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Abstract

Hybrid wavelet – large margin classifiers have recently proven to solve difficult

signal classification problems in cases where solely using a large margin classifier

like, e.g., the Support Vector Machine may fail. In this paper, we evaluate several

criteria rating feature sets obtained from various orthogonal filter banks for the

classification by a Support Vector Machine. Appropriate criteria may then be

used for adapting the wavelet filter with respect to the subsequent support vector

classification. Our results show that criteria which are computationally more effi-

cient than the radius – margin Support Vector Machine error bound are sufficient

for our filter adaptation and, hence, feature selection. Further, we propose an

adaptive search algorithm that, once the criterion is fixed, efficiently finds the op-

timal wavelet filter. As an interesting byproduct we prove a theorem which allows

the computation of the radius of a set of vectors by a standard Support Vector

Machine.

Keywords. filter design, feature selection, signal and image classification, Support

Vector Machine, wavelets
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1 Introduction

A persistent problem in signal and image classification concerns filter design for feature

extraction and selection [1, 2, 3]. In most cases, this problem is addressed irrespective of

the subsequent classification stage which may result in an unacceptably large classifica-

tion error. In contrast, we are interested in an approach which takes the target classifier

and the data into consideration for filter design and the selection of appropriate features.

In [4], a hybrid architecture was introduced consisting of a wavelet transform with an

energy map and a classifier applied to the resulting feature vectors. As target classifier

the Support Vector Machine (SVM) [5] was suggested which is highly flexible and be-

longs to the most competitive approaches. For various applications, it was shown that

the classification error depends on the filters used in the wavelet transform and that

jointly designing both the filter stage and the classifier may considerably outperform

standard approaches based on a separate design of both stages. In contrast to best basis

methods [6], the wavelet itself was adapted while the structure of the basis remained

fixed [7]. However, although there exist more sophisticated measures for estimating the

classification ability of training sets, only the simple class centre distance was used to

adapt the feature selection step, i.e., the wavelet filter, to the subsequent SVM classi-

fier. Moreover, the computation of the optimal filters was very expensive even with the

proposed genetic algorithm [7].

This motivates our investigation of suitable adaptation criteria and the design of

algorithms for their efficient optimisation which is addressed in the present paper. Ob-

viously, the most appropriate measures to evaluate the classification ability of a training

set are generalisation error bounds, the most common of which is the radius – margin

bound for SVMs [5]. The direct application of this criterion to feature selection has

been studied in [8], but since we take filter optimisation into account, we have to deal

with more complex objective functions here. Hence, we focus on reasonable adaptation

criteria that require less computational effort. In this paper, we evaluate five common

criteria. Having selected one of those criteria, we propose a robust grid search heuris-

tic for efficiently finding the global optimum over the resulting parameter space that

succeeds in solving our problems in acceptable time.

Our results are relevant for image-, and arbitrary dimensional signal classification

by utilising the standard tensor product design of wavelets.

This paper is organised as follows: first we introduce the hybrid wavelet – SVM archi-
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Figure 1: two–channel filter bank

tecture in Sec. 2. Next, in Sec. 3, we discuss a range of criteria that approximate the

generalisation error. Moreover, we provide a theorem which simplifies the computation

of the radius – margin error bound and which may also be interesting in other contexts.

Sec. 4 contains a thorough numerical evaluation of the proposed criteria. In Sec. 5,

we suggest an algorithm for effectively finding the optimal wavelet filters with respect

to an arbitrary fixed criterion. Finally, we conclude and indicate further work in Sec.

6. The appendix gives an interesting relation between single class SVMs and support

vector problems for novelty detection and clustering which also proves our theorem on

the radius computation.

2 Hybrid Wavelet – SVM Architecture

In this section we briefly introduce our hybrid architecture for feature extraction and

subsequent classification of the resulting feature vectors.

2.1 Feature Extraction

Our feature extraction relies on filtering by a two–channel filter bank as illustrated in

Fig. 1. Thereby, H0(z) :=
∑

k∈Z h0[k]z−k denotes the z–transform of the low–pass

analysis filter coefficients (h0[k])k∈Z and H1(z) :=
∑

k∈Z h1[k]z−k the z–transform of

the high–pass analysis filter coefficients (h1[k])k∈Z, analogously for the synthesis filters.

Moreover, 2 ↑ and 2 ↓ symbolise up– and downsampling by 2, respectively.

In this paper we are interested in orthogonal or paraunitary filter banks which can

be characterised by the property
(
H0(z) H0(−z)
H1(z) H1(−z)

)(
H0(z−1) H1(z−1)

H0(−z−1) H1(−z−1)

)
= 2I .

Then the synthesis filters are given by G0(z) = H0(z−1) , G1(z) = H1(z−1) and the

orthogonality property ensures that S(z) = S̃(z).
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Figure 2: octave–band filter bank

Fundamental for our application is another important property of orthogonal filter

banks, namely the so–called lattice factorisation of the corresponding polyphase matrix.

For details we refer to [9, Sec. 4.5]. Based on this factorisation every orthogonal filter

pair (H0, H1) of length 2L + 2 with at least one vanishing moment, i.e. H1(1) = 0, is,

up to filter translation and the sign of the high–pass filter, uniquely determined by a

vector θ = (θ0, . . . , θL−1) consisting of L angles θl ∈ [0, π). In other words, there exists

a one–to–one correspondence between the π–periodic parameter space

PL := {θ = (θ0, . . . , θL−1) : θl ∈ [0, π) , l = 0, . . . , L− 1}

and the set of all orthogonal filters of length 2L + 2 which is given in a constructive

way by the lattice factorisation of the polyphase matrix of the filter bank. There exist

alternative factorisations of orthogonal filter banks’ polyphase matrices, see, e.g., [10].

In the following, we are interested in input signals s ∈ Rl of length l = k · 2d (2 - k)

which are normalised with respect to the Euclidean norm, i.e. ‖s‖2 = constant. In our

application we only need the successively applied analysis filter bank. For the filtering

by the d–level octave–band filter bank generated by θ, we define the filter operator

Fθ : Rl → Rl , s 7→ (cd,dd, . . . ,d1) ,

where cd and dj = (dj1, . . . , d
j
l/2j

) (j = 1, . . . , d) are the subband coefficients as illustrated

in Fig. 2. By [11, Sec. 3.3] there is a close relation between paraunitary filter banks and

orthogonal wavelets and we refer to the filter operator Fθ also as orthogonal wavelet

transform which produces the wavelet coefficients dj. By the orthogonality of our filter

bank, the mapping Fθ is norm preserving with respect to the Euclidean norm , i.e.,

‖Fθs‖2 = ‖s‖2.

To generate a handy number of features that still makes the signals well distinguish-

able, we introduce the energy operator

E‖ ‖ : Rl → Rd , (cd,dd, . . . ,d1) 7→ (‖dd‖, . . . , ‖d1‖) . (1)
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Filtering Fθ

(nonlinear)

x := E‖ ‖Fθs

Energy computation E‖ ‖

Filter hθ

Filter angles θ

Coefficients c = Fθs

Feature vector x = E‖ ‖c

Figure 3: feature extraction process

Note that in our experiments we always deal with input signals s having average value

zero so that eTcd = 0. As possible norms for E‖ ‖ we consider besides the Euclidean

norm the weighted Euclidean norm
√

1
n

∑n
i=1 c

2
i which was proposed by Unser [3] to

represent the channel variance. Other Hölder norms may be used as well.

In summary the feature extraction process produces the feature vectors x := E‖ ‖Fθs

which depend on θ and the chosen norm in E‖ ‖ as illustrated in Fig. 3.

For later considerations it is important that by the norm preserving property of the

orthogonal wavelet transform

‖x‖2 ≤ ‖s‖2 , (2)

where we have equality if we use the Euclidean norm in E‖ ‖ and l = 2d. This implies

that the feature vectors x lie within or on a sphere in Rd centred at the origin.

2.2 SVM Classification

To rate a set of feature vectors according to their classification ability, it is essential to

take into account the classifier in use. We intend to apply an SVM as classifier. For a

detailed introduction to SVMs see [12].

Let X be a compact subset of Rd containing the feature vectors. We introduce a

so–called kernel function K : X × X → R which is square integrable, positive definite

and symmetric. The kernel function K induces a reproducing kernel Hilbert space
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HK := span {K(x, ·) : x ∈ X} of real valued functions on X with inner product satisfy-

ing

〈f(·), K(x, ·)〉HK = f(x) ∀ f ∈ HK .

Then, for f =
∑N

j=1 cjK(xj, ·) ∈ HK , the norm ‖f‖HK is given by

‖f‖2
HK =

N∑

j,k=1

cjckK(xj,xk) = cTKc

where c := (c1, . . . , cN)T and K := (K(xj,xk))
N
j,k=1 is symmetric positive definite.

For a known training set

Z := {(xi, yi) ∈ X × {−1, 1} : i = 1, . . . , n} (3)

of n associations, we are interested in the construction of a function f ∈ HK such that

sgn(f) well predicts the class labels y. More precisely, the SVM intends to find f ∈ HK

as the solution of

min
f∈HK ,ξ∈Rn

C

(
n∑

i=1

ξi

)
+

1

2
||f ||2HK

subject to yif(xi) ≥ 1− ξi , i = 1, . . . , n ,

ξi ≥ 0 , i = 1, . . . , n

(4)

for some constant C ∈ R+ controlling the trade–off between the approximation error

and the regularisation term. For the choice C =∞, the resulting classifier is called hard

margin classifier, otherwise soft margin classifier. By the Representer Theorem [13, 14],

the minimiser of (4) has the form

f(x) =
n∑

j=1

cjK(x,xj) . (5)

In particular, the sum incorporates only our training vectors xj. Using this representa-

tion we set up the dual problem and obtain that f can be found by solving the following

quadratic problem (QP) and setting c := Yα:

max
α∈Rn

− 1

2
αTYKYα+ eTα

subject to 0 ≤ α ≤ Ce

(6)

where Y := diag(y1, . . . , yn) and K := (K(xi,xj))
n
i,j=1.
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The support vectors (SVs) are those training patterns xi for which the coefficients

αi in the solution of (6) do not vanish. Then the function f in (5) has a representation

which only depends on the SVs. The so–called margin ρ is defined by

ρ := ‖f‖−1
HK = (αTYKYα)−

1
2 . (7)

Often it is more intuitive to work instead on X on a subspace of the Hilbert space `2

of square summable real valued sequences with inner product 〈a,b〉2 =
∑∞

j=1 ajbj and

norm ‖a‖2
2 =

∑∞
j=1 a

2
j . By the properties of our kernel K there exists a unique function,

the so–called feature map φ : X → `2, which is related to K by the property

K(x1,x2) = 〈φ(x1),φ(x2)〉2 ∀x1,x2 ∈ X . (8)

Then our classifier f from (5) can be rewritten as f(x) = 〈f ,φ(x)〉2 with f =
∑n

j=1 cjφ(xj).

In other words, f becomes a linear function in the feature space φ(X ).

3 Criteria for Feature Adaptation

To steer our feature extraction process via the parameters θ such that the subsequent

SVM performance becomes optimal we need a criterion that

• measures the generalisation error of the SVM, i.e., the probability that sgn(f(x)) 6=
y for a randomly chosen example (x, y) ∈ X × {−1, 1}, and

• can be efficiently evaluated for different sets of θ–dependent feature vectors.

Although there exist many proven bounds for the error risk or its expectation in the

literature (see, for example, [15, 16]), in essence, most of them rely either on the number

of SVs (cf. [17, Theorem 5.2], [18] and [16, Sec. 5.2.1]) or on the size of the margin ρ

separating the classes normalised by a measure of the feature vector variation such as

their radius (cf. [17, Theorem 5.2], [19]). In the following we start with this group of

criteria. However, although they match the first criteria requirement they do not fulfil

the second one. This motivates us to propose also simplified criteria and to compare

their performance.

In our experiments we investigate five criteria: the radius–margin bound, the margin,

the alignment, the class centre distance and the generalised Fisher criterion:

7



Radius – Margin Let the margin ρ be given by (7). Further let R be the radius of

the smallest sphere in `2 enclosing all φ(xj), i.e., the solution of

min
a∈`2,R∈R

R2

subject to ‖φ(xj)− a‖2
2 ≤ R2 , j = 1, . . . , n .

(9)

Then the expectation of the quotient

C1(θ) :=
1

n

R2

ρ2
(10)

forms an upper bound on hard margin SVMs’ generalisation error [5, Theorem

10.6]. Therefore we consider a minimal value C1 as the ultimate criterion for a

hard margin SVM classifier. At first glance the computation of ρ and R in C1

requires the solution of two structurally different optimisation problems (4) and

(9). Fortunately, by the following theorem both ρ and R can be obtained by the

same kind of QP (6). This is indeed very profitable since for standard SVMs (6),

sophisticated algorithms are available in many implementations as, e.g., SVMlight

[20].

Theorem 1. Let K be a kernel with K(x,x) = κ for all x ∈ X . Then the optimal

radius R in (9) can be obtained by solving (6) with Y = I. If α is the solution of

(6) and j an index of a SV, then R2 = κ+ βTKβ − 2(Kβ)j, where β := α
eTα

.

The proof of the theorem which also reveals an interesting relation to the SV

problems used for clustering and novelty detection is given in the appendix.

Note that in the soft margin case, there also exists a radius margin bound. Ac-

cording to [21], the expectation of the generalisation error of the SVM is bounded

from above by the expectation of the term

1

n

(
4R2

n∑

i=1

αi +
n∑

i=1

ξi

)

where α is the solution of (6) and ξ is defined by the primal problem (4).

Anyway, the computation of the bound still requires the solution of two QPs of

the form (6) for each considered parameter vector θ so that we look for simpler

criteria.

8



Margin Due to (2), the radius R is bounded. This motivates to consider only the

denominator of (10), i.e., to use a maximal

C2(θ) := ρ

as an objective criterion. Indeed, our experiments indicate that if training and

test data have the same underlying distribution, the margin behaves much like the

classification error.

Note that in the soft margin case, one can analogously use the SVM’s optimisation

criterion C
∑n

i=1 ξi + 1
2
||f ||2HK as an adaptation criterion.

However, the computation of ρ still requires the solution of one QP for each θ.

Alignment In [22, 23] the sample alignment

Â(K1,K2) :=
〈K1,K2〉F
‖K1‖F‖K2‖F

with Frobenius inner product 〈·, ·〉F and corresponding norm ‖ · ‖F was proposed

as a measure of conformance between kernels. Especially, the kernel matrix yyT ,

where y denotes the vector of class labels, is viewed as the optimal kernel matrix

for two-class classification. This leads to maximising the criterion

C3(θ) :=
〈K,yyT 〉F
‖K‖F‖yyT‖F

=
yTKy

n‖K‖F
(11)

which, by the inequality of Cauchy–Schwarz, only takes values in [0, 1]. A border

case of an SVM is the Parzen window estimator. Note that by [22, Theorem 4], the

generalisation accuracy of this classifier is bounded by a function of the alignment.

Class Centre Distance In all our experiments, the denominator in (11) doesn’t in-

fluence the alignment much. Furthermore, supposing normed training vectors

‖xi‖2 = c (as guaranteed by (2) when using the Euclidean norm for energy com-

putation) and a Gaussian kernel

K(x,y) := e−
||x−y||22

2σ2 (12)

with large deviation σ > 0, the numerator in (11) is approximately proportional

to yT (〈xi,xj〉)ni,j=1 y. Introducing the class means µi := 1
ni

∑
yj=i

xj with class

cardinalities ni (i = ±1), this can be rewritten for n1 = n−1 as ‖µ1 − µ−1‖2
2.

Therefore we propose the criterion

C4(θ) := ‖µ1 − µ−1‖2
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which can be simply evaluated and is also easily differentiable. It was successfully

applied in [4]. While C4 only takes into account the mean values of the classes we

are next looking for classes that are distant from each other and at the same time

concentrated around their means.

Generalised Fisher Criterion A generalisation of C4 are measures using scatter ma-

trices. Let

Sw :=
1

n

∑

i∈{−1,1}

∑

yj=i

(xj − µi)(xj − µi)T ,

Sb :=
∑

i∈{−1,1}

ni
n

(µi − µ)(µi − µ)T

where µ :=
∑

i∈{−1,1}
ni
n
µi denote the within–class scatter matrix and the between–

class scatter matrix, respectively. We consider the generalised Fisher criterion

C5(θ) :=
tr(Sb)

tr(Sw)
=

n1

n
‖µ1 − µ‖2

2 + n−1

n
‖µ−1 − µ‖2

2

n1

n

∑d
k=1 σ

2
1k + n−1

n

∑d
k=1 σ

2
−1k

where σ2
ik is the marginal variance of class i along dimension k. For equiprobable

classes, the criterion simplifies to

C5(θ) ∝ C2
4(θ)∑d

k=1(σ2
1k + σ2

−1k)
.

4 Numerical Criteria Evaluation

Now we want to see how the proposed criteria and their theoretical relations behave

when analysing real data.

We use three structurally different real data bases: The first are electro–physiological

data sets aiming at the detection of ventricular tachycardia as in [4]. For each patient

and class, eight heartbeats of length l = 512 from a single episode are used for classifier

training. Some exemplary beats for a sample patient are shown in Fig. 4. The second

data base contains children’s stride time records for the examination of gait maturation

as in [24]. The task is to analyse whether the dynamics of walking still change for

healthy children between the ages 3–4 (young, n1 = 11) and 6–7 (middle, n−1 = 20).

From the data available by [25], we use the first l = 384 strides. Sample time series

are depicted in Fig. 5. The third group of data are texture images from the MeasTex

collection [26]. We use single rows of length l = 512 of the corrugated iron images
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Figure 5: sample stride time records

’Misc.0002’ and ’Misc.0003’ to have two classes of one–dimensional data. Both images

with normalised contrast as well as two exemplary rows are shown in Fig. 6. Here, the

first 32 rows of each texture are used for classifier training, i.e., n1 = n−1 = 32. We

normalised all samples by ‖si‖2 = 1000 and set their average value to zero. For the

gait maturation data base, it is also possible to classify without prior normalisation as

the overall variability may be a useful feature here. In this case, for the appropriate

parameter value σ = 1, the criteria evaluations also yield qualitatively similar results.

For the feature extraction, we apply orthogonal filter banks with filters of length ≤ 6

which can be parameterised by the two–dimensional space

P2 = {θ = (θ0, θ1) : θl ∈ [0, π) , l = 0, 1} .

For the classification, a hard margin SVM, i.e. C = ∞ in (6) with Gaussian kernel of

width σ = 100 is used. Note that, for the heartbeat problem illustrated in Fig. 4, e.g.,

the highest alignment C3 for the optimally aligned wavelet (see Fig. 8 (c)) is achieved
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class 1

class -1

Figure 6: texture sample: linearly rescaled images and exemplary rows

for a kernel width of about σ = 80 for the weighted Euclidean norm and σ = 200 for

the Euclidean norm.

We start by an example that confirms the tests in [4] and shows that the wavelet

choice may heavily influence the classification performance. For this, we visualise the

training data xi ∈ R9 of the sample heart patient from Fig. 4 by extracting its principal

two components. The Principal Components Analysis (PCA) projects the data from

R9 to R2 so that most of the total variance of the data is retained. The results for the

Haar wavelet (θ = (0, 0)), the Daubechies wavelet with three vanishing moments ([27],

(θ ≈ (1.47, 0.50)) and the optimal wavelet with respect to C3 (θ ≈ (2.04, 0.56)) for the

Euclidean norm in E‖ ‖ are shown in Fig. 7. The variance still contained in the plots is

approximately 90%, 75% and 92% of the total variance, respectively.

Neither the Haar wavelet, nor the Daubechies wavelet appear to make the training

data linearly separable. Our optimal wavelet, on the other hand, well separates the data.

Moreover, the classes are nicely clustered now. Indeed, for example for this patient with

two further test episodes, the classification error for the weighted norm varies from 0 to

56% for different wavelets. Also, the optimal θ does not always lie in the same region

for different patients.

Next we evaluate and compare the criteria discussed in Sec. 3. In Figures 8 to 11 the

criteria values, ordered from the computationally most efficient to the most expensive

one, are plotted using a linear grey scale except for the radius – margin bound C1 which

is plotted on a logarithmic scale due to its large variation. Additionally, its larger values

are clipped to the trivial error bound 1 (except for the gait problem in Fig. 9 (e))
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Figure 7: Principal components of training vectors for heartbeat classification with

Euclidean norm in E‖ ‖: (a) for the Haar wavelet, (b) for the Daubechies wavelet with

three vanishing moments, (c) for the optimally aligned wavelet (C3)

to enhance the contrast. To assess the effect of the clipping, the distribution of the

logarithm of the bound is indicated by a histogram. Light spots represent favourable

criterion values and, hence, beneficial filter operators Fθ.

For all four problems, the overall impression is that all shown criteria are alike.

Moreover, all criteria show a detailed π–periodic structure for the parameter space. This

indicates that effectively finding the optimal wavelet according to the chosen criterion

is not easy even for the simple criteria. We will address this problem in Sec. 5.

The class centre distance C4 and particularly the alignment C3 resemble the margin

C2. That is, the wavelets that generate a high class centre distance or alignment also

guarantee a large margin. Although the scatter criterion C5 also takes into account the

variances, it doesn’t seem to be superior to the simplest criterion C4.

The radius – margin bound C1 covers a large range of values. Apart from the different

distribution of the values, it rates the features mostly like the margin. Moreover, the

range of values of the radius – margin bound from 10 resp. 3% to over 100% again

indicates the significance of the wavelet choice.

Finally, for specific signals there may be an important difference between using the

Euclidean norm and its weighted version as exhibited by Figures 10 and 11.

Classification experiments. To demonstrate the impact of wavelet adaptation on

classification, we compare adapted wavelets to both the Haar and Daubechies wavelet

with three vanishing moments ’D3’. In addition to the results for the SVM listed in
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(a) C4 (b) C5 (c) C3

(d) C2 (e) − log2(1 + C1) (f) histogram of (e)

Figure 8: Criteria values for heartbeat classification with weighted Euclidean norm in

E‖ ‖; light spots represent favourable criterion values
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Figure 9: Criteria values for gait dynamics classification with Euclidean norm in E‖ ‖;

light spots represent favourable criterion values
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(a) C4 (b) C5 (c) C3

(d) C2 (e) − log2(1 + C1) (f) histogram of (e)

Figure 10: Criteria values for texture row classification with weighted Euclidean norm

in E‖ ‖; light spots represent favourable criterion values

(a) C4 (b) C5 (c) C3

(d) C2 (e) − log2(1 + C1) (f) histogram of (e)

Figure 11: Criteria values for texture row classification with Euclidean norm in E‖ ‖;

light spots represent favourable criterion values
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Support Vector Machine

data set energy Haar D3 C4 C5 C3 C2 C1

heart weighted Euclidean 19 9 6 16 16 16 16

texture weighted Euclidean 8 4 0 2 1 0 0

texture Euclidean 1 2 0 0 0 0 0

Table 1: Classification error [%] for the Support Vector Machine; different wavelets

(Haar, D3) and adaptation criteria {Ci}

Gaussian Bayes Classifier

data set energy Haar D3 C4 C5 C3 C2 C1

heart weighted Euclidean 19 28 25 25 13 9 16

texture weighted Euclidean 3 3 0 1 0 0 0

texture Euclidean 3 3 0 0 0 0 0

Table 2: Classification error [%] for the Gaussian Bayes Classifier; different wavelets

(Haar, D3) and adaptation criteria {Ci}

Table 1, we include in Table 2 also results for the Gaussian Bayes classifier with piecewise

quadratic decision boundary (see, e.g., [28]).

These results show that wavelet adaptation may significantly improve classification

performance. We note that the results for the heart data should be taken with care, due

to the small sample size. Sixteen additional heartbeats were available as test data for

each class, yet 480 for the texture data. Surprisingly, the Gaussian Bayes classifier shows

comparable performance, at least for the texture data. Moreover, wavelet adaptation

proves to be favourable here as well.

For further experimental results, we refer to [4].

5 An Adaptive Grid Search Algorithm

After selecting an appropriate criterion f ∈ {C1, . . . , C5} for the wavelet adaptation, we

still have to search in the parameter space PL for the angle vector θ optimising this

criterion. Note that our parameter space is π–periodic, but many local optima exist

as illustrated in Fig. 12. In this paper we restrict our numerical experiments to the

maximisation of the simplest criterion, the class centre distance f = C4 and to the

parameter space P2. Of course our method will work for the other criteria and higher
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Figure 12: objective criterion for wavelet adaptation: example from Fig. 8 (a)
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Figure 13: (a) segment Ij,k of a coarse grid, (b) refined segment

dimensional parameter spaces as well. In [29] we have considered various constrained and

unconstrained optimisation strategies to find θ, e.g. Sequential Quadratic Programming,

a simplex search method and a restricted step Newton method (for an overview see, e.g.,

[30]). We developed the following adaptive grid search algorithm which appears to be

the most efficient method:

We start with an equispaced coarse grid

G0 :=

{
θj,k :=

(
πj

N
,
πk

N

)
: j, k = 0, . . . , N − 1

}
.

On G0 we compute the function values fj,k := f(θj,k) and fmax := max
j,k

fj,k. Now we

consider the neighbourhood Ij,k of the points θ2j+1,2k+1 as depicted in Fig. 13 (a).

The bilinear interpolation polynomial on Ij,k at the even indexed points

(θ2j,2k, f2j,2k), (θ2j,2k+2, f2j,2k+2), (θ2j+2,2k, f2j+2,2k), (θ2j+2,2k+2, f2j+2,2k+2)
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is given by

f̂(θ2j,2k + 2h · (x, y)) = f2j,2k + (f2j+2,2k − f2j,2k) x+ (f2j,2k+2 − f2j,2k) y

+(f2j,2k − f2j+2,2k − f2j,2k+2 + f2j+2,2k+2) x y (0 ≤ x, y ≤ 1)

where h := θ2j+1,·−θ2j,· is the grid width. Then f̂ is a continuous function on the whole

parameter space. If f is a concave function on Ij,k, then it is easy to check for θ ∈ Ij,k
that

f(θ) ≥ f̂(θ)

so that f − f̂ may be considered as measure for the concavity of our function. As local

concavity is a necessary condition for a local maximum of a twice differentiable function

we use the following refinement strategy: If

f(θ)− f̂(θ)

fmax − f(θ)
> tolF (13)

for at least one θ ∈ {θ2j,2k+1, θ2j+1,2k, θ2j+1,2k+1, θ2j+1,2k+2, θ2j+2,2k+1} then we further

refine the segment Ij,k as shown in Fig. 13 (b), otherwise we leave the segment as it is.

The quotient (13) balances the improvement towards the bilinear interpolation with the

rating compared with the optimum. We apply our refinement strategy to all segments of

G0 and end up with a new adaptively refined grid G1. Then we apply the procedure again

on the refined grid G1 and so on until the finest segments have grid width h ≤ tolX.

Note that function evaluations are only necessary on the new grid points.

In the beginning of the algorithm’s runtime, heavily concave sections with arbitrary

function values will satisfy condition (13), in the end only concave sections which at the

same time have high function values, i.e. possible maxima, will be refined.

In summary, we propose the following algorithm:
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Algorithm 5.1: GridSearch(f, tolF, tolX,N)

local grid, index, indexnew

calculate f on
{

0, π
N
..., π − π

N

}2

grid← π
N

index←
{

0, ..., N
2
− 1
}2

while (index 6= ∅) ∧ (grid > tolX)

do





indexnew ← ∅
for each (i, j) ∈ index

do





if improvement towards bilinear interpolation of f on intermediate

grid points in ([2i, 2i+ 2]× [2j, 2j + 2]) ∗ grid
/(current maximum − function value) > tolF

then

{
refine f on ([2i, 2i+ 2]× [2j, 2j + 2]) ∗ grid
indexnew ← indexnew ∪ {2i, 2i+ 1} × {2j, 2j + 1}

grid← grid/2

index← indexnew

In our numerical examples we consider again heartbeats (’heart1’ and ’heart2’: SR

versus VT), i.e. signals of length 512 of a form as depicted in Fig. 4, as well as texture

samples (’m2m3’ from Fig. 6 and ’a0m0’ as images ’Asphalt.0000’ and ’Misc.0000’ from

[26] again). We have chosen the weighted Euclidean norm for E‖ ‖. For the parameters

of Algorithm 5.1, we have used the values tolF = 4, tolX = π/512 and N = 16. Note

that the number of function evaluations and the optimal value found by the algorithm

are sensible to the parameter tolF , but its value can be used for all problems as we

apply an absolute criterion.

Fig. 14 demonstrates the final grid generated by the algorithm. One can already see

that the region where f is evaluated rapidly gets smaller with each finer grid.

Table 3 presents the results for all four sample problems. Thereby, the optimum

values given for comparison were computed by picking the maximum of f = C4 on the

equispaced grid with grid width of π/128 leading to 1282 = 16384 function evaluations.

So the heuristic finds the optimum or a very close value with only 2−3% of the criterion

evaluations.
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Figure 14: class centre distance for heartbeat classification with final grid used by

Algorithm 5.1

optimum grid search

problem value value evals

heart1 0.2923 0.2923 538

heart2 0.2601 0.2601 392

a0m0 0.1670 0.1669 350

m2m3 0.2564 0.2564 364

Table 3: grid search results: returned maximal value and number of function evaluations
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6 Conclusions

We have addressed the problem how to efficiently adapt the feature extraction process

by orthogonal filter banks and norm computation of the subband coefficients to the

subsequent classification by an SVM. We have proposed several criteria for judging the

discrimination ability of a set of feature vectors and have highlighted some connections

between these criteria. A theorem was provided that simplifies the computation of the

radius–margin error bound. We have numerically shown that simple adaptation criteria

like the class centre distance and the alignment suffice to promisingly design filters for

our hybrid wavelet–large margin classifiers with Gaussian kernels. Furthermore, we have

presented an adaptive grid search algorithm that efficiently finds the optimal orthogonal

filter bank for our applications. This grid search can easily be implemented due to

its simplicity and provides a robust algorithm that does not depend on experienced

parameter tuning.

For multi-class classification problems, which will be addressed in a forthcoming

paper, SVMs may also be used. This is done most effectively by using a sequence of

binary SVM classifiers. For the reduction of the multi-class problem to such a sequence

there exist several more or less costly and reliable ways [31, 32]. Then the wavelet

adaptation can be applied with a different wavelet for each binary classifier. As an

alternative approach, e.g. the generalised Fisher criterion C5 naturally generalises to

multiple classes.

The classification of images and higher–dimensional signals works analogously ac-

cording to the construction of multivariate wavelets by tensor products. Hence, in prin-

ciple our results are relevant for higher dimensions as well. In practice, however, features

extracted by tensor wavelets – no matter whether adapted or not – suffer from a lack

of rotational invariance. In our future work, we will address this issue without resorting

to overly redundant sets of basis functions and the corresponding loss of computational

speed.
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A An SVM Formulation for Radius Computation

This section derives a QP equivalence that may be used to efficiently compute the radius

of the smallest sphere enclosing a set of points as already stated in Theorem 1.

The QP (9) to determine the radius R for the points φ(xj) (j = 1, . . . , n) in feature

space is in fact a special case of the problem

min
a∈`2,R∈R,ξ∈Rn

R2 + C
n∑

j=1

ξj

subject to ‖φ(xj)− a‖2
2 ≤ R2 + ξj , j = 1, . . . , n ,

ξj ≥ 0 , j = 1, . . . , n

(14)

considered in [33] for clustering. Therefore we will refer to (14) as SV clustering problem.

We will show that (14) can be solved by a single–class SVM, i.e., an SVM classification

problem with all points belonging to the same class. Then the matrix Y in (6) is the

identity matrix so that (6) simplifies to

min
α∈Rn

1

2
αTKα− eTα

subject to 0 ≤ α ≤ Ĉe .

(15)

We will prove the following theorem which generalises Theorem 1 also including the

soft margin case C <∞:

Theorem 2. Let K be a kernel with corresponding feature map φ and with the property

that K(x,x) = κ for all x ∈ X . Then there exists Ĉ > 0 such that the optimal radius R

in (14) can be obtained by solving the dual problem (15) of a single–class SVM. More

precisely, if α is the solution of (15), then

R2 = κ + βTKβ − 2(Kβ)j , (16)

where β := α
eTα

and j ∈ {1, . . . , n} denotes some index with 0 < βj < C.

Note that C = Ĉ =∞ for our original problem (9).

Our proof proceeds in two steps: first we show that the SV clustering problem (14) is

equivalent to a single–class SVM with additional bias term also included in the objective

function. This SVM was used for novelty detection in [34] and is therefore called SV

novelty detection problem in the following. Then we prove that the SV novelty detection

problem is equivalent to an ordinary single–class SVM (15) without bias term.
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A.1 Equivalence of the SV Clustering Problem and the SV

Novelty Detection Problem

The equivalence is best shown considering the dual problems. For solving (14), we

introduce the Lagrangian

L(a, R, ξ,β,µ) := R2 + CeTξ −
n∑

j=1

βj(R
2 + ξj − ‖φ(xj)− a‖2

2)− µTξ

with Lagrange multipliers β,µ ≥ 0. Setting the derivative of L with respect to R, a

and ξ to zero, it follows

eTβ = 1 ,

a =

n∑

j=1

βjφ(xj) , (17)

µ = Ce− β . (18)

Using these equations, the Lagrangian yields the dual problem

max
β∈Rn

(
W (β) :=

n∑

j=1

βj‖φ(xj)‖2
2 −

n∑

j,k=1

βjβk〈φ(xj),φ(xk)〉2
)

subject to eTβ = 1 ,

0 ≤ β ≤ Ce .

By the relation (8) between the kernel function and the feature map, the function W (β)

can be rewritten as

W (β) =

n∑

j=1

βjK(xj,xj)−
n∑

j,k=1

βjβkK(xj,xk) .

In our applications we are mainly interested in isotropic kernels K(x,y) = k(‖x−y‖2),

e.g. in the Gaussian kernel (12). These kernels have K(x,x) = κ for some κ > 0 and

all x ∈ X . Then W (β) can be further simplified to

W (β) = κ− βTKβ

so that we finally have to solve the dual optimisation problem

min
β∈Rn

βTKβ

subject to eTβ = 1 ,

0 ≤ β ≤ Ce .

(19)
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Note that this problem coincides with our optimisation problem (15) except for the first

constraint eTβ = 1. The Kuhn–Tucker complementarity conditions for problem (14)

are

βj(R
2 + ξj − ‖φ(xj)− a‖2

2) = 0 , j = 1, . . . , n , (20)

µjξj = 0 , j = 1, . . . , n . (21)

For 0 < βj < C, equations (18) and (21) imply that µj > 0 and thereby ξj = 0. Now it

follows by (20) that R2 can be computed as

R2 = ‖φ(xj)− a‖2
2

(17),(8)
= K(xj,xj) +

n∑

i,k=1

βiβkK(xi,xk)− 2

n∑

k=1

βkK(xj,xk)

= κ + βTKβ − 2(Kβ)j .

Let us turn to the SV novelty detection problem investigated by Schölkopf et al. in [34].

We are looking for a decision function

f(x) = a(x) + b :=
n∑

j=1

βjK(x,xj) + b (22)

with bias term b which solves the modified single–class SVM problem

min
β∈Rn,b∈R,ξ∈Rn

CeTξ +
1

2
‖a‖2

HK + b = CeTξ +
1

2
βTKβ + b

subject to a(xj) + b ≥ 1− ξj , j = 1, . . . , n ,

ξ ≥ 0 .

(23)

Analogous to the SV clustering problem, we build the Lagrangian

L(β, b, ξ,α,µ) := CeTξ +
1

2
βTKβ + b−

n∑

j=1

αj(a(xj) + b− 1 + ξj)− µTξ

with Lagrange multipliers α,µ ≥ 0. Setting the derivative of L with respect to b, β

and ξ to zero, it follows

eTα = 1 , (24)

α = β
(24)⇒ eTβ = 1 , (25)

µ = Ce− α . (26)
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Using these equations, the Lagrangian yields the dual problem

min
β∈Rn

1

2
βTKβ − 1

subject to eTβ = 1 ,

0 ≤ β ≤ Ce .

(27)

This problem is obviously equivalent to the dual SV clustering problem (19). We sum-

marise:

Lemma 3. Let K be a kernel with corresponding feature map φ and with the property

that K(x,x) = κ for all x ∈ X . Then the optimisation problems (14) and (23) are

equivalent in that they lead to the same dual problem (19).

From the dual solution β of (19). the primal solution a, R, ξ of (14) may be obtained

by (17) and (16) and the Kuhn–Tucker conditions (20) and (21). The optimal values

b, ξ for problem (23) may be obtained by the Kuhn–Tucker complementarity conditions

as well.

This lemma was also proved in [34]. Further, Vapnik [5, Sec. 10.7] already showed

that R2 can be computed as described by (16) with problem (19) for hard margin

(C =∞).

At first sight, it is astonishing that although the quadratic optimisation problems

for SV clustering and SV novelty detection are deviated from quite different initial

problems (14) and (23), they are equivalent. The paper [35] provides a nice geometrical

interpretation for that. For the hard margin case (C = ∞) and the Gaussian kernel,

this further implies that

R2 = b .

A.2 Equivalence of the SV Novelty Detection Problem and the

Single–Class SVM without Bias Term

The previous subsection shows the equivalence of the SV clustering problem which can

be used for radius computation to a modified SVM (23) with bias term. We will now

show that this special problem is equivalent to a single–class SVM without bias term.
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With a(x) defined as in (22), the common single–class SVM is described by the problem

min
β∈Rn,ξ∈Rn

ĈeTξ +
1

2
‖a‖2

HK = ĈeTξ +
1

2
βTKβ

subject to a(xj) ≥ 1− ξj, j = 1, . . . , n ,

ξ ≥ 0 .

(28)

By setting up the Lagrangian as above, the traditional single–class SVM leads to the

dual quadratic problem (15).

Lemma 4. There exists Ĉ > 0 such that the SV novelty detection problem (23) with

parameter C is equivalent to the standard SVM problem (28) with parameter Ĉ in that

the solutions are derivable from one another. The dual solutions α of (15) and β of

(27) are related by

β =
α

eTα
(29)

or conversely by α = 1
1−bβ with the primal variable b.

Proof. The proof consists of two parts. Firstly, the dual solution of the biased SVM

(27) will be derived from the dual solution of the SVM without bias (15). Secondly, the

primal solution of the unbiased SVM (28) will be derived from the primal solution of

the biased SVM (23).

1. Suppose problem (15) is solved by α. With a := eTα > 0, set β := α
a

. Then β is

valid in problem (27) if C = Ĉ
a

. Suppose that β is not the optimal solution of problem

(27), i.e., there exists some β̃ satisfying eT β̃ = 1, 0 ≤ β̃ ≤ Ce so that

1

2
β̃
T
Kβ̃ <

1

2
βTKβ

⇒ 1

2
(aβ̃)TK(aβ̃) <

1

2
(aβ)TK(aβ)

⇒ 1

2
α̃TKα̃− a < 1

2
αTKα− a ,

where α̃ := aβ̃. Since α̃ fulfils 0 ≤ α̃ ≤ Ĉe and a = eT α̃ holds, this is a contradiction

to the assumption that α is the optimal solution of problem (15).

2. On the other hand, let (β, b, ξβ) be the optimal solution of the primal problem

(23). Then α := 1
1−bβ, ξα := 1

1−bξ
β is a valid solution for problem (28). Note that b < 1

due to the dual constraint eTβ = 1 and the Kuhn–Tucker conditions. Assume that α̃

is valid for (28) as well, then the vector (β̃, b, ξβ̃) := ((1− b)α̃, b, (1− b)ξα̃) is valid for
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problem (23). Now we obtain for Ĉ = C
1−b

1

2
α̃TKα̃+ ĈeTξα̃ <

1

2
αTKα+ ĈeTξα

⇔ 1

2
((1− b)α̃)TK((1− b)α̃) + (1− b)ĈeT

(
(1− b)ξα̃

)
<

1

2
((1− b)α)TK((1− b)α) + (1− b)ĈeT ((1− b)ξα)

⇔ 1

2
β̃
T
Kβ̃ + CeTξβ̃ + b <

1

2
βTKβ + CeTξβ + b .

Consequently, since (β, b, ξβ) is the optimal solution for problem (23), α is the optimal

solution of (28).

So far, we have shown that for special values of C depending on the solution of

the problem, the biased and unbiased single–class SVMs are equivalent. Anyway, as C

is a tuning parameter that cannot be determined analytically, this condition does not

restrain the equivalence. Especially, for C = ∞, the hard margin case, no condition

with respect to the weight factor C has to be taken into account.
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