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Abstract—Color image enhancement is a complex and chal-
lenging task in digital imaging with abundant applications.
Preserving the hue of the input image is crucial in a wide rang
of situations. We propose simple image enhancement algahniins
which conserve the hue and preserve the range (gamut) of the,R
G, B channels in an optimal way. In our setup, the intensity iput
image is transformed I.n.to a target IntenSIty image whose h+s Fig. 1. Histogram equalization (HE). Left: Original imagaion (Matlab
togram matches a specified, well-behaved histogram. We de& @  |pT image credits notice). Middle: HE to each color chanmelependently.
new color assignment methodology where the resulting enhaad  Right: Enhancement in three steps following [2]: RGB to H@nhsform, HE
image fits the target intensity image. We analyse the obtaink of the intensity channel, then HSI to RGB transform. Herel3% of the
algorithms in terms of chromaticity improvement and compare pixels have values irf255, 443.5].
them with the unique and quite popular histogram based hue
and range preserving algorithm of Naik and Murthy. Numerical
tests confirm our theoretical results and show that our algoithms . . . . .
perform much better than the Naik-Murthy algorithm. In spit e the hue and enhancing the brightness, the obtalneq Imag_e.WII
of their simplicity, they compete with well-established alernative ~@Ppear more colorful. Examples where the hue is modified
methods for images where hue-preservation is desired. are shown in Fig. 1The range (gamut) preservatias often

Index Terms—color image enhancement, scaling and shifting omitted in works on image enhancement;.see, e.g. thg recent
methods, hue preservation, gamut problem, exact histogram t€xtbook [2, p. 80]. Each color channel in a digital image

specification, color perception. can only take a limited number, sdy, of integer values, e.g.,
L = 256 for 8-bit coding. If the enhancement method produces
. INTRODUCTION larger or smaller values these are clipped back to the baynda

. . .. of [0,L — 1] which also changes the hue. In Fig. 1 right
This paper assists to the tremendous progress in d'glg%.l % of the pixels are clipped back to 255 which yields too

color imaging and display technology. In spite of the impatt many yellow pixels. Finally, fow computational complexityt

amount of research, color perception and color appearaece g | i oo sicularly important when dealing with
still open problems. The demand for fast efficient algorshm 9 P yimp g gze

dxel” images taken by commercial cameras, resources in

improving the color content of digital images has increas{ ; . ) !
) . . : ardware implementations and extensions to video.
dramatically. The applications of color image improvenmamet

abundant. They concern for example digital cameras and nRemark 1. Fully automatic color image enhancement faces
bile phone cameras, medical imaging, video, post-prodocti(at least) two major limits: i) "The chemical compounds
industry, restoration of old pictures and movies. that form color receptors vary among the population. The
Typically, color images are stored and viewed using thrgaysical shapes of the receptors vary among the population
components (channels): red (R), green (G) and blue (B).i$n tland within the retina. Thus, the color vision among obsesver
paper we aim to design color image enhancement methauth normal color vision varies significantly” [1, p. 18]i)i
in the RGB space sharing three important features, namélyage enhancement is always driven by an application: typi-
hue and range (gamut) preservati@md low computational cally the user needspecificvisual information determined by
complexity The hue describes in each area of an image th&s/her purpose. Further subjective criteria are of paramo
dominant color ingredient that one really perceives, eggl, importance [2].
orange, magenta, yellow and so on [1], [2]. The hue has the

nice property of being invariant under changes of direction Consequently, we do not look fdully autom_auc image
nhancement algorithms. Here we focus on histogram based

d intensity of the incident light [3]. Thus, b [ . . .
and intensity of the incident light [3] us, by preserVm%ethods. The selection of a suitable target histogram esabl
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intensity image so that they satisfy the hue and gamdSl, YIQ, HSV, etc., see [5]. When processing is done in
constraints in an optimal way. a transform color space, coming back to the original RGB

These stages are briefly commented below. space typically generates a gamut problem, as cautioned in

Stage(a). Exact histogram specification (HS), also know[iL8]. Beyond the additional numerical cost, a post-procgss
as histogram matching, of single-valued (gray-valued)gesa in RGB is then needed (often realized using [18]). Gray-®alu
aims to transform an input image to an output image which egrouping was tentatively extended to color HE in [20]. In
actly fits a prescribed target histogram. Histogram eqatitin  [21], a new definition of the histogram of a color image was
(HE) is a particular case of HS where the target histogramiigroduced whose cumulative distribution function (cdf)the
uniform. Usually HE leads to unnatural images and should nptoduct of the marginal cdf's of each color channel. Then
be the target of choice. We do not focus on the constructitite color values are increased / decreased by the same amount
of target histograms. Instead, we adopt a simple approdtsgratively. This work was refined in a later paper [22]. Amert
inspired by [4]. For digital image HS is an ill posed problenapproach, developed in [19], is to work in the HSI space where
[5]. The clue to ensuring exact HS is to obtainm@aningful the hue and the saturation are equalized and then processed
total strict orderingof all pixels in the input digital image. We using probability smoothing. All pixels in the RGB spacettha
perform exact HS using the algorithm in [32] which currentlpresent gamut problem are corrected using [18]. A generic
provides the best pixel ordering in terms of quality and spedorightness preserving dynamic histogram equalizatioesieh

Stage (b). The extension of histogram methods to colocomposed of five steps, was proposed in [23]. This scheme was
imagesis a quite complex task. The histogram of a gray-valugpplied to color images in several ways, including tramsfor
image is 1-D while the histogram of a color image is 3-nto other color spaces. The work in [17] demonstrates that
which gives rise to an under-determined problem. For ircgtan the methods in [19], [21], [16] based on higher dimensional
applying HE to each color channel independently changes thistogram definition, increase the brightness of the image
color content (the hue) of the image, see Fig. 1 middle. feurthand cannot fit the prescribed uniform histogram. The main
it is not easy to produce color images that respect the ramgmclusion is thatonly the 1-D histogram of the intensity
constraints; see Fig. 1 right. As a central result of thisgpap channel can be considered for equalizatidrhe new color
we propose a general and optimal hue and range preserwafpes are then computed using the algorithm in [18]. The
color assignment methodology. method in [17] was recently improved in [24]. In order to aloi

Related work. Since the inaugural paper [6] providingthe excessive contrast enhancement due to HE, a histogram
PDE-based and variational formulatiorier image histogram mixing strategy was applied in [25]. There are also many
modifications, these methods were further expanded to db@togram based techniques where the enhancement fuisction
with color image enhancement; see, e.g., [7], [8], [9], [LOhn S-type, or power, or logarithmic transform; see, e.g., [26],
These approaches provide flexible tools to incorporateuari [27], [28], [29]. In particular, the approach in [27] is basen
knowledge on human visual perceptual phenomena, typicathodels for color perception and is automatic. Unfortunatel
in relation with Retinex theory [11]. An automatic colorthere are no algorithms nor tests on color images.

enhancement (ACE) algorithm for digital images, mimicking cqontributions. We propose a general affine model for

some cha_racteristics of f[he human visual s_ystem, has _b@gg{ hue and range preserving image enhancement in the
proposed in [12] and refined in [13]. A fast implementatioRGg space which gives rise to Algorithm 3. Two simple but
of ACE was developed in [14]. A perceptually inspired variymportant instances of this algorithm are the Multipliveti
atlpnal approach allowing a more flexible control of cortirag,gorithm 4 and the Additive algorithm 5. We show how the
adjustment and attachment to data was proposed in [7]. ffjicome of Algorithm 3 can be faithfully approximated as
numerical implementation of the gradient descent teclidy convex combination of the images obtained by Algorithm
applied to the corresponding energy functionals coincidgSang Algorithm 5, which is quite practical. The enhance-
with the equation of the ACE. Some basic requirements ftent performances of our algorithms and the Naik-Murthy
perceptually inspired” objectives were formulated in B}d  gigorithm [18] are analyzed in terms of their chromaticity
gave rise to successful algorithms [8], [15]. _ improvement. In all cases, our algorithms clearly outpenfo
Next we summarize the main approaches Wiatogram ihe gigorithm in [18] recently applied to color images in
modificationof color images following a chronological order.; 71 - all numerical tests confirm our theoretical resultsurO
Since the suitably normalized histogram of an image is al3orithms are simple and fast. They are really efficientwhe
the empirical probability distribution of its pixel values, a yqa wishes to give a better clarity of images (not too altered

statistical vocabulary is used in many papers. In [16] & 3R aritacts) while preserving the original color ambience
color histogram in the RGB color space was proposed for HE;

the resultant images present an excessive brightnessigitbr  Qutline. In Section Il we sketch our HS method and present
pixels, see [17]. A method that preserves both the hue a§ Maik-Murthy algorithm [18]. Section IIl presents our
the range (gamut) constraints was inaugurated by Naik afigProach for color image enhancement. In Section IV we
Murthy in [18]. Even though this article did not show colofValuate our algorithms and the algorithm in [18] analylyca
image applications, it is a state-of-the-art method apipiie in terms of saturation as well as qualitatively. Section V

many papers; see, e.g., [19], [17]. As to the choice of tfgesents numerical results. Conclusions and points fardut

color space, some methods work directly in the RGB spalTk aré drawn in Section VI.

while others operate in transformed color spaces, e.g.,,LHSThe proofs of all statements are given in the Appendix.



[1. PRELIMINARIES The importance of a meaningful strict ordering for HS is
Let w = (w,,wy, w,) be an RGB image of siz&/ x N, illustrated in Fig. 2 in the context of HE. The Matlab buitt-i

wherew, € {0,...,L — 1}, ¢ € {r,g,b} are its red, green function histeq does not involve a strict ordering of and
and blue channels, respectively. Bobit images we havé = the resulting histogram of is not uniform. This entails some
256. We reorder each color channel columnwise into a vectdftifacts shown in (a). Such artifacts are not observed )n (b

of sizen := MN and address the pixels by the index se@btained using our Algorithm 1. The colors in Fig. 2(a)-(b)
I, :={1,---,n}. were assigned using Algorithm 2 given in the next subsection

A. Histogram Specification

The intensityof an RGB imagew is defined by [5] orginal (a)chis'teq : histogram of (@) Il of (@)
1 & : 1r
Fw) = 3 (wr Fwg + ). (1) - m W %
Thenf has3(L—1)+1 different values int {0, - - - , 3(L—1)}. (b) Algorithm 1 histogram of (b) ~ zoom of (b)

Remark 2. Instead of the intensity we can also work with gﬂ‘ S i !'."r.'
other convex combinations of RGB values. E.g., we can use | LT 4

the weights0.299, 0.587 and 0.114 which are in proportion _. . . . . o
. Fig. 2. lllustration of the importance of a meaningful oiidgr Top: Original
to the human perception of the RGB channels, see [1], [2].image and application of Matlahisteq. Bottom: Application of Algorithm 1.

We want to find an intensity imagE with gray values in
{0,...,L — 1} which has a specified (target) histogram=
(hi,...,hy), i.e, hlk] == #{i € I, : flii = k — 1}, k = B. Hue and Range Preservation
1,..., L, where § stands for cardinality. Such exact HS can Range preservation is a mandatory constraint for all digita

almost never be achieved for images with a small number ipiaging devices [4]. A transformed versian of w can be
different values compared to the number of pixels using th@rrectly depicted only if

classical statistical method based on the cumulative tlensi o _

function, see [5]. Instead we will apply a procedure based on weli] €0, L—1] Viel, Yee{rgb, @)
meaningfuktrict ascending ordering of the pixelsfnVarious since no more tharl digits can be displayed. Otherwise,
ordering algorithms for digital images were proposed in th@ie obtained image is modified according to the visualiratio
literature, see e.g. [30], [31], [33]. The method in [32]skd device - which is quite an ad-hoc option; see e.g., Fig. 1trigh
on [33], provides currently the best way in terms of speed andThe hue of an imagew is given by H(w) = 0 if w, =
quality to order the pixels in digital images. The basic ide@® w, = w, and otherwise by

minimize a smoothed; —TV functional by simple fixed point

iterations with the original image as initialization. Afte few H(w) = {
iterations the approximate minimizer has entries whicledif

(up to very few outliers) pairwise from each other while tha/here

0 if wy < wy,
360° — 0 if wy > wy, “)

order.ing of the original gray vaIue; is retained. Ewenote L((wy — wg) + (w, — wy))
the discrete gradient operator (horizontal and verticeéod ¢ := arccos (W — w2 + (wr — wp)(wy — ))% 5
differences), see [32}y" its transposed and let Wr = Wy Wr = Wo) Wy = Wh
¢ . oy see [5]. Note that the denominator éfcan be rewritten as
n(t) = P and 7~ (y) = T ) A ((wr —wy)? + (wr — wp)? + (wy — wp)?)) 3.

wherea := 0.05 is the default value. Note that= ¢’ where Remark 3. The simplest hue and range preserving method
0(t) == [t| — alog(1+ ), see [32]. Once a strict ordering isis to apply the same affine mappigw) = aw + b to
obtained, exact HS is direct. Our HS algorithm reads as: all pixels, computinga and b so that the least and the
largest pixels in{(w) are 0 and L — 1, respectively. Let
Algorithm 1 HS using strict ordering [32] Wmax = max{w.[i];c € {r, g, b}, i € 1,} and letwyi, :=
Initialization: «(© := f, 8 := 0.1, target histogram, Win{weli;c € {r, g, b}, i € I.}. Then{(w) given by

iteration numberK (default K :=5), ¢ := 0.

W — Wmin

f(w) == (L-1) - (5)
Wmax — Wmin
1. Fork=1,..., K compute is the desired stretching ab. For example, see Fig. 16, top.
u®) = f = (BV(VuE~)). It is easy to see that the hue of the modified imagés

also preserved if the color values e&chpixel are modified

2. Obtain the orderingi;}”_, of I,, from the ascending by the same affine transform

sort of the entries ofi(¥).
3. Fork=0,...,L —1 setcy41 := ¢, + hy and We[i] = ali|w.[i] + bli], ¢ € {r, g, b}, (6)

~ ~

flew +1) = ... = fleg+1]) = k. where the constants[i] and b[i] have to be chosen for any
1 € 1,,. Finding other appropriate hue-preserving transforms is




an interesting problem. Faiffi] = 1, model (6) amounts to an We have to adapt these models so that they preserve the range.
additive transformusually calledshifting Forb[i] = 0, itis a We will use for alli € I,, the magnitudes
linear/multiplicativetransform known ascaling Both scaling M| = max{wli]: c€ {r, g, b}}
and shifting have been introduced in [34], [35]. In genetta, o . e ' 9 ’
result of (6) fails the range constraint (3). mli] = min{w[i] : c € {r, g, b}}
The gamut problem was examined by Naik and Murthy i
[18] in the scaling case fat[i] = [ i/ ], wheref is a target
intensity. If f[ 1/f1é] > 1, the range constraint (3pight not
be guaranteed. In such a case the authors propose to avoidRemark 4. By the definitions off, m and A/ we have
potential problem by switching from the RGB color space to
the CMY (Cyan= L — 1-R, Magenta= L — 1-G, Yellow 0<mli] < fld <Ml <L -1
= L—1-B) space and then to transform back into RGB. Thisyrther M[i] = f[i], resp.,m[i] = f[i] if and only if w,[i] =

(10)

And similarlyj\//f[i] for the maximum andn.[i] for the mini-
mum of the RGB components @i[:| given in (8).

correction step reads for alle {r, g, b} as w, i) = wyli], i.e.,w[i] is a gray pixel.
PO L—1- f[i . Sl A pixel @[i] has anupper gamutproblem if M[i] > L — 1
Weli] = L =1 === f[4] (L—1—wcld) i 1l > 1 and alower gamutproblem if m[i] < 0. We will treat these
L gamut problems in an optimal way in the foIIowmg sense:
. . . P —1—f[i . .
This formula is equivalent ta. [i] = 7—= ﬂ % (we[i] = fli)+ o Assume that we have an upper gamut problem, 3£ >
1], so that the algorithm in [18] can be formulated as follows: L — 1 for somei € I,. ThenM[ | = wy[i] for somek €
{r, g, b} and the best correction of this pixels is clearly to
Algorithm 2 Naik and Murthy [18] chooseu[i] in (8) so thatwy[i] has the closest value in the
1. Compute the intensity of w and the target intensitf. range, i.ewili] = L — 1, see, e.g., [4]. Equivalently,
2. Fori € I, compute L—1=ali)(M[i] - f[i)) + fli. (11)
(i) weli] == % weli] if % <1 From Remark 4 we know that for non gray-valued pixels
(ii) @eli] = F==H (weli] — f100) + FT it H] > 1 MIi] = f[i] > 0, so that
. L—1-fJi
ali| = ——=——= >0
4=

Algorithm 2 is often used to avoid the gamut problem.
g g P Thus, for the upper gamut problem, the corrected color

values of pixeli are given by

. L—1—fli

In this section we develop our affine color enhancement.[i| = Wf[g]]
methodology. Given an RGB image and a target histogram,

we compute its intensity by (1) and then the target intensity® Assume we have a lower gamut problen] < 0 for some

IIl. NEW AFFINE HISTOGRAM SPECIFICATION MODELS

(weli]— flil)+fli], c€{r,g,b}. (12)

image f by Algorithm 1. Our next goal is to transforminto ¢ € In. Letk € {r, g, b} be such that[i] = m[i]. Then the
an imagei having the following properties: optimal correction in (8) obeying (c) is to sek[i] = 0, i.e.,
(@) Intensity fit: f = 2 (@, + Wy + Wp). 0 = ali] (m[i] — fli]) + f[z] (13)
(b) Hue preservatlon the hue af andw coincide. _
(c) Range preservatiol: < @w. < L — 1, c € {r, g, b}. By Remark 4f[i] — m[i] > 0 for non gray pixels, so that
We adopt the hue preserving affine transform (6). Summing J?[i]
up overc in (6) shows that property (a) holds if and only if ali] = T —mi > 0.
flil = alilfli] +bli] < bli] = fli] — aldf[i]. (7) Hence for the lower gamut problem, the corrected color

. . . value ati is given by
Therefore the affine model (6) obeys (a) if and only if

@oli] = ali)(we[i] — fli) + fli], ce{r g, b}. (8 Weli]= m(wc[ i = fli)+ flil, ce{r,g,b}. (14)

Two particular instances of (6) are the following:

— Scaling For b[i] = 0, model (8) reads as A. Affine Algorithm with Optimal Range Preservation

Our affine model is a convex combination of the shifting

D.Ji] = %w li], ce{r g, b} 9) and scaling models for somec [0, 1]:
C f 7/ c 9 . -
— Shifting For a[i] = 1, model (8) becomes Weli] = A %w [i] + (1= X) (weli] — fli] + fli]) ~ (15)

@eli] = weli] — fli] + flil, ce{r, g, b}. = ali](w.li] — f[i]) + flil,



where

4 Sl
ali] : /\f[i] +1-A (16)
with upper and lower gamut corrections (12) and (14) if
necessary. Clearly, fok = 1 we have the scaling model and
for A = 0 the shifting one. Algorithm 2 corresponds o= 1
in (15) but the gamut problem is tackled just by thresholding
ali] at one; this appears to be an important drawback.
The next propositions show that correcting the gamut prob
lems using (12) or (14) does not yield new gamut problems. &

Proposition 1. Assume that pixel € [,, in (15) has an upper
gamut problem. Then its correctiah,[i] in (12) satisfies

0< @c[l] <L-1, ce {n q, b}. Fig. 3. Input imagecouple(top left) and its enhancement by our Algorithm
- - 3forA=0, 1, 1, 2, 1. Here the size of the setg(\) in (18) in percent

. . f all image pixels are).70, 1.24, 2.12, 3.13, 4.17 and the setsL(\) are

Let us mention that a lower gamut prOblem can obvious pty. All nuances between the very colorful imag@e* and the grayish

not appear for the multiplicative model (9) i.e. far= 1. image@ * can be also obtained by their convex combinations in (17).

Proposition 2. Let A € [0,1). Assume that pixel € I,, in

(15) has an lower gamut problem. Then its correctianli] and Additive algorithm, respectively. Observing that
in (14) satisfies . )
G mli] = mli] — fli] + LL

i) = M[i] = fli] + f1d],

el
Using Propositions 1 and 2, the optimal range-preserving G}MM f[z Mi]
approximation of our affine model (15) can be computed ifese algorithms read as f0||0WS_
one iteration where all pixels in the input image are modified
only once. The algorithm is described below. Algorithm 4 Multiplicative Color Enhancement

- - - 1. Compute the intensity of w and the target intensity?
Algorithm 3 Optimal Range-Preserving Enhancement using Algorithm 1.

1. Compute the intensity’ of w by (1) and the target 5 por; < 1, computeM([i] by (10). If f[i] = 0, then

|nten3|tyf using Algorithm 1 for given. @li] := 0. Otherwise compute
2. Fori € I,, computeM [i] andm[:] by (10). If f[i] = _ il
Gli) = ML)

0<w[i]<L-1, ce{r, g, b}

then@[i] := 0. Otherwise compute Fjig
il and for allc € {r g, b}:
ali] ==\ m +(1-=N), () w.[i] := wel]
il alilOmlil — 7y 4 ifGl[']<L 1, A
P = @ @)= St )~ 1) + 1)
Grli) = ald)(Mi] — [[i]) + J[i) . . /1
if Gili]>L—1.
and for allc € {r, g, b}: -
() weli] := alt] (we[i] — fi]) + fi]
if Gpli]>0and Gy[i] <L -1, Algorithm 5 Additive Color Enhancement
(i) @] = W)ch(U}c[l] — flil) + f1i) 1. Compute the intensity of w and the target intensity’
if G3,[i] > L —1, using Algorithm 1. ) andmi] by (40, 1 /11 -
i) @l = Fich w.lil — fli i 2. Fori € 1,, computeM [i] andm|[i] by (10). If f
(i) ifCC[J]A'['] imomm( eli] = 71il) + 71 then@li] := 0. Otherwise compute

G, i) = mli] — f[i] + fli] andGS, [i] = M[i] - f[i] + Fli]
and for allc € {r, g, b}:

Algorithm 3 and the role of\ is illustrated in Fig. 3. The (i) g[i] := w,[i] — f[i] + f[]
images were computed for Gaussian target histogram with if GO[i] >0 and G[i] <L -1,

parametergl, ) = (0.9,0.1), see (27), Sec. V-A. (i) @[i] = ﬁﬁ ﬂ % (wnli] — £1i]) + 7l

if G9;[i]>L-1,
B. Multiplicative, Additive Algorithms and their Combiiats G i g
P Ve meer | (i) @] = iy (weli] — £1i)) + F
For A € {0,1} Algorithm 3 yields two simple range pre- if GO [i] <

serving scaling and shifting algorithms called Multipliva



Let w * be obtained by the Multiplicative algorithm 4 andProposition 5. Let S(w(i]) and S(w[i]) denote the saturation

w T by the Additive algorithm 4. For some e [0, 1], consider of pixeli in the input imagew and the imagev obtained by
G = ADX 4 (1— Na+ by 17) our Algorithm 3, respectively. If_[i] € {m[i],M[i]} we have

v A+ (L= Nt Ve €dr. g, b} (7 S(wli]) = 0. Otherwise the obtained saturation is given by

() S(@ll) = Swlil) (A+ (1 -3

Sincew, is a convex combination off * and @ T, it obeys .
1)

all conditions (a)-(c). We want to know ib. can replace the
affine Algorithm 3. In order to answer this question, we set  if i € I, \ {{/(\) U L(N)},
UN) ={iel,:GYli] > L -1},
L) :={i e, : G)li] <0}
Herel{(\) corresponds to the upper gamut step (ii) &) (i) S(@[i]) =1 if i € £(N).
— to the lower gamut step (i) in Algorithm 3.

(18) (i) S(@li]) = S(uwli]) £ LI i eu),

. o . To clarify the comparison, all magnitudes relevant to Al-
Proposition 3. The setd/()\) and £(\) defined in(18) fulfill gorithm 2 (Naik and Murthy) hold the superscripf those

L£(1) =2 and relevant to Algorithms 4 (Multiplicative) and 5 (Additivejave
UN) CUN), L) DLA2), 0< A <A <1 the superscripts and+, respectively. In particular, we obtain:
In particular, (18) yields — Algorithm 4 (Multiplicative)
- . XY . i oiel, 0,
U1) = qi€ly: %M[i] >L-— 1}, (1) S(Iﬁ [Z,]) S(w[l.]) fli] L—1-Jli] 1 Z,e U
o, (i) S(w*[i]) = S(w[i]) &= ERS U(1).
u©o) = liel,: fi]— fli] + Mli] > L — 1} ., (19) 71 23)
£0) = dien,: fli— fli] + mli] < 0}_ — Algorithm 5 (Additive)
From Proposition 3 one hag(0) C #(1). The notation in (i)  S(@*[i]) = S(wli]) L4 if e, \ ©U(0) U L)),
5

0
(i) S@*[) =S@xl) if ieu),

—
o
o

(19) enables Algorithms 4 and e restated as follows:

— Multiplicative algorithm(A = 1)
i ~ iii o+ i]) = if i :
Ol = el = s+ 70t en e, (0 SED = PR g
(i) @eli] = Zrr=H (we[i] — f1)) + Flil if i € U(1). Let us denote
— Additive algorithm(\ = 0) R . {Z €1, : % > 1} . (25)
(i) @eli] = (weld] — fli]) + f[i] if ¢ € L, \ {¢4(0) U L(0)},
(i) @fi) = ﬁ;ﬁ:)ff{g (weli] — fli]) + Fli] if i € U(0), By (19) and Remark 4 we find that ife /(1) then >
(ifi) @.[i] = f[‘]jﬂ - (weli] — fli]) + fA[Z-] if i € £(0). ﬁ > 1 and that ifi € £(0), then% <1- ’}7[[;]] < 1. Hence
| (21) Voul) and £(0)CIL,\V. (26)

The relation betweem.. in (17) and the outcomé& of Al-
gorithm 3 for the same is described in the next proposition.Using the notation in (25), case (i) in Algorithm 2 (Naik-

Proposition 4. Let @ be obtained by Algorithm 3 andy Murthy) holds for anyi € I,,\V and step (ii) holds for any
by (17) for the sameX € [0,1]. Then it holds fori e 1 € V. The saturation of images enhanced by applying the Naik
I \{L{(l) \U(0) U L‘(O)} that @.[i] = @.[i]. - Murthy Algorithm 2 is given by the following proposition.

The setd/(1), 4(0) and £(0) are usually small for reason- Proposition 6. Let S(wli]) and S(w*[i]) denote the satura-
able target intensity imageg (see Table 1) and((1)\ 4(0) tion of p|x§Iz in the input imagev and the |_mageu' obtained
contains generally much less pixels thaffl). If we wish PY the Naik-Murthy Algorithm 2, respectively. Then
to see the enhancement resultof Algorithm 3 for various ;) S(@*[i]) = S(wli]) it iel,\V,

A € [0, 1], Proposition 4 justifies to compute insteady (17)
which is much more practical. Thus, by slidingin (17), we (i)  S(@°[i]) = S(wli]) % —
can easily move between the two models. '

7]
[d]
Remark 5. Proposition 3 and(26) show thaty 2 #(1) O
IV. COMPARISON OF THE ALGORITHMS U(0). Note that all these inclusions are almost always strict;
A. Saturation Properties see Table I. E.g., in(26) we find#/(1) = V if and only if
Here we analyze the saturation of images enhanced by ddfi] = L — 1 for all i € V.
methods and by the Naik-Murthy algorithm. Thaturationof
an RGB imagew in the HSI model [5] is defined by

if ieV.

Using Propositions 5 and 6, the saturation that Algorithms 4
. 5 and 2 provide can be rigorously compared.
1— M if fw) >0 22) e Leti eI, \V. Theni ¢ U(1) andi ¢ U(0). Hence
f(w ’
if f(w)=0. S(wli]) = S(@*[i]) = S(@*[]) < S(@*[i]),



where the last inequality becomes an equality only f0|.
fli] = f[i]. Beyond this case, only the Additive algorithms 5

increases the saturation ffi] < f[i]. But since the output
intensity is decreased, the perceived colorfulness ofitted p
is decreased.

eleti e V\U(1) ={iel,:1<
i & (U(0) U L(0)) and consequently
S(wli]) = S@*[i]) > S@*[i)) > S(@°[i)
and S(@°[i]) decreases faster thai(@ *[i]) when f[i]
increases because

S(@*fil) _
S(w i)
o Leti e (). Then
S(wli]) > S(@*[i]) = S(w*[i]),

where the equality is reached if and onlyNf[i] = L — 1.
But for most of the pixels one ha¥/[i] < L — 1. Further,

S(wli]) > S(@*[i]) > S(@*[i)),
where the equality holds if and only i¥/[{] = L — 1 and

M <

M7 < Tt Then

Mi] — f[i]

To1= g

w = (25,48,32), f = 35, H(w) = 137.3, S(w) = 0.29

Alg. 4 (x) Alg. 5 (+) Alg. 2 (NM)
(@050, @5 0500)  (@8,%))
- //
@ * o°
e )
S(w ™) S(w™) S(w*)

Fig. 4. Enhancement of a quite_dark pixel shown in the first. r®econd
and third rows: the output intensitf is on thex-axis and the plots depict the
results of Algorithms 4, 5 and 2. The second row specify tHeevaf each
color channel. The third row shows the resulting calow.r.t. f and the last
row plots the saturation of the output pixel as a functionfof

i € U(0). So the inequality is strict for most of the pixels.the input pixel is quite dark, the values., c € {r, g, b} and
In all cases, the images enhanced by the Maik-Murthy gli-are relatively close to each other. For this reason, allrcolo

gorithm have the weakest saturation. @p\ )V, where the
target intensity is less than the input intensity, the Adit
algorithm 5 gives a better saturation than the Multiplioati
algorithm 4. OnV \ /(1) the Multiplicative algorithm 4 gives
rise to a better saturation than the Additive algorithm 5.

B. Qualitative comparison

channelso" remain close to each other. @10, 35) we have

f > fsoby(24),S(w™) > S(w) and S(w*) continuously
decreases from 1 t&(w) = 0.29. On [35, 242], S(w )
decreases fron¥(w) = 0.29 to 0.04 according t'(w) f/ f.
This explains why the colors on the third row remain quite
dull, compared to Algorithm 4. For Algorithm 2, case (i) held
only for f € [0, 35], where the input saturation is preserved.
If f> 35, step (ii) is performed and'(w *®) decreases much

We begin with a simple but instructive example where Wgster than in Algorithm 5. As a consequence, (@8, 255]

apply Algorithms 4, 5 and 2 to two different "i
composed of one dark and one bright pixel, resp.,

Wdark = (25, 48, 32), wbright = (80, 172, 108)

having the same hue but different intensitigg,x = 35 and
forignt = 120. In Figs. 4 and 5, the input pixels are shown

on the top row, while the next rows detail the results of th

algorithms w.r.t. the target intensith/ € {0,...,255} given
on thez-axis. By (19) we see that the pixel belongsit61)
for f > EDS — Juqy, OUO) for > (L—1) = M +
I =t fuw), to L(0) for f < f—m =: fr) and to} for

'images” eache enhanced colors tend to be nearly equal and the obtained

color values are nearly gray, see the third row in the figure.
Fig. 5 shows the performance for the brighter pixgligp.

The Multiplicative algorithm 4 (i) is applied fofe [0,177.9].

The input saturation is preserved. The Additive algorith(i) 5

holds for f € [40,203]. On[40, 120] the recovered saturation

fecreases from 1 t8(w) = 0.33 and on(120,203] it slowly

decreases t0.65(w). In Algorithm 2, step (i) holds forf <

f =120 where the input saturation is unchanged. Step (ii) is

applied for f € (120, 255] — the interval is not so large as in

Fig. 4 and the saturation decreases much less fast to zero. On

f > f = fy. The corresponding values for our dark anghe 3rd row one sees that the colors obtained with all thesthre

bright image are given in the following table:

Ju) | Juo) | feo) | fy
Wark 185.9| 242 10 35
Whright | 177.9| 203 40 120

Fig. 4 deals with the dark pixebg.,x. The Multiplicative
algorithm 4 (i) is applied forf € [0, 185.9]. All color values
are multiplied by f/f, where f/f > 1 for f > 35 which

algorithms are quite similar.

Remark 6. From Fig. 4, if a dark pixel has a wrong hue (e.g.
due to compression or printing artifacts, noise, color ¢ast
etc.), the Multiplicative algorithm 4 can magnify the inséy

of this wrong color. If the input image contains a lot of such
pixels, the Additive algorithm 5 can be a better choice.

Our conclusions drawn in Subsection IV-A and our findings

yields a clear increase of the distance between all coffar one pixel images are confirmed by our tests on the two im-
channels. The third row shows a pleasant enhancement of #lges bungalow(underexposed) anftbwer (slightly lustreless)

dark input pixel. By (23) the input saturation is preserveue
Additive Algorithm 5 (i) is performed forf € [10, 242], where
all color values are increased by the same amgunyf. Since

depicted in Fig. 6 and 7. The distribution E[z‘]/f[i] for these
two images is very different — the first one ranges[@n18]
and the second one df, 1.22]. Roughly speakingyungalow



. Input intensity histogram Target histogram
w = (80,172,108), f = 120, H(w) = 137.3, S(w) = 0.33 m

Alg. 4 (x) Alg. 5 (+) Alg. 2 (NM) , -

(@, Wy, w,°) (@,", @, ©,") Input image

(w'r.7 @9.7 ﬂ}b.)

150, /. /

/ 170.
. /., Y J
7 K

89. / 79, /
V4
120 178 255 A 120 203 255 120 255
& o+ &
T s
120 255 120 255 120 255
S(w ™) S(w™) S(w*)

Fig. 5.  Enhancement of a quite bright pixel shown in the fimt.r Fig. 7. Original imageflower (300 x 400) and enhanced versions. All

Arrangement of images as in Fig. 4. Algorithms 2, 4 and 5 produce very similar results.
Input intensity histogram Target histogram
E] E The models proposed in [25] combine the input image his-

togram and a uniform histogram using various penalties and
parameters. Instead, we adopt a simple and intuitive approa

A common way for histogram based enhancement is to use
the histogram of a well exposed example image; see, e.g., [4]
Commercials in photography and image processing software
(e.g., Photoshop) mention that well exposed pictures &fiyic
have bell-shaped histograms. Based on these advises we focu
on target histograms whose shapes are Gaussian funétipns
with domain[0, L — 1], fixed so that

Input image Alg. 4 &)

1:=he(0) <1, max he(z)=1andr:=he(L—1)<1.
z€[0,L—1]
A user has to choose two parameters:
o [ € (0, 1] which is the desired portion of dark pixels;
« 7 € (0,1] drawing the desired portion of light pixels.
Note that one cannot choose= r = 1. Given! € (0,1] and

Fig. 6. Original imagebungalow(660 x 1024) and enhanced versions. For, < (0, 1], the shapeof the target histogram reads as
underexposed images the Naik-Murthy algorithm 2 gives Ipegnay-valued

results. The Multiplicative algorithm 4 gives the most ¢@lb image. The < (x — N)2
Additive algorithm 5 yields color values between those af thultiplicative ~ he(z) = exp | -———— |, =z € [0,L —1], for
and the Naik-Murthy algorithm; it performs better than thstlone. g (27)
_ —(L=1)(Inl—+vInl In7) _ (L=1)*(v/=Inl—y/—=Inr)?
H= Inr—Inl » 0= (Inr—Inl)2 '

mimics the phenomena explained for Fig. 4 dlmiver those Finally the target histograrAh is normalized according to the

relevant to Fig. 5. numbern of pixels in the image:
-~ nﬁ €z
V. NUMERICAL RESULTS h(z) = # Voe{0,---,L—1}.

. 3ezo he(a)
Here we demonstrate the performance of our algorithms to R N
render images where we want to preserve the hue. Whenever (27) is used, we shall writg for h.

Remark 7. If the input RGB imagev has no pixel values

A. Target histograms on an interval[0, Ly] for someLy, > 1 one has to perform

Our algorithms depend, up to a certain degree, on tHe hue-preserving stretching (). The target histogram is
choice of a target histogram for the intensity channel. Mzsi chosen based on the stretched histogram and the enhanced

target histograms avoiding the drawbacks of HE have bedpage is computed from the stretched image; see Fig. 16.

proposed in the literature. Some of them leave gaps in thewjith this cautionary remark, we can explain how to choose
target histogram which can yeild artifacts as in Fig. 2, sge €good target histograms using (27). The input intensity his-

[20], [26], others preserve the input brightness which Mitogram, after stretching if necessary, is denotedijy
the enhancement of underexposed images, see, e.g. [2B], [28



Remark 8. The choice of the paramete( r) to build A in (@) riginal image

j a2 /&
-

(27) depends on the input intensity histogréin and on the
enhancement task. E.4l, ) = (1,0.99) leads to HE.

(i) Function he can be easily adapted to all images whose
histogram k¢ is roughly unimodal — see the original ‘
images in Figs. 6, 7, 9, 10, 11, 13, 14 and 16. 1
If the pixel values are mainly in the middle of the interval
[0, L — 1] and decay at the ends (see Figs. 7, 9 and 16), |
a good enhancement can be done vith r € [0.1, 0.2].
Whenh; rapidly decays towardé —1, one should choose
r € (0,0.1] (see Figs. 6, 10, 11, 13 and 16). The stronger
this decay, the smaller the value ofshould be selected
(e.g.in Fig. 11, = 107%))

A too larger should entail artifacts typical for HE.

If most of the pixel have small values (underexposed 7 d
images, see Figs. 6, 10, 11 and 13), it is reasonable toh

select! € [0.8,1]. The higher the concentration neér L

. the larger the value of < 1 should be taken. . Fig. 8. (a) Imagelub (1800 x 3200). Enhancement using our Multiplicative

(i) For images with important very dark and very brightaigorithm with: (b)he for (i,r) = (1,0.2); (¢) Amix by (28) for he as in
areas, function(27) should not work well. Then a good(b). (d) Enhancement by the variational method in [8].
option is to take a mixed target histogram

N 1 N (a) Original image (b) Alg. 5€) (c) Perceptual [8]
Amix = E(hf + hG) (28) .

where the parameterg, ) for he are selected following
the rules in (i). For example, see Figs. 8, 12 and 15.

B *‘ :
This remark is illustrated in Fig. 8. [ ﬂ

B. Enhancement Tests . w

We present some results from a large series of test image's9
W'th the goal to improve the visual quality. The enhance'qgt. of.h . Enhancement results: (b) Additive algorithm wit for ({,r) =
image should seematuraland an observer should not suspe .1,0.1), see (27); (c) Perceptual variational method [8] with Misbe’s
that it is a post-processing result. contrast function and default parameters (courtesy of ttkeoss of [8]).

We compare our Multiplicative algorithm 4x{ with the
Naik-Murthey algorithm 2 (NM) and the Additive algorithm
5 (+). The HS in these algorithms is done by Algorithm 1. Fig. 8 illustrates Remark 8. The imagkibin (a) is under-
The histogram of the original intensity image and the targekposed and its histogram does not obey Remark 8(i). The
histograms are depicted beneath the images. The perceniggelt in (b) is obtained with a Gaussian target histogfam
of pixels having a gamut problem in Alg. 4§, Alg. 5 (+) for parameters following (i). In (c) we use a mixed target
and Alg. 2 (NM) is contained in Table I. Further we provideistogramhm; as proposed in (28). This image better shows
comparison results with the ambience of the club. The perceptual method [8] in (d)

« the fast implementation of ACE by [14] available onlinggives a colder color palette.

athttp://deno.ipol.imdeno/g_ace/, and Two tests with the imageslandaare shown in Fig. 9. The

» the perceptual color enhancement through variationgliginal in (a) is a rather light image. The Multiplicative,

methods in [7] and [8]. the Additive and the NM algorithms with Gaussian target
ACE has one main parameter, the enhancement stremgtthistograms produce quite similar results, which confirms ou
whose default valuer = 0.5 is often a good choice. For thediscussion in Subsection IV-B. Only the issue of our Additiv
two perceptual enhancement methods [7] and [8], the authatgorithm is shown in (b). The perceptual method [8] and the
gave us their codes and helped us to tune the parameters ACE perform similarly and give a nice, different color comite

We present the results for images with different defects. Tlof the image. We depict the result by [8] in (c).
parameter values for all methods are given in the captians, a The photoboy-on-stoneé Fig. 10(a) was taken in a very
well as the image credits. The original images in Figs. 6, gunny day. Due to camera corrections, the picture appears
8, 10, 11, 13, 12 and 16 are photos taken by the authors wintderexposed. Our Multiplicative algorithm gives a redalis
wanted to improve them. For all these images, we do not hawesult shown in (b). In particular, observe the reflectante o
“ground truth”. For Fig. 17 we shot an underexposed andthe sunlight on the stones. The NM algorithm yields a grayish
better “example” image which enabled us to compare with tlesult (c). The Additive algorithm (not shown) gives a stigh
perceptual histogram-based method in [10]. better enhancement than the NM algorithm which confirms

(a) Imageslanda (courtesy of P. Greenspun) of si284 x 293, and
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(a) Original image (b) Alg.4 (x) (@) Oriial image (b) Alg.4¢), he

LTSRS

(c) Alg.4(x), hmix

(f) Alg.2 (NM)

(d) Perceptual [7] (e) Perceptual [8]

[

Fig. 11. (a) Imageathedral(768x1024) and plot ofh;. Enhancement results:
(b) Multiplicative algorithm with g for (I,7) = (1, 10~%); (c) The same
algorithm for Ay in Remark 8(ii) withhg in (b); (d) Perceptual variational
method [7], default parameters; (e) Perceptual variationethod [8] with
Michelson’s contrast function; (f) NM algorithm withg in (b).

o

: : a) Original image b) Alg. 5 ./ﬁmix
2 Vi (@) »|| | g . (b) 9 ).
H ACE”[14]

>

(c) Histograms

hy

Fig. 10. (a) Imagéoy-on-stoneg800 x 800) and plot ofhf. Enhancement * "
results: (b) Multiplicative algorithm witfg for (I,r) = (0.8,0.2); (c) Naik- | -

Murthy algorithm with the samé; (d) Perceptual variational method [7] Rmix
with data-fitting parametety = 0.2; (e) Perceptual variational method [8]

with a symmetric contrast function and slope parameter(f) ACE, o = 5. ‘

Fig. 12. (a) Imagelericoacoara(886 x 1181). Enhancement results: (b)
Additive algorithm with mixed target histograryx for ({,r) = (1,0.1);
(c) Histograms of the input and the target intensities; (@EAfor o = 3.

our findings in Subsection IV-B. The perceptional variatibn
algorithms [7] in (d) and [8] in (e), as well as the ACE in (f),
shift the colors towards blue; observe the stones.

The cathedralphoto in Fig. 11(a) is much too dark. They realistic colorful result, see (b). As in Fig. 6, our Additi
result of our Multiplicative algorithm in (b) is quite colied.  aigorithm produces a rather pale image (c) while the issue of
The same algorithm for the mixed target histogram (28) givgise NM algorithm in (d) is too gray. The images obtained by
in (c) a darker and still colorful image. The results of [7Xd) [7] in (e) and by the ACE in (f) exhibit color shifts (see the
and [8] in (c) have a darker color palette. The NM algorithrjreen leaves on the right and the grass on the bottom left).
produces a nearly gray value image shown in (f). All results The frog image in Fig. 14(a) has an intensity histogram
give a different atmosphere. between (i) and (i) in Remark 8. Indeed, both recipes gave

The photo taken iddericoacoara Fig. 12(a), has very dark similarly good results. The result with, is shown in (b). For
and also some quite clear areas; beén (c). By Remark 8(ii), the ACE in (c) we select a small = 3 limit the color shift.
we use a mixed target histograim,x. The original has lots  Theferrari image in Fig. 15(a) has very dark and very bright
of JPEG artifacts so we prefer our Additive algorithm (segreas. Using Remark 8 (ii), we take a mixed target histogram.
Remark 6). The result in (b) is convincing and the details i@ur Multiplicative algorithm gives a realistic image shown
the dark are clarified. For the ACE in (d) we use a smalb) with vivid colors that fit the typical red of the brand. The
enhancementy = 3, in order to limit the false color shift.  variational methods [7] in (c) and [8] in (d) outperform the

The orchid image in Fig. 13(a) has a bad flashlight effectACE (result not shown).

This artifact is removed by all tested methods and the back-The imagefieldsin Fig. 16(a) was taken trough an aircraft
ground of the scene is clear. Our Multiplicative algorithives porthole. It has no pixels with values i, 109]. By Remark
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(a) Original image

(a) Original image (b) Alg. 4%), Fumix
[ e

(c) Perceptual [7] (d) Perceptual [8]
o =y e h

"

Fig. 15. (a) Imagderrari (courtesy of P. Greenspun) of si285 x 240 and
histogram of its intensity channel.. Enhancement resgits:Multiplicative
algorithm with mixed target histogram fqi,) = (1,0.1); (c) Perceptual
variational method [7] with default parameters (courte$yhe authors); (d)
Perceptual variational method [8] with Michelson’s costrdunction and
default parameters (courtesy of the authors).

Fig. 13. (a) Imagerchid (768 x 1024) with a bad flashlight effect. Enhance-
ment results: (b) Multiplicative algorithm withg for (I,r) = (1,0.1); (c)
Additive algorithm for the same target histogram; (d) NMalthm [18] for
the same target histogram; (e) Perceptual variational edefff] for v = 0.2;

(f) ACE [14], default parameter. (a) Original image (b) Stretch
o e

(a) Original image (b) Alg. 4%)

Fig. 14. (a) Imagefrog, 332 x 300 (credits: John D. Willson, USGS
Amphibian Research and Monitoring Initiative). Enhancemeesults: (b)
Multiplicative algorithm withhg for (I,7) = (0.4,0.1); (c) ACE for oo = 3.

3, we use in (b) the global hue-preserving stretching. It
further enhancements using our Multiplicative and Additiv
algorithms give visually the same results, so only the firg o
is shown in (c). For the ACE in (d) we take= 8 in order to

obtain an enhancement strength similar to (c). The JPEG blu «

artifacts are stronger in (d) compared to (c). . _ ,

Fig. 17 (a) and (b) show an underexposed and a better ﬁ
eXposed example Image_ of the same SCGB'Q' In [10] the Fig. 16. (a) Imagefields (512 x 512) and histogram of its intensity.
authors propose an algorithm for the color transfer betweghhancement results: (b) Global affine stretching (Remarkr@ intensity
images (usually of different scenes). Using this algoritlven histogram; (c) Multiplicative algorithm applied to (b) WitGaussian target

transferred the colors from the example image (b) to tfEtogram for(l,r) = (0.1,0.1); (d) ACE for a = § applied to ().
underexposed one (a). The result in (c) is close to the exampl
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Image fu() | £U(0) | ££(0) | £V information into our framework. Moreover, we want to take
bungalowhg 1.90 0.94 0 98.15 . . . .
islandaic 0.89 0.85 0.94 203 into account other important properties of the human visual
club Ag 098 | 023 |067 | 9461 system.

club mix 0.33 0.15 1.39 92.61

boy-on-stonesis) | 4.76 2.40 0.54 94.15 VIl. APPENDIX

cathedral k) 104 1000 | 138 | 9571 Proof of Propositionl: A pixel i € I, in (15) has an upper
Jericoacoaral{yix) | 5.98 5.71 0.40 68.26 gamut problem if

orchid (ac) 0.21 0.10 1.85 87.93 N

frog (he) 0.09 0.08 6.79 80.04 Al + (1= X) f[4] . Y B

ferrari (miy) 440 | 422 | 030 | 607 7Tl M)+ (=N = fil) > L =1 (29)
fields (hc) 4.61 2.99 2.06 89.16

The upper bound follows from the choice ai.[i], ¢ €
TABLE | {r, g, b} in (12). We focus the lower bound. First we see

Percentage of pixels requiring an upper or lower gamut ctoe For our  that (29) lmp“eSf[ ] >,\ f[ ], since in Casef[ ] < f[ ]

Algorithms 4 (<) and 5 ) the numbers; (1), resp., 12(0), 1£(0) are  would get by replacingf[i] by f[i] in the denominator of the

very small in all tests; this is not the case fpi’ in the NM algorithm. quotient and the second summand in (29) the contradiction

MT[i] > L — 1. SinceM[i] — f[i] > 0 the lower bound holds
true if and only if

A e mopeely W SO (L1 Fl)(weli] — £ + Fll(ME - ) >0,
(L= 1= flil)weli] = (L= V) fl] + FalME] > 0
which is clearly fulfilled if
FMIi] — (L= 1) f[i] = 0. (30)
By (29) we have
f[Z]M[Z] —( - )f[i]
il | i1 = (Al + (1 = X £12)) (M) = £12)) — Flal 1)
zoom of (a) zoom of (b) zoom of (c) zoom of (d) N
(fm — (Ml + (1 - )f[z])) (M[i] = £[i))-

By f[z‘] > f[é] the first factor on the right-hand side s 0
the second one is 0. Thus, (30) is satisfied. O

Proof of Proposition2: A pixel i € I, in (15) has a lower
gamut problem if

Fig. 17. (&) Input underexposed imafieg (1500 x 1125) and (b) example -~ .

better-exposedlag together with the histograms of their intensities. Enhance AL+ (1 = M) £ mli] + (1 — )\)(f[z] — fli) <0 (31)
ment results: (c) the color transfer method [10] and (d) ouwrltidlicative fli] ’
algorithm with the example target intensity histogram ih (b

The lower bound is clear from the construction«of[i] in
(14). We show the upper bound. Developing (14) yields

image.. We haye applied.our Multiplicative algorithm to imag. ol = Flilweld] — Fli) £1i) + Fli] f1i] — Fli] mli]

(a) using the intensity histogram of (b). The result, shown i T fli] — m[i]

(d), is less dull than the example (b). The third row in Fig. 17 7li]

depicts a zoom into the area with the raven (right middlele On = FA—mi (weli] = mli]), ce€{r,g,b}. (32)

observes that the bird is fused with part of the background in h
(c), whereas it is distinguishable in (b) and (d). Using (31), one has
71 Amfi] + (1 = ) f[d]
i1
VI. CONCLUSIONS AND FUTURE WORK

This work provides the first comprehensive and rlgorougmd hence

presentation of the wide family of histogram specification  f[i] < (L= NF6 (f[i] = m[i]) < f[i] — mli].
based affine color assignment models. We have proposed a Amfi] + (1 = A)£1i]
fast hue and range preserving algorithm. We analyzed tHEhus, since) < w.[i] — m[i] < L — 1, we obtain finally
performances of this algorithm and two of its important ny
instances as well as the gamut preserving method in [18]. ﬁ(wc[ﬂ —mli]) < L—1. [

Many open questions have been raised that we want to
answer in our future research. Since our algorithms are fadtroof of Proposition3: Let0 < A; < A; < 1. In the upper
extensions to video should be envisaged. We are awaregémut case we always hayi] > f[i]. Then, f[i] + (1 —
the broad literature on color enhancement taking both globa)f[i] < Ao f[i] + (1 — Aa) f[i], henceG?;[] G3li) and
and local neighborhood of pixels into account see, e.g,, [6](\1) C U(\2). Similarly, smcef[] < fli] in the lower
[71, [8], [13], [36]. It will be interesting to incorporateush gamut case); f[i] + (1 — A1) f[i] > )\gf[] (I—=X2)f[i] so

+ (=X (m[i] - fli]) <0




O

U L£(0)}. Then
U(1), the value

El

that G:[i] > G72[i] and henceC(\) D L(\s).
ul [10]

Proof of Proposition4: Leti € I, \ {t(1)

w2 [4] is given by (20)(i) and smce{( ) C
i) is given by (21)(i). Consequently,
[11]
@ieli] = Af“ (welil = J18) + (1 = X (welil = £1) + Jlil = Belil, 1z

1]

where the last equality follows by/(\) C #(1) and
Algorithm 3(i).
Let i € U(0). Thenw[i] is given by (21)(ii) and since

[13]

U) C U(1), wX[:] is given by (20)(ii). We havep[i] = [14]
w.[7] which shows by/(0) C U(N) thatw.[i] = wli]. O
Proof of Propositiorb: By (22) we haveS (w[i]) = 1—%?, or [19]

equivalently,f[i] —m[i] = f[i] S(w[¢]). Algorithm 3 computes
N 16
@i = dlil(weli] - £11) + Fli, @3
for [17]
pyich +(1=2) ifi € L\ UK UL},
dli] = fv;[ijﬂg if i € UN), [18]
T ifi € L(N). -
Sinced[i] > 0 in all cases, we have
S@hl) = 1- f?] (1] mim o i i, s ) — f03) + i) 20
_ Sl g min{wr[d], w 1], wb[l]} T g
- 11 PR e
NG
= S(wli])==d]i] . 34
( H)f[i] (1] (34)

Inserting the above valuehi| into (34) finishes the proof] [22]

Proof of Proposition6: The case% < 1 follows just as a

special case of Proposition 5(i) for = 1. Let f[z’] > fli].
Then case (i) in Algorithm 2 can be rewritten as (33) fopy

di] := iiij;m Combining this with (34) we are doneJ

[23]

[25]
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