7 contains numerical results.

After sending our manuscript to STAM J. Sci. Comput., R. H. Chan informed us that his
group has got similar results as in our preprint. See [16] and for a refined version [17]. The
construction of circulant preconditioners of R. H. Chan et al. is only based on Jackson kernels
and the proofs are different from ours. By a trick, which can also be applied to our w—circulant
preconditioners, the authors need no knowledge about the location of the zeros of f. In [16],
the authors prove convergence of the corresponding PCG-method in O(log N) iteration steps.



2 Preconditioners from kernels

Let Cor denote the Banach space of 2m—periodic real-valued continuous functions with norm

[flloo := max —|f(z)].

zE[—m,m

We are interested in the solution of Hermitian Toeplitz systems

ANCL' = b, AN = AN(f) = (aj*k);'\,fk_:l() (21)
1 27
ap = a(f) = o= [ flx)e ™ da
27r0/

generated by a non—negative function f € Cs,; which has only a finite number of zeros. By
[10], the matrices Ay (f) are positive definite such that (2.1) can be solved by the CG-method.
Unfortunately, since the generating function f € Cs,; has zeros, the related Toeplitz matrices
are asymptotically ill-conditioned and the CG-method converges very slow. To accelerate
the convergence of the CG—method, we are looking for suitable preconditioners of Ay, where
we do not suppose the explicit knowledge of the generating function f. To reach our aim, we
use reproducing kernels. This method was originally proposed for Toeplitz matrices arising
from positive functions f € Co, in [15].

In [14], R. Chan et al. showed by numerical tests that preconditioners from special kernels
related to B—splines can improve the convergence of the CG-method also if f > 0 has zeros
of various order. A theoretical proof of R. Chan’s results was open up to now.

In this paper, we restrict our attention to even trigonometric polynomials

N-1
Kn(z) :=cnp+2 Z engpcoskr, enp=ap(Kn). (2.2)
k=1
If
1 2T
- /KN(Q’I)dlU =CN,0 = 1 (2.3)
2w

0

and Ky > 0, then Ky is called a positive (trigonometric) kernel. As main examples of such
kernels we consider generalized Jackson polynomials and B-spline kernels in Section 4. For
f € Car, let fn denote the convolution of f with Ky, i.e.

2T
1
fr(o) = (7 5 Kn)(o) 1= 5 [ FOKx(o—)a (2.4
0
or equivalently in the Fourier domain
N-1 .
@y = > a(fevpe™ . (2.5)
k=—(N-1)



We consider so—called reproducing kernels Ky (N € N) with the property that
m [|f = fxllec =0 (2.6)
N—o00

for all f € Co;..

We chose grids G (N € N) consisting of equispaced nodes

27l 21

TN, :=wN+W (1=0,... ,N—1; wy € [O’N))

such that f(xyy) # 0 for alll = 0,... ,N — 1. Note that the choice of the grids requires

some preliminary information about the location of the zeros of f. By a trick (cf. [16]) this

restriction can be neglected if we accept some more outlyers. We consider matrices of the
form

(2.7)

My (f) :=WxFyDy(f)FxWy (2.8)

with

o 1 —27ijk /N N-1 R —ikwn\N—1 T N-1
Fri= = (o ).y W= ding (e NS Dv(f) = diag (f(ew )iy

Obviously, the matrices M y can be written as

dO dN—l einN dl einN
a ag
Mny(f) = :
aN-—1 ag
with
1 N-1
CNZ]C = dk(f) = N Z f(!IZN,l) e_tkwN e_QWIkl/N . (2.9)
=0

These are (eN*N)—circulant matrices (see [19]). In particular, we obtain circulant matrices
for wy = 0 and skew—circulant matrices for wy = .

As preconditioners for (2.1), we suggest matrices of the form
My := My(fn) (2.10)

with suitable positive reproducing kernels K. By (2.5), the construction of these precondi-
tioners requires only the knowledge of the Toeplitz matrices Ay . It is not necessary to know
the generating function f explicitly. However, for the theoretical results in this paper, we
must have some information about the location of the zeros of f. Note that by a trick in [16]
this information is also superfluous. Here we point out that the auxiliary nontrivial problem
of finding some crucial analytic properties of the generating function f has been treated and
partially solved in [39].

Moreover, our preconditioners have the following desirable properties:

1. Since f > 0 with a finite number of zeros and K is a positive kernel, it follows by (2.4)
that fy > 0. Thus, the matrices M x(fn) are positive definite.



2. In the following section, we will prove that under certain conditions on the kernels Ky
the eigenvalues of M X,lA ~ are bounded from below by a positive constant independent
of N and that the number of isolated eigenvalues of M J}lA ~ is independent of N. Then,
by Theorem 1.1, the number of PCG-steps to achieve a fixed precision is independent
of N.

3. By construction (2.8), the multiplication of M x with a vector requires only O(N log N)
arithmetical operations by using FFT—techniques. By a technique presented in [25] it is
possible to implement a PCG—method with preconditioner M y which takes only O(N)
instead of O(N log N) arithmetical operations per iteration step more than the original
CG—method with respect to Ax.

3 Eigenvalues of M,'Ay

In this section, we prove that under certain assumptions on the kernels Ky the eigenvalues
of M X,lAN are bounded from below by a positive constant independent of N and that the
number of isolated eigenvalues of M J}lA ~ is independent of N. For the proof of our main
result, we need some preliminary lemmata.

Lemma 3.1 Let p € Cor be a non—negative function which has only a finite number of zeros.
Let h € Cy; be a positive function with

Rmin 1= in h y  Rmax = h .
o0 M) w = e hi@)

Then, for f := ph and any N € N, the eigenvalues of A\'(p)Ax(f) lie in the interval
[hmina hmax] .

The proof can be found for example in [5, 10, 30]. A more sophisticated version for f,g € L
was proved in [37, 36].

Lemma 3.2 Let p be a real-valued non—negative trigonometric polynomial of degree < s.
Let N > 2s. Then at most 2s eigenvalues of M y(p) 1 An(p) differ from 1.

Proof: For arbitrary f € Cs,; with pointwise convergent Fourier series, we obtain by replacing
f(zny) in (2.9) by the Fourier series of f at zx;

N—
&k - = E : § :a el]lee 2rilk /N 71kwN

=0 j€eZ

-1 1 N-1
a,efink einj N ef2ﬂ'1lk/N 2rilj /N

2]~

=

J

I
]

- L

J =0

+ Z Z ajirne —iwnk 1wN(J+rN) <% ef2ﬂ'ilk/N e27rilj/N>

= ap -+ E Af4rN eleTN .
reZ\{0}



This is well-known as aliasing effect. Then it follows that

An(f)=MnN(f) — Bn(f), (3.1)

where

Baf) = Oy ) Sihs () im 3 avsnnls) &7,

r€Z\{0}

We consider f = p. Since p is of degree smaller than s < %, we have that b(p) = 0 for
|| < N —1—s. Consequently, By(p) is of rank < 2s. Now the assertion follows by (3.1). B

In the sequel, we restrict our attention to Toeplitz matrices having a non—negative generating
function f € Cy; with a zero of even order 2s (s € N) at x = 0.
We use the trigonometric polynomial

s
ps(x) := (2 —2cosz)’ = (2 Sin;)zs = Zak coskxr (s>1) (3.2)
k=0

of degree s which has also a zero of order 2s at x = 0.
The convergence of our PCG—method is related to the behaviour of the grid functions

Ps N(l‘)
r): =" (x€Gpn), 3.3
QS,N( ) Ds (3’}) ( N) ( )
where pg n(z) 1= (ps * Kn)(z). More precisely, for the proof of our main theorem, we need

that {gs,~(z)}nen is bounded for all # € Gx from above and below by positive constants
independent of N. This will be the content ot the following lemmata.

First, we see that the above property follows immediately for all grid points z € Gy having
some distance independent of N from the zero of f:

Lemma 3.3 Let Gy be defined by (2.7) with wy # 0. Let {Kny}nyen be a sequence of
positive even reproducing kernels and let g, x be given by (3.3). Then, for zx € Gn N [a,b]
[a,b] C (0,27) and for every ¢ > 0 there exists N(g) such that

l—e<gsn(zy) <14
for all N > N (e).
Proof: Since zx € [a,b] (N € N) for some a > 0,b < 27, we have that

ps(zn) = min{ps(a),ps(b)} > 0.
Further, we obtain by (2.6) that for every e > 0 there exists N(g) such that
Ips(x) — ps,n(2)] < emin{p,(a),ps(b)} (x €[0,27))
for all N > N(e). By rewriting (3.3) in the form

psN(TN) — ps(wN)
Ps (5UN)

g N(zy) = 1+



we obtain the assertion. [ |

By Lemma 3.3, it remains to consider the sequences {gs v(zn)}nen for oy € Gy with
zy — 0 for N — oo or with zy — 27 for N — oo. Since both cases require the same ideas,
we consider zy € Gy with

lim zy = 0.
N—o0

The existence of a lower bound of {¢s y(zn)}nen does also not require additional properties
of the kernel Ky

Lemma 3.4 Let Gy be defined by (2.7) with wy # 0. Let {Kx}nen be a sequence of
positive even reproducing kernels and let ¢, x be given by (3.3). Then, for zy € Gx with
A}im zny = 0, there exists a constant « > 0 independent of NV such that

— 00

a < gsn(zn).

Proof: By definition of ¢s; y and ps n, we have that

27
1 s(t
gs,N(2zN) = %/ P (t) Ky(zxy —t)dt
0

and since py; > 0 and Ky > 0, we obtain for 2y < 7 that

L[ ()
QS,N(xN) > %/ a(zn) Ky(xy —t)dt.

TN

The polynomial p, is monotonely increasing on [0, w]. Thus

1 s
qs,N(TN) = %/ Ky(zxy —t)dt.

TN

Since K is even and fulfills (2.3), we get for any sequence xy € G (xxy < 7) with A}im TN =
—00
0 that

T—2N
qs,N(TN) > % / Ky (t)dt > const . |
0
It remains to examine if
qs,N(zN) = Pa(an) <p
ps(zN)

for any zx € Gy with A}im zny = 0. Here the "moment property” comes into the play.
— 00

Lemma 3.5 Let Gy (n € N) be defined by (2.7) with

O<w<wyN<w<2r. (3.4)



Let {Kn}nen be a sequence of positive even kernels and let ¢; x (s > 1) be given by (3.3)

Then there exists a constant 3 < oo independent of N such that

gs,N(zn) < B

for all x5 € Gy with A}im zny = 0 if and only if Ky fulfills the ”moment property”
—00

™

/t% Kn()dt=ON-2) (k=0,....s).

—T

(3.5)

Note that the restriction (3.4) on the grids G means that we have for any zy € Gy that

w/N < zn.
Proof: Since sin?z < 22 for all z € R, we obtain by (3.2) that
ps(z) <2* (z €R).
Similarly, we have for any fixed 0 <y < 7/2 that
2T —y\?2 s T
.2 2
sin® x> <; %-I—y) z° (z € [—§—y,§+y])
and hence
92 2s E—y 2s
pio) = (2) ( ) weln-rrn).

Using (3.6), we conclude by Ky > 0 that

L /ps(x—wKN(t)dt

pS,N($) - 27_r

1
5 (x — 1) Ky(t)dt

IN

—T

1
_%Z

imo \F 2
and since K is even
ps,n(z) < 2i s (;Z) 22k ]tQk Ky (t)dt.
’ 27
k=0 2
Let Ky satisfy (3.5). Then
¢ o= (25
ps.n(z) < oy Z (2k> 252k T2k

(3.7)

2 <23>(_1)kx2sk ]tk Ky(t)dt (z € [-m,m))



By (3.4), we have for any grid sequence xy € Gy that 2y > w/N. Consequently,
psn(en) < Cail.

By (3.7) this implies that there exists 3 < oo independent of N so that g, n(zn) < 5.
On the other hand, we see by (3.7) with y = 7/4 that

1 ™
pxta) = 5o [ plo = 0Ky (0 d
i g 2s ™T—X 2525: 2s xzs_Qk/ﬂ-t?kK (t)dt (:BG[—E E)
= o\« m+a) = \2k N 272V

By definition of Gy, there exists a grid sequence {zn } nen so that zx approaches zero as N -1
(N — o0). Assume that Ky does not fulfill (3.5). Then we obtain for the above sequence that
ps.n(zn) > ¢ N72+° ¢ > 0, while we have by (3.6) that ps(zy) = O(N2%). Thus gs n(zn)
cannot be bounded from above. This completes the proof. |

By Lemma 3.3 — Lemma 3.5, we obtain that for grids G defined by (2.7) and (3.4) and for
even positive reproducing kernels with (3.5) there exist

0<a = inf{g,n(z):2€GNn;N €N}

(3.8)
oo >f := sup{gsn(z):z € GN;N €N}

Now we can prove our main theorem.

Theorem 3.7 Let {An(f)}nen be a sequence of Toeplitz matrices generated by a non—
negative function f € Cy; which has only a zero of order 2s (s € N) at 2 = 0. Let the
grids G be defined by (2.7) and (3.4). Assume that {Kx}nen is a sequence of even positive
reproducing kernels satisfying (3.5). Finally, let M y(fx) be defined by (2.10). Then we have:
i) The eigenvalues of M y'(fx)An(f) are bounded from below by a positive constant inde-
pendent of N.

ii) For N > 2s, at most 2s eigenvalues of M x(fx) ' An(f) are not contained in the interval
[ hmin _fmax ]. Here «, (8 are given by (3.8) and hmin, hmax are defined as in Lemma 3.1,

ﬂhmax ’ Oéhmin :

where h := f/ps.

Proof: 1. To show ii), we consider the Rayleigh quotient

wAy(flu _ wAy(flu uw Ay(p,)u
W' My(fv)u @ An(ps)u @ My(fy)u

By Lemma 3.1, we have that

(u # on) . (3.9)

' AN(f) u
Y AN(ps) u S [hmlnahmax]

and thus, since the second factor on the right-hand side of (3.9) is positive

) ﬂ’AN(ps)u < E’AN(f)u < ﬁ’AN(ps)u
— ﬁ’MN(fN)u - ’E'MN(fN)’U, — A ﬁ’MN(fN)u '

h (3.10)

10



By Lemma 3.2, we know that
An(ps) = Mn(ps) + Rn(2s)
with a matrix Ry (2s) of rank 2s and consequently

ﬁ’AN(f)u < ﬁ’MN(ps)u n ’l_l,’hmaXRN(QS)’u
w My(fx)u — 7 @ My(fn)w w' My(fn)u

nd
¢ 8 (Av(f) ~ bRy (29)w _ & M(p,)u
u’ MN(fN)u - maa MN(fN)u )

Since K and p, are non—negative, we obtain by (2.4) and by definition of A that

Pmin ps,N(x) < fN(x) < Pmax ps,N(x) HAS [07 271'] .
This implies by definition of M y(fy) that

' (AN(f) — hmax BN (25)) u < hmax @ My (ps) w
u' MN(fN)u = hmin @ MN(ps,N)u

and further by (3.3), (3.8) and since 0 < o < 8 < oo that

a’ (AN(f) - hmaxRN(23)) u hmax
w' My(fn)w ~ @ hmin

for all w # oyn. Assume that Ry(2s) has sy positive eigenvalues. Then, by properties
of the Rayleigh quotient and by Weyl’s theorem [23, p. 184] at most s; eigenvalues of
M y(fn) " An(f) are larger than Jimax . Similarly, we obtain by consideration of the left—

hand inequality of (3.10) that at most 2s — s; eigenvalues of M y(fx) *Ax(f) are smaller
than fmin_
Bh

max

2. To show i), we rewrite (3.9) as

ﬁ’AN(f)u _ ﬁ’AN(f)u ﬁ’MN(ps)u ﬂ’AN(ps)u
’l_l,'MN(fN)’U, ﬂ’AN(ps)u ﬂ’MN(fN)u ﬁ’MN(ps)u

(u #on) .

As in the first part of the proof, we see that this implies

u’ AN(f) u h'min a’ AN (ps) u
ﬁ,MN(fN)U o /maax ’l_l'MN(ps)U'

Consequently, it remains to show that there exists a constant 0 < ¢ < oo such that

ﬁIAN(ps)u > 1
'aIMN(ps)u ~ ¢

By (3.1), this is equivalent to

u' An(ps) u
By the special structure of By (ps) and An(ps), assertion i) follows as in the proof of Theorem
4.3 in [3]. This completes the proof. [ |

11



By the following theorem, property (3.5) of the kernels is also necessary to obtain good pre-
conditioners.

Theorem 3.8 Let {An(f)}nen be a sequence of Toeplitz matrices generated by a non—
negative function f € Oy, which has only a zero of order 2s (s € N) at = 0. Let the grids
G be defined by (2.7) and (3.4). Assume that {Ky}nen is a sequence of even positive re-
producing kernels which do not fulfill (3.5). Finally, let M x(fx) be defined by (2.10). Then,
for arbitrary ¢ > 0 and arbitrary ¢ € N, there exist N(e,¢) such that for all N > N(e,¢) at
least ¢ eigenvalues of M x(fx) T Ax(f) are contained in (0, ¢).

The proof follows again the lines of the fundamental paper of F. Di Benedetto [3, Theorem
5.4]. We include the short proof with respect to our background.

Proof: By the proof of Theorem 3.7, we have for all u # o that

ﬁ,AN(f)u < hmax ’l_l/AN(ps)U
W My(fv)uw = hmin @' My(psn)uw

Hence it remains to show that M N(ps,N)_lAN(ps) has an arbitrary number of eigenvalues
in (0,¢) for N sufficiently large. By (3.2) and [31, Theorem 3.1], we have that

. 9 N+2s5—2
. . jm
Trios—2 = Shio,_odiag ((2 sin m) ) Si2s-2
j=1

s " N+25—2

. gk

= S{v+25—2dlag (Zakcosm) 55\7+25—2

k=0 j=1

1 1
= §st0ep(2a0,... ,05,0,...,0) — §shank(a2,... ,05,0,...,0),

where S§ | = (2/N)Y?(sin W);\fkfj} is an orthogonal matrix and where stoep a’
and shanka’ denote the symmetric Toeplitz matrix and the persymmetric Hankel matrix
with first row a’, respectively. Deleting the first s — 1 and the last s — 1 rows and columns of
T N12s—2 we obtain An(ps). Thus, we have by Courants minimax theorem for the eigenvalues

AI(AN(ps)) § e S AN(AN(ps)) Of AN(ps) that

4252 \¥ _ [j+2s—2\%
Ai(A < Njpos o(Tnpas o) = (2sin2r— =) < (LIT22°2)
(AN (Ps)) < Ajras—2(Tvi2s—2) < Sm2(N+23—1)> “\N+2s-1

The later result is due to a technique of D. Bini et al. [7, Proposition 4.2]. Consider Ay (ps)—
tM n(ps,n). For t = 0, this matrix has positive eigenvalues, while we have for arbitrary ¢ > 0
that

Ni(An(ps) —e My (ps,n)) < ANj(AN(Ps)) — € Amin(M N (ps,v))

j42s—2\%
= \Wrzsm1) T epelow)
X 2s
_ N2 J+2s—2 Ps,N(WN)
= 1+ 25}\71 T TN

12



Since K does not fulfill (3.5), we have by Lemma 3.5 that

1 Ps,N(wN) _
m — =
N—o00 NZS

Thus, for j < ¢ independent of N and for sufficiently large N > N (e, ¢) the values \;(An (ps)—
€ M n(ps,n)) become negative. The eigenvalues of Ay (ps) —t M n(ps,n) are continuous func-
tions of ¢. Since the smallest ¢ eigenvalues pass from a positive value for ¢ = 0 to a negative

value for ¢t = ¢, there exist 1,... ,¢. € (0,¢) such that Ay (ps) —e; M n(ps,n) has eigenvalue
zero. This is equivalent to the fact that M y(ps n) ' An(ps) has an eigenvalue ¢; € (0,¢) and
we are done. |

The generalization of the above results for generating functions with different zeros of even
order

fl@) = (@=y)*' (@ —ym)®™" f(2) (f>0)
is straighforward. By applying the polynomial

p(@) =[] ps:(= - i)
i=1

instead of ps and following the above lines, we can show that for grids G of the form (2.7)
with 2n; # y; (I = 0,...,N —1;4 = 1,... ,m) and for kernels Ky fulfilling (3.5) with
s:=max{s;: j =1,... ,m}, there exist constants 0 < o < f < oo such that for all x € G

(p+ Kyn)(7)

“= p(x)

<pB.

4 Jackson polynomials and B—spline kernels

In this section, we consider concrete positive reproducing kernels K with property (3.5).
The generalized Jackson polynomials of degree < N — 1 are defined by

st = o ()T e,

where n := [2=1] 4+ 1 and where A, v is determined by (2.3) [21, p. 203]. It is well-known
[21, p. 204], that the generalized Jackson polynomials .J,, x are even positive reproducing
kernels which satisfy property (3.5) for

m>s+1.

In particular, Jy n is the Fejér kernel which is related to the optimal circulant preconditioner
[18, 15]. However, the Fejér kernel does not fulfill (3.5) for s > 1 such that we cannot expect
a fast convergence of our PCG-method if f has a zero of order > 2. Our numerical tests
confirm this result.

By Theorem 3.7, the generalized Jackson polynomials Kx = J;,, v with m > s+41 can be used
for the construction of preconditioners. Note that preconditioners related to Jackson kernels
were also suggested in [38]. However, the construction of the Fourier coefficients of .J,,, x seems
to be rather complicated. See also [10]. Therefore we prefer the following B—spline kernels.
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The “B-spline kernels” were introduced by R. Chan et al. in [14]. The authors showed by
numerical tests that preconditioners from B-spline kernels of certain order seem to be good
candidates for the PCG—method. Applying the results of the previous section, we are able to
show the theoretical reasons for these results, at least for the positive B—spline kernels.

Let X[o,1) denote the characteristic function of [0,1). The cardinal B-splines Np, (m > 1) of
order m are defined by

N1 = X[O,l)? Nm+1 IZ/ Nl(t) Nm( - t) dt

and their centered version by
m
My, = “m( + _) .

2
Note that M,, is an even function with supp M, = [-F, F] and that
o0
izt . r\m
/ My, (t) e ™ dt = (SIHC 5) , (4.1)
— 00
where

sinx
sincz := x z70,
1 r=0.

Let the B-spline kernels By, v be defined by [14]

N-1

B n(z) == M2 Z Mo, < > cos kz .
m( k=1

Note that B; x again coincides with the Fejér kernel.

For the construction of the preconditioner, it is important, that the Fourier coefficient ¢y, =
Mgm(%k) /M3, (0) can be computed in a simple way for example by applying a simplified
version of de Boor’s algorithm [9, p. 54].

By (4.1), it is easy to check that By, x is a dilated, 2r—periodized version of (sinc %)Qm, ie.

I Y C ) M

reZ

Thus
Bm,N >0 (m € N) .

Moreover, we obtain similar to the generalized Jackson polynomials:

Lemma 4.1 The B-spline kernels By, x satisfy (3.5) if and only if m > s + 1.

14



Proof: By (4.2), we obtain that

™ ™

N 1 N [t+2 2m
/ 2B, n(t)dt = / 12k gine [~ (LE=TT dt
’ m Moy, (0) m 2
—r “r rei
00 2
S sin(38)\
- m Mgm(O) %%
—00
2 70 omu\2* [sinu?
= du
M5, (0) N n
< CN—Qk / u?k—Zm du < CN—Q/C

for m > k + 1. Thus, for m > s+ 1 the kernels By, y satisfy property (3.5).
On the other hand, we have that

T s 2m
N 1 sin ¥ (1)
2k B, N (1) dt = / 2k [ m 12/ dt
/ 7N( ) = m M2m(0) < % (%)

—T —T

vV

o 2(2m)* A2k / (sinu)?™
M5, (0)
—Nm/(2m)

If m <k, then the last integral is not bounded for N — oo. Thus, for m < s, the kernel B,,, x
does not fulfill property (3.5). |

Note that it is also simple to check (??) instead of (3.5) by using properties of B-splines.
By Theorem 3.7, the B-spline kernels Ky = By, v with m > s + 1 produce good precondi-
tioners.

5 Generalizations of the preconditioning technique

In this section, we sketch how our preconditioners can be generalized to (real) symmetric
Toeplitz matrices and to doubly symmetric block Toeplitz matrices with Toeplitz blocks. We
will do this in a very short way since both cases do not require new ideas. However, we have
to introduce some notation to understand the numerical tests in Section 7.

Symmetric Toeplitz matrices

First, we suppose in addition to Section 2 that the Toeplitz matrices Ay € RV are symmet-

ric, i.e. the generating function f € (5, is even. Note that in this case, the multiplication of



a vector with Ay can be realized using fast trigonometric transforms instead of fast Fourier
transforms (see [31]). In this way, complex arithmetic can be completely avoided in the it-
erative solution of (2.1). This is one of the reasons to look for preconditioners of type (2.8),
where the Fourier matrix F'y is replaced by trigonometric matrices corresponding to fast
trigonometric transforms. In practice, four discrete sine transforms (DST I — IV) and four
discrete cosine transforms (DCT I - IV) were applied (see [45]). Any of these eight trigono-
metric transforms can be realized with O(N log N) arithmetical operations (see for example
[2, 43]). Likewise, we can define preconditioners with respect to any of these transforms. In
this paper, we restrict our attention to the DST-II and DCT-II, which are determined by the
following transform matrices:

N-1
DCT-1I : C¥ = ( ) < 2k+1) ) e RVN,
Gk=0
1/2 -1
DST-1I : SY¥ .= ( > ( i + D@k + D > e RV,
2N =0

where e := 2712 (k = 0,N) and &Y := 1 (k =1,... ,N — 1). Similar to (2.10), (2.8), we
introduce the preconditioners (see [30])

N-1
DCT —1I:  My(fy,CY) = (C{Vf)'diag<fN <ZN”>> cl
z - (5.1)
DST — 11 : My(fy,SY) = (s{vf)'diag<fN (%)) sk
=1

We recall, that for the construction these preconditioners no explicit knowledge of the gener-
ating function is required. Since f is even, the grids Gy are simply chosen as G := {zn; :=
] =0...,N—1} and Gy := {wn; = T .1 =0,... ,N — 1} for the DCT-T and
the DST-II preconditioners, respectively. If f(zn;) # 0 (I =0,...,N), then we can prove
Theorem 3.7 with respect to the preconditioners (5.1) in a completely similar way. We have
only to replace the decomposition (3.1) by

Ax(f) = My(f,CY) —shank(as,... ,an_1,0)

AN(f) = MN(fas{VI)_I-Shank(alv"'701N7170)
for the DCT-II and for the DST-II, respectively. See also [30].
Remark: Let B

Ao, = {0y (diagd)Oy : d € RY}

denote the matrix algebra with respect to the unitary matrix Oy. Then the optimal precon-
ditioner My € Ao, of Ax in Ao, is defined by

||MN — AN||F = min{||P — AN||F P e AON},

where || - || denotes the Frobenius norm. As mentioned in the previous section, the optimal
preconditioner in Ap, coincides with our preconditioner (2.10) defined with respect to the
Fejér kernel By y and with wy = 0 in (2.7). It is easy to check (see [32]) that the optimal
preconditioner in Ao, , where Oy € {clV, 81} is equal to our preconditioner M y(fn,Ox)

16



n (5.1) defined with respect to Oy and with respect to the Fejér kernel. Unfortunately,
the Fejér kernel preconditioners do not lead to a fast convergence of the PCG-method if the
generating function f of Ay has a zero of order 2s > 2.

In contrast to these results, the optimal preconditioners in Ap, with Oy defined by the DCT
I —TIT or by the DST I —III do not coincide with the corresponding Fejér kernel preconditioner
My (fn,Op) in (5.1). In literature [6, 3], so—called optimal Tau preconditioners were of spe-
cial interest. Using our notation, optimal Tau preconditioners are the optimal preconditioners
with respect to the DST-I as unitary transform. The optimal Tau preconditioner realizes a
fast convergence of the PCG—method if the generating function f of Ay has only zeros of
order 2s < 2 [6].

Block Toeplitz matrices with Toeplitz blocks

Next we are interested in the solution of doubly symmetric block Toeplitz systems with
Toeplitz blocks. The construction of preconditioners with the help of reproducing kernels
was applied to well-conditioned block Toeplitz systems in [26]. Following these lines, we
generalize our univariate construction to ill-conditioned block Toeplitz systems with Toeplitz
blocks. In the next Section we will show good numerical results also for the block case. How-
ever, in general it is not possible to prove the convergence of PCG in a number of iteration
steps independent of N. Here we refer to [33].

Note that as in the univariate case there exist banded block Toeplitz preconditioners with
banded Toeplitz blocks which ensure a fast convergence of the corresponding PCG-method
[34]. See also [4, 29].

We consider systems of linear equations
A M,NT = b,

where A s n denotes a positive definite doubly symmetric block Toeplitz matriz with Toeplitz
blocks (BTTB matrix), i.e.

-_ M-1 . o . \N-1
AM,N = (AT—S)T,SZO with Ar = (am],k)j’k:o
and a,; = a;|- We assume that the matrices Ajy are generated by a real-valued 27—
periodic continuous even function in two variables, i.e.

2w 27

1 o
k= g //(p(s,t) e 15IHtk) g5 4t .
00

Note that the multiplication of a vector with a BTTB matrix requires only O(M N log(M N))
arithmetical operations (see [32]). We define our so—called “level-2” preconditioners by

. N—-1,M-1
. rmTo9mT ’
My n(own, Chh o Cl)) = (Cl e ) diag(col (pun(~r, 20) ) x
M’ N k=0
(CiieCy),
rTogm N.M
My n(oun, S e SY)) = (S5 e SY) diag(col (oun(c=20)) ) x
M’ N k=1
(Sir®SY), (5.2)
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with par,n = ¢ * Ky v and Kayrn(2,y) == Ky (2) Ky (y). Here col: RN-M _y RMN g defined
by

col (xj»k);'v:_()%l’c]‘:/[()_l = (2)MNT with  mpny =g

6 Numerical Examples

In this section, we confirm our theoretical results by various numerical examples. The fast
computation of the preconditioners and the PCG—method were implemented in MATLAB,
where the C—programs for the fast trigonometric transforms were included by cmex. The
algorithms were tested on a Sun SPARCstation 20.

As transform length we choose N = 2™ and as right-hand side b of (2.1) the vector consisting of
N entries “1”. The PCG-method started with the zero vector and stopped if ||7()[|5 /|70, <
107, where 79 denotes the residual vector after j iterations.

We restrict our attention to preconditioners (2.10) and (5.1) constructed from B-spline ker-
nels Ky = By, n. The following tables show the number of iterations of the corresponding
PCG-method to achieve a fixed precision. The first row of each table contains the exponent
n of the transform length N = 2" in the univariate case and the block length N in the block
Toeplitz case. The kernels are listed in the first column and the applied unitary transform in
the second column of each table. Here F% := WxFy with Wy := diag(e*ik”/N)kN;Ol, ie.
wy = /N in (2.7). For comparison, the second row of each table contains the number of
PCG-steps with preconditioner M y(f) defined by (2.8). These preconditioners, which can
be constructed only if the generating function f is known, were examined in [30].

We begin with symmetric ill-conditioned Toeplitz matrices Ay (f) arising from the generating
functions

i) (see [13, 14, 32)): f(x):=22 (v € [-m, ).
ii) (see [3, 10, 11, 14, 30, 35]): f(z):=2* (v €[-m,7)).

The Tables 1 and 2 present the number of iteration steps with different preconditioners.

As expected, for f(x) = 2 it is not sufficient to choose a preconditioner based on the Fejér
kernel Ky = By n and for f(z) = z* it is not sufficient to choose a preconditioner based on
the cubic B-spline kernel Ky = Bs y in order to keep the number of iterations independent
of N.

On the other hand, we have a similar convergence behaviour for the different unitary trans-
forms. This is no surprise for F% and for S%!. However, for F'y and for C, the corresponding
grids G’y contain the zero of f, namely xn9 = 0. This was excluded in Theorem 3.7. In our
numerical tests it seems to play no rule that a grid point meets the zero of f.

Our next example in Table 3 confirms our theoretical results for the function f(z) = (22 —1)?2
with zeros of order 2 in z = +1.

Finally, let us turn to BTTB matrices Ay . In our examples, the matrices Ay y are gener-
ated by the functions

iv) (see [4]): ¢(s,t) = s>+ 2+ 522 (s,t € [-m,m)) .
v) (see [29, 30]): ¢(s,t) =s2tt (st €[—m, m)).
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f |F%|l4 4 4 5 6 6 6 6 6
Biny | Fy ||7 8 11 12 14 18 22 29 39
Biny | FY |7 8 9 11 13 17 20 26 37
Biy|C¥|7 8 10 11 13 16 20 25 33
Bin | SN |7 8 9 11 14 17 21 27 38
Boy|Fy |6 6 6 7 7 7 6 6 6

Bon | F4 |6 6

Ut
Ut
(@3
[«
[«

By |C¥l6 6 6 6 6 6 5 5 5

Bon | SHEN6 6 5 5 5 7 7 7 7
Bsy |Fy |6 6 6 7 7 7 7 6 6
Bsy |F% |6 6 6 6 5 6 6 6 6

Bsny|C¥l6 6 6 6 6 6 6 5 5

Bsy | SHEN6 6 5 7 6 7 7 7 7

Table 1: f(z) =22 (z € [-m, 7))

vi) (see [29, 30]): ©(s,t) = (s +t2)2 (s,t € [-m, 7)) .

These matrices are ill-conditioned and the CG—method without preconditioning, with Strang—
type—preconditioning or with optimal trigonometric preconditioning converges very slow (see
[29, 32, 4]). Our preconditioning (5.2) leads to the number of iterations in the Tables 4 — 6.
Here By y n(2,y) := Bn(z) Bp,n(y). In [33], we proved that the number of iteration steps
of PCG is independent of N in Example iv) and explained the convergence behaviour of PCG
for the other examples. To our knowledge, there does not exist a faster PCG-method if the
generating function ¢ is unknown up to now.

Note that by [41, 42] any multilevel preconditioner is not optimal in the sense that a cluster
cannot be proper [44].

Summary. We suggested new positive definite w—circulant preconditioners for sequences of
Toeplitz systems with polynomial increasing condition numbers. The construction of our pre-
conditioners is based on the convolution of the generating function with positive reproducing
kernels and ,by working in the Fourier domain, do not require the explicit knowledge of the
generating function. As main result we proved that the quality of the preconditioner depends
on a "moment property” of the corresponding kernel which is related to the order of the zeros
of the generating function. This explains why optimal circulant preconditioners arising from
convolutions with the Fejer kernel fail to be good preconditioners if the generating function
has zeros of order > 2.
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Biy | Fy || 8 15 23 36 61 153 391 > 800 > 800
Biny | Fy || 8 15 23 36 61 153 390 > 800 > 800

Biy |CH |l 8 13 20 32 53 129 319 > 800 > 800

By N Sl 8 16 24 38 65 158 402 > 800 > 800

Bany | Fy | 9 9 11 11 13 15 18 22 27
Bo N ¥ll9 9 10 10 13 14 17 20 26

By |CY|8 8 9 9 9 11 13 14 16

By N S{VI 10 10 10 11 13 14 18 19 22

Biy | Fy || 9 11 11 12 12 12 13 15 14
Biy | F% |9 9 10 10 12 12 13 13 13
Bsny |CHI8 9 9 9 9 9 10 10 9
Biy | S0 10 12 12 14 14 14 15 16

Table 2: f(z) =2* (z € [-m, 7))
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