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Abstract

The only quadrature operator of order two on L2(R2) which covaries with orthogonal
transforms, in particular rotations is (up to the sign) the Riesz transform. This property
was used for the construction of monogenic wavelets and curvelets. Recently, shearlets
were applied for various signal processing tasks. Unfortunately, the Riesz transform does
not correspond with the shear operation. In this paper we propose a novel quadrature op-
erator called linearized Riesz transform which is related to the shear operator. We prove
properties of this transform and analyze its performance versus the usual Riesz trans-
form numerically. Furthermore, we demonstrate the relation between the corresponding
optical filters. Based on the linearized Riesz transform we introduce finite discrete quasi-
monogenic shearlets and prove that they form a tight frame. Numerical experiments show
the good fit of the directional information given by the shearlets and the orientation ob-
tained from the quasi-monogenic shearlet coefficients. Finally we provide experiments on
the directional analysis of textures using our quasi-monogenic shearlets.

Keywords: Shearlets, Riesz Transform, monogenic signals, local orientation, instantaneuos
phase

1 Introduction

Based on the Riesz transform monogenic signals were introduced in image processing by
Felsberg and Sommer [7] and in optics by Larkin et al. [18]. The Riesz transform of a two-
dimensional signal provides information about the amplitude, the instantaneous phase and
the local orientation (of the phase) of the signal. Therefore it contains, in contrast to, e.g., the
directional Hilbert transform where the desired direction has to be addressed in advance, an
’automatic’ orientation component. The Riesz transform can replace the (smoothed) gradient
in structure tensors as those of Förstner and Gülch [8] to make them more robust, see, e.g.,
[16].
In practice the Riesz transform is often applied on some bandpass filtered version of the signal.
This idea was adopted in the construction of monogenic wavelets in [15, 27, 28], where the first
paper is based on Meyer wavelets while the other ones focus on spline wavelets. The monogenic
wavelet coefficients of the signal provide amplitude, phase and orientation information on
multiscales now. Monogenic wavelet transforms were applied for tensor based estimation of
orientations, demodulation of interferograms and the reconstruction of holograms in [27, 28],
and for brightness equilibration and parameter free descreening in [15].
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Figure 1: (left to right) Tilings of the frequency plane by the support of the (i) second
generation curvelets [3] (4 · 2dj/2e wedges at scale 2−j), (ii) discrete curvelets [4] with pseudo-
polar support, (iii) cone-adapted shearlets [11, 13].

Recently the monogenic curvelet transform was introduced by Storath [26]. He proved that
this transform behaves at very fine scales like the usual curvelet transform and at coarse scales
like the monogenic wavelet transform. Since the Riesz transform covaries with rotations, the
monogenic curvelet amplitude is invariant to the rotation group operation of the curvelet
transform. This is useful as long as the curvelet transform is defined with respect to curvelets
which supports tile the frequency plane into concentric circle segments as originally proposed
for second generation curvelets by Candés and Donoho in [3], see Fig. 1 left. However, in
implementations Cartesian arrays are prefered over the polar tiling. The fast discrete curvelet
transform [4] replaces the polar tiling of the frequency plane by Cartesian coronae based on
concentric squares (instead of circles) and shears [4], see Fig. 1 middle. Of course, these
curvelets cannot be obtained by rotating a mother curvelet on the respective scale. For a
review on curvelets see [20].
An approach which takes Cartesian arrays from the beginning into account are shearlets
which were introduced in [19]. Instead of rotations the group of shear matrices is involved
into the construction. In this paper we focus on the cone adapted version of shearlets given
in [11]. The tiling of the frequency plane by the support of these shearlets is shown in Fig.
1 right. Shearlets have the same nice approximation properties as curvelets and have found
applications, e.g., for edge detection in [12, 17]. Moreover, shearlets as wavelets are directly
related with square integrable group representations [5] and function spaces [6]. Of course
the Riesz transform does not covaries with the shear operation.

The aim of this paper is twofold. First, we introduce a linearized Riesz transform which better
fits to the cone-like frequency tiling in Fig. 1 middle/right. This transform is a quadrature
operator related to the shear operation in the sense that, roughly speaking, the linearized
Riesz transform of a sheared function equals the sheared linearized Riesz transform of the
function up to a rotation by the shear factor. We demonstrate properties of the linearized
Riesz transform both from the mathematical implementation and the optical filter point of
view. Second we introduce quasi-monogenic shearlets as counterpart to monogenic curvelets
by applying the linearized Riesz transform instead of the usual Riesz transform.

The paper is organized as follows: In Section 2 we review quadrature operators and consider
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a special one, namely the Riesz transform. We introduce the linearized Riesz transform and
corresponding quasi-monogenic signals in Section 3. We prove some relevant properties of our
linearized version and compare the transform numerically with the ordinary Riesz transform.
The relation between the linearized and the ordinary Riesz transform is also considered for the
corresponding optical filters. Section 4 deals with quasi-monogenic shearlets. Finally, various
numerical examples on the analysis of directions in textures are given in Section 5. The local
orientation of the quasi-monogenic shearlet coefficients gives directly the orientation of the
phase in the texture features.

2 Quadrature Operators and Riesz Transform

In this section we briefly review the notation of quadrature operators. For more information
on these topics we refer to [9, 15, 25]. In the next section we will see that our linearized
Riesz transform is as the Riesz transform itself a quadrature operator. Let K ∈ {R,C} and
let {e0, . . . , em} denote the standard orthonormal basis of K1+m. We equip K1+m with the
vector multiplication

eµeµ = −e0, eνeµ = −eµeν , µ 6= ν, ν, µ = 1, . . . ,m. (1)

The elements of K1+m, called hypercomplex numbers, can be represented as

v = v0 +

m∑
µ=1

eµvµ,

where we write as usual 1 for the multiplicative identity e0. In analogy to complex numbers,
the e0 component is called real part and the other components imaginary part of v. The
closure of K1+m under the above multiplication is the Clifford algebra Km of dimension 2m.
In particular, the multiplicative closure of R1+1 are the complex numbers and of R1+2 are
the quaternions. In the following, we only consider powers of two of elements in K1+m

which are again in K1+m. We define the vector-valued bilinear form (·, ·) for F = (fµ)mµ=0 ∈
L2(Rn,K1+m) and g ∈ L2(Rn,K) by

(F, g) :=

m∑
µ=0

eµ〈fµ, g〉,

where 〈·, ·〉 denotes the L2 inner product. Further we use the Fourier transform F : L2(Rn,C)→
L2(Rn,C) given by

Ff(ω) = f̂(ω) :=

∫
Rn
f(t)e−2πi〈ω,t〉 dt.

We will frequently use that for a linear, invertible operator A ∈ Rn,n the relation(
f(A−1·)

)̂
(ω) = |detA|f̂(ATω)

holds true. For F ∈ L2(Rn,K1+m) we apply the Fourier transform componentwise

F̂ (ω) :=
m∑
µ=0

eµf̂µ.
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For an m-tuple of linearly independent, bounded, linear operators Q1, . . . , Qm : L2(Rn,R)→
L2(Rn,R) we call

Q :=
m∑
µ=1

eµQµ (2)

a quadrature operator of order m if the following conditions are fulfilled:

1. Q is invariant under translation,

2. Q is invariant under positive dilations,

3. Q is self-inverting, i.e., Q2 = id,

4. Qµ is anti-selfadjoint, i.e., Q∗µ = −Qµ, µ = 1, . . . ,m.

For a quadrature operator Q we define the Q-complex signal operator Q′ on L2(Rn,R) by

Q′f := f +

m∑
µ=1

eµQµf.

For f ∈ L2(Rn,R) the Q-amplitude is determined by

|Q′f(x)| :=
√
|f(x)|2 + |Q1f(x)|2 + . . .+ |Qmf(x)|2. (3)

The angle ξ ∈ [0, π] defined by

ξ(Q′f(x)) := arccos
f(x)

|Q′f(x)| , |Q′f(x)| 6= 0 (4)

is the phase of Q′f .
Two important quadrature operators are the (partial) Hilbert transform in direction ω0 ∈
Rn\{0} defined for f ∈ L2(Rn,R) by

Ĥω0f(ω) := −i sgn(〈ω, ω0〉)f̂(ω).

and the Riesz transform defined componentwise by

R̂µf(ω) := −i ωµ|ω| f̂(ω), µ = 1, . . . , n.

In the spatial domain R : L2(R2) →
(
L2(R2)

)2
is the convolution with the distribution

Γ(n+1
2

)

πn+1/2 PV t
|t|n+1 .

For n = 1, we know that e1H with the Hilbert transform defined for f ∈ L2(Rn,R) by
Hf(ω) := −i sgn(ω)f̂(ω) and its negative variant −e1H are the only quadrature operators of
order m = 1. The corresponding H-complex signal f + e1Hf of f ∈ L2(Rn,R) is known as
analytic signal of f .
For n > 1, the partial Hilbert transform is a quadrature operator of order m = 1. The Riesz
transform is (up to the sign) the only quadrature operator of order n that covaries with linear,
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orthogonal transforms. In other words, if U ∈ Rn,n is an orthogonal matrix, i.e., U−1 = UT,
then

R
(
f(U−1·)

)
= U Rf(U−1·). (5)

The corresponding R-complex signal of f ∈ L2(Rn,R) is called monogenic signal, see [7].

In the following we are interested in the case n = 2. Then the we can alternatively consider
the 2D complex Riesz operator R : L2(R2,R)→ L2(R2,C) defined by the convolution

Rf(x) :=

(
1

2π

x′1 + ix′2
|x′|3 ∗ f

)
(x),

respectively, in the Fourier domain by

R̂f(ω) :=
−iω1 + ω2

|ω| f̂(ω) = −ieiϕ(ω)f̂(ω), ω := ω1 + iω2 (6)

where ϕ ∈ (−π, π] is given by

ϕ(ω) = atan2(ω1, ω2) :=

{
arccos ω1

|ω| if ω2 ≥ 0,

− arccos ω1
|ω| if ω2 < 0.

By (5) we obtain for the rotation matrix Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
the rotation covariance

relation of the Riesz transform

R
(
f(R−1

θ ·)
)

= eiθRf(R−1
θ ·). (7)

The monogenic signal is defined by

fm := R′f = (f, f1, f2), f1 := R1f, f2 := R2f.

In agreement with (3) it has the amplitude

A :=
√
f2 + f2

1 + f2
2 . (8)

The local orientation θ ∈ (−π, π] and instantaneous phase ξ ∈ [0, π] are specified via

f = A cos ξ, f1 = A sin ξ cos θ, f2 = A sin ξ sin θ.

In accordance with (4) the instantaneous phase is recovered by

ξ = arccos
f

A
. (9)

With r :=
√
f2

1 + f2
2 = A sin(ξ) we obtain the local orientation vector by (f1r ,

f2
r ) = (cos θ, sin θ)T

and the local orientation by

θ := atan2(f1, f2). (10)
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Figure 2: The “monogenic cones” (left) and the “shearlet” cones (right).

3 Linearized Riesz transform and quasi-monogenic signals

In this section we are interested in a quadrature operator having a similar property (7) as the
Riesz transform but with respect to the shear operator

Ss :=

(
1 s
0 1

)
, s ∈ R.

3.1 Definition and Properties

Let

Cv+ := {ω ∈ R2 :

∣∣∣∣ω2

ω1

∣∣∣∣ ≤ 1, ω1 ≥ 0}, Cv− := {ω ∈ R2 :

∣∣∣∣ω2

ω1

∣∣∣∣ ≤ 1, ω1 ≤ 0}, Cv := Cv+ ∪ Cv−,

Ch+ := {ω ∈ R2 :

∣∣∣∣ω1

ω2

∣∣∣∣ ≤ 1, ω2 ≥ 0}, Ch− := {ω ∈ R2 :

∣∣∣∣ω1

ω2

∣∣∣∣ ≤ 1, ω2 ≤ 0}, Ch := Ch+ ∪ Ch−,

see Fig. 2 left. We introduce the linearized Riesz transform RL : L2(R2,R)→ L2(R2,C) by

R̂Lf(ω) := −ieiϕL(ω)f̂(ω), (11)

where

ϕL(ω) :=

{
(1− sgn(ω1)) sgn(ω2)π2 + ω2

ω1

π
4 if (ω1, ω2) ∈ Ch,

sgn(ω2)π2 − ω1
ω2

π
4 if (ω1, ω2) ∈ Cv,

=


ω2
ω1

π
4 if (ω1, ω2) ∈ Ch+,

π
2 − ω1

ω2

π
4 if (ω1, ω2) ∈ Cv+,

sgn(ω2)π + ω2
ω1

π
4 if (ω1, ω2) ∈ Ch−,

−π
2 − ω1

ω2

π
4 if (ω1, ω2) ∈ Cv−.

(12)
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Figure 3: Function ϕ(x) = x for x ∈ [0, π4 ] (solid line), our approximation ϕL(x) = π
4 tanx

(point-dotted line) and ϕequi = arctan 4
πx (dotted line).

Note that ϕ = arctan y, y ∈ [0, 1] implies ϕL = π
4 y = π

4 tanϕ. Fig. 3 shows the function
ϕ(x) = x for x ∈ [0, π4 ] versus our approximation ϕl(x) = π

4 tanx and ϕequi = arctan 4
πx.

Corresponding to (2) we define RL : L2(R2,R)→ L2(R2,R2) by

RLf = e1RL,1f + e2RL,2f,

where

R̂L,1f(ω) := −i cosϕL(ω)f̂(ω), R̂L,2f(ω) := −i sinϕL(ω)f̂(ω). (13)

Fig. 4 shows the linearized phase ϕL, the original phase ϕ and the respective differences to
the original Riesz transform.

Proposition 3.1. The linearized Riesz transform is a quadrature operator of second order.

Proof. The proof follows directly from the definition of the linearized Riesz transform.
1. We see that RL is translation invariant by

RL (f(· − t)) (̂ω) = ieiϕL(ω) (f(· − t)) (̂ω) = ieiϕL(ω)e−2πitωf̂(ω),

((RLf)(· − t)) (̂ω) = e−2πitωR̂Lf(ω) = e−2πitωieiϕL(ω)f̂(ω).

2. Next, RL is invariant with respect to dilations by α > 0 since

RL (f(α·)) (̂ω) = ieiϕL(ω) (f(α·)) (̂ω) = ieiϕL(ω) 1

α
f̂
(ω
α

)
,

((RLf)(α·)) (̂ω) =
1

α
R̂Lf

(ω
α

)
=

1

α
ieiϕL(ω/α)f̂

(ω
α

)
and ϕL(ω/α) = ϕL(ω) for α > 0.
3. We have by (1) that RL is self-inverting since

RL (RLf) = RL (e1RL,1f + e2RL,2f) = −(R2
L,1f +R2

L,2f)

and therefore

̂RL(RLf)(ω) = −
(
−i cosϕL(ω)R̂L,1f(ω)− i sinϕL(ω)R̂L,2f(ω)

)
= f̂(ω).
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4. Finally using (13) we see that RL is anti-selfadjoint since for RL,1 (and similarly for RL,2),

〈f,RL,1g〉 = 〈f̂ , R̂L,1g〉 = 〈f̂ ,−i cosϕLĝ〉 = 〈i cosϕLf̂ , ĝ〉 = 〈−RL,1f, g〉.

Now we define the the quasi-monogenic signal of f ∈ L2(R2,R) to be

fqm := (f, fL,1, fL,2), fL,1 = RL,1f, fL,2 = RL,2f.

The local amplitude, instantaneous phase and local orientation are defined as for the mono-
genic signal (see (8), (9) and (10) ) but with respect to fL,1 and fL,2 now. Alternatively we
could define the local orientation adapted to the linearized Riesz transform as in (12). In this
paper we focus on the first version.
Finally, are interested in the relation between RL and the shear operator. With respect to
our shearlet filters in the next section we only consider functions g supported on a subset of
the cones Cκ, κ ∈ {h, v}.

Proposition 3.2. Let g ∈ L2(R2,R) be a filter function such that ĝ is supported in {ω ∈ R2 :∣∣∣ω2
ω1

∣∣∣ ≤ α}, where 0 ≤ α < 1. Then, for α− 1 ≤ s ≤ 1− α, the relation

RL
(
g(S−1

s ·)
)

= eis
π
4
(
RLg

)
(S−1
s ·)

holds true. In other words, up to a rotation by the shear factor sπ4 , the linearized Riesz
transform of the sheared filter equals the sheared linearized Riesz transform of the filter.

Note that the restriction on the shear parameter is in agreement with our later shearlet
construction by (cone restricted) shearing of a mother shearlet.

Proof. By definition of RL we have(
RLg(S−1

s ·)
)̂

(ω) = −ieiϕL(ω)ĝ(ST
s ω)

= −ieiϕL(ω)ĝ(ω1, sω1 + ω2).

By the support assumption on g, the above function becomes zero if the following condition
is not fulfilled:

−α ≤ s+
ω2

ω1
≤ α,

By assumption on s this implies −1 ≤ −α − s ≤ ω2
ω1
≤ α − s ≤ 1 and we get for ω1 ≥ 0 by

definition of ϕL the relation (
RLg(S−1

s ·)
)̂

(ω) = −iei
ω2
ω1

π
4 ĝ(ST

s ω).

On the other hand, we obtain((
RLg

)
(S−1·)

)̂
(ω) = (RLg)̂ (ST

s ω)

= −ieiϕL(ST
s ω) ĝ(ST

s ω),
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where in case ω1 ≥ 0,

eiϕL(ST
s ω) = e

i(s+
ω2
ω1

)π
4 = eis

π
4 eiϕL(ω)

so that ((
RLg

)
(S−1·)

)̂
(ω) = eis

π
4
(
RLg(S−1

s ·)
)̂

(ω).

Similarly we can conclude for ω1 < 0. Then the assertion follows by taking the inverse Fourier
transform.

(a) ϕL (b) ϕ

(c) ϕ− ϕL (d) <(eiϕ − eiϕL)

Figure 4: Comparison of linearized and usual Riesz operators.

3.2 Linearized Riesz transform versus Riesz transform

In this subsection we compare the linearized Riesz transform and the ordinary Riesz transform
by a numerical example and by an optical filtering devise.

A Numerical Comparison. First we deal with the synthetic image in Fig. 5. The Riesz
components RL,1f and RL,2f are depicted in Fig. 6 together with the difference to the
original Riesz transformed image.
The amplitude, instantaneous phase and local orientation are shown in Figure 7. Since the
latter two are only well defined at points with a significant amplitude we threshold them and
show only entries where the amplitude is larger that T% of the maximal amplitude and the
threshold T is given with the images.
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Figure 5: Test image f .

(a) RL,1f (b) RL,2f

(c) R1f −RL,1f (d) R2f −RL,2f

Figure 6: Comparison of linearized and ordinary Riesz transform.
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(a) Amplitude Alin (b) Phase ξlin (T = 40) (c) Orientation θlin (T = 60)

(d) Difference Amplitude A −
Alin

(e) Difference Phase ξ − ξlin (f) Difference Orientation θ −
θlin

Figure 7: Local amplitude, instantaneous phase and orientation of the test image obtained
by the linearized Riesz transform.

An optical filter comparison. In optics, spiral phase (SP) filtering [1, 24] provides an
experimental analogy to the application of the (2D) Riesz transform kernel in mathematics.
An optical implementation can be performed by introducing a filter, here realized by a spa-
tial light modulator (SLM), in the focal plane of a Fourier plane filtering (FPF) unit [10].
Addressing the SLM by the Fourier filter function:

H(ω) = eiϕ(ω) (14)

with the usual azimuthal angle ϕ(ω), an optically filtered image of modified contrast can be
recorded by a camera system [23].
The expression in (14), characterizing a conventional SP filter, corresponds in its formal

structure to the Fourier multiplier of the 2D Riesz transform R̂f(ω) in (6). In analogy, a
(so-called) linearized SP filter is characterized by the Fourier filter function

HL(ω) = eiϕL(ω) (15)

with the linearized azimuthal angle ϕL(ω) defined in (12). The expression in (15) corresponds

to the Fourier multiplier of the 2D linearized Riesz transform R̂Lf(ω) in (11).
The linearized SP filter can be addressed on the SLM as well. Both types of realized SP
filters deliver an almost isotropic contrast modification and a possibility for an optical edge
detection of the investigated micro-structures, in an analog manner as described for edge
detection by analytic signal approaches in image processing [14, 2].
In Fig. 8(a)-(e) the measured (intensity) data after applying the conventional and linearized
SP filter are depicted, with only minor differences between their filtering results. The applied
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Figure 8: Analogy between optical and mathematical approaches for isotropic edge enhance-
ment/detection:
Conventional and linearized spiral phase (SP) filtering, applied as an optical method on a
test structure (metalized ’Number 5’), ((a)-(e)).
Ordinary and linearized Riesz transform (RT) approach, applied as a mathematical method
on a test image (binarized ’Number 5’), ((f)-(j)).

SLM has been a liquid crystal phase-only type (SLM Pluto, HoloEye AG). Additionally, the
local amplitude computed by the ordinary and linearized Riesz transform approach are shown
for a binarized test image in Fig. 8(f)-(j).

4 Shearlets on the cone and their quasi-monogenic version

Let ψ ∈ L2(R2,R) be a function fulfilling

ψ̂(ω) = ψ̂1(ω1)ψ̂2

(
ω2

ω1

)
,
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where ψ1 is a wavelet and ψ̂2 a continuous bump function with suppψ2 ⊆ [−1, 1]. Typical
choices for ψ1 and ψ2 are

ψ̂1(ω1) :=
√
b2(2ω1) + b2(ω1) and ψ̂2(ω2) :=

{√
v(1 + ω2) for ω2 ≤ 0,√
v(1− ω2) for ω2 > 0,

where

v(x) :=


0 for x < 0,

35x4 − 84x5 + 70x6 − 20x7 for 0 ≤ x ≤ 1,

1 for x > 1

and

b(x) :=


sin(π2 v(|x| − 1)) for 1 ≤ |x| ≤ 2,

cos(π2 v(1
2 |x| − 1)) for 2 < |x| ≤ 4,

0 otherwise

see [22, 21]. Such a function fulfills the admissibility condition∫
R2

|ψ̂(ω1, ω2)|2
ω2

1

dω1dω2 <∞

and will serve as mother shearlet. Let the parabolic scaling matrix Aa be defined by

Aa =

(
a 0
0
√
a

)
, a ∈ R+.

Then the shearlets ψa,s,t emerge by dilation, shearing and translation

ψa,s,t(x) := a−
3
4ψ(A−1

a S−1
s (x− t)),

see [11, 19]. In the Fourier domain this reads

ψ̂a,s,t(ω) = a
3
4 e−2πi〈t,ω〉ψ̂(AT

aS
T
s ω) = a

3
4 e−2πi〈t,ω〉ψ̂

(
aω1,

√
a(sω1 + ω2)

)
.

The continuous shearlet transform SHψ(f) of a function f ∈ L2(R) is defined by

SHψ(f)(a, s, t) := 〈f, ψa,s,t〉 = 〈f̂ , ψ̂ast〉.

For practical computations we are interested in shearlets on the cone. To this end we define
the restricted horizontal and the vertical cones by

Ch := {(ω1, ω2) ∈ R2 : |ω1| ≥
1

2
, |ω2| < |ω1|},

Cv := {(ω1, ω2) ∈ R2 : |ω2| ≥
1

2
, |ω2| > |ω1|},

resp., and the “intersection” (seam lines) of the two cones and the “low frequency” set by

C× := {(ω1, ω2) ∈ R2 : |ω1| ≥
1

2
, |ω2| ≥

1

2
, |ω1| = |ω2|},

C0 := {(ω1, ω2) ∈ R2 : |ω1| < 1, |ω2| < 1},
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resp., see Fig. 2, right. Altogether R2 = Ch ∪ Cv ∪ C× ∪ C0 with an overlapping domain
C� := (−1, 1)2 \ (−1

2 ,
1
2)2. To obtain a discrete shearlets on the cone, we discretize the scaling

and shear parameters as

aj := 2−2j =
1

4j
, j = 0, . . . , j0 − 1,

sj,k := k2−j , −2j ≤ k ≤ 2j , k ∈ Z,

and specify the translation parameters tm, m ∈ Z later. With these notations our shearlets
ψh on the horizontal cone Ch are given in the frequency domain by

ψ̂hj,k,m(ω) = 23j/2ψ̂h(AT
ajS

T
sj,k

ω)e−2πi〈ω,m〉 = ψ̂1

(
4−jω1

)
ψ̂2

(
2j
ω2

ω1
+ k

)
e−2πi〈ω,tm〉 (16)

and in the time domain by

ψhj,k,m(x) := 2−3j/2ψhaj ,sjk,tm(x) = ψh(A−1
aj S

−1
sjk

(x− tm)).

For k = −2j + 1, . . . , 2j − 1 the shearlets ψ̂h are supported on Ch. In particular we see

that ψ̂hj,0,0 is supported in {ω ∈ R2 :
∣∣∣ω2
ω1

∣∣∣ ≤ 2−j}. Hence, using α = 2−j and s = 2−jk in

Proposition 3.2 we obtain

RL
(
ψj,0,0(S−1

sjk
·)
)

= e2−jk π
4
(
RLψj,0,0

)
(S−1
sjk
·).

The shearlets ψv on the vertical cone are defined by changing the roles of ω1 and ω2 in (16).
Moreover, we define

ψh×v
j,±2j ,m

:= ψhj,±2j ,mχC×

with the characteristic function χC which is equal to 1 for ω ∈ C and 0 otherwise. (Note that
the separate consideration of C× is only useful in the later discrete setting.) Finally, we use
the scaling function φ defined by

φ̂(ω1, ω2) :=

{
ϕ(ω1) for |ω1| < 1, |ω2| ≤ |ω1|,
ϕ(ω2) for |ω2| < 1, |ω1| < |ω2|

with

ϕ(ω) :=


1 for |ω| ≤ 1

2 ,

cos(π2 v(2|ω| − 1)) for 1
2 < |ω| < 1,

0 otherwise

and its translates φm(x) = φ(x− tm), i.e., φ̂m(ω) = e−2πi〈tm,ω〉φ̂(ω) on C0.

In image processing we work in a finite discrete setting. We consider digital images as functions
sampled on the grid

1

N
I :=

1

N
{(m1,m2) : mi = 0, . . . , N − 1, i = 1, 2}

and assume periodic continuation over the boundary. Let

Ω :=

{
(ω1, ω2) ∈ Z2 : ωi = −

⌊
N

2

⌋
, . . . ,

⌈
N

2

⌉
− 1, i = 1, 2.

}
.
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Let j0 := b1
2 log2Nc be the number of considered scales, i.e., we deal only with the scales

j = 0, . . . , j0, and choose the translation parameters

tm :=
m

N
, m ∈ I.

Instead of the continuous Fourier transform we use the discrete Fourier transform (DFT)
defined for f : I → R by

f̂(ω) =
∑
m∈I

f(m)e−2πi〈ω,m〉/N , ω ∈ Ω,

and the inverse discrete Fourier transform (IDFT)

f(m) =
1

N2

∑
ω∈Ω

f̂(ω)e2πi〈ω,m〉/N , m ∈ I.

We have the Plancherel formula with respect to the DFT

〈f, g〉 =
1

N2
〈f̂ , ĝ〉. (17)

Recall that for a Hilbert space H a sequence {uj : j ∈ J } is a tight frame if and only if there
exists A > 0 such that

A‖f‖2 =
∑
j∈J
|〈f, uj〉|2 for all f ∈ H.

For tight frames we have the reconstruction formula

f =
1

A

∑
j∈J
〈f, uj〉uj for all f ∈ H.

In [13], we have shown that the set

{ψhj,k,m, ψvj,k,m, ψh×vj,±2j ,m
: j = 0, . . . , j0 − 1,−2j + 1 ≤ k ≤ 2j − 1,m ∈ I} ∪ {φm : m ∈ I}

provides a tight frame for L2(I) with A = 1.
Let the linearized Riesz transform of a function f : I → R be defined via its DFT

R̂Lf(ω) := −ieiϕL(ω)f̂(ω), ω ∈ Ω

and let accordingly R′Lf := (f,RL,1f,RL,2f).
Then we define the discrete quasi-monogenic shearlets on the cone by

B :={R′Lψhj,k,m,R′Lψvj,k,m, R′Lψh×vj,±2j ,m
: j = 0, . . . , j0 − 1,−2j + 1 ≤ k ≤ 2j − 1,m ∈ I}

∪ {R′Lφm : m ∈ I}. (18)

An example of quasi-monogenic shearlets is shown in Fig. 9.

Theorem 4.1. The set B of quasi-monogenic shearlets defined in (18) forms a tight frame
for L2(I) with frame bound A = 2.
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(a) 3D-view of ψh1,0,0 (b) 3D-view of R1,Lψ
h
1,0,0 (c) 3D-view of R2,Lψ

h
1,0,0

Figure 9: Monogenic shearlet at scale j = 1 (a = 1
4).

Proof. We have to show that

2‖f‖2 =
∑

κ∈{h,v}

j0−1∑
j=0

2j−1∑
k=−2j+1

∑
m∈I
|〈f,R′Lψκj,k,m〉|2+

j0−1∑
j=0

∑
k=±2j

∑
m∈I
|〈f,R′Lψh×vj,k,m〉|2+

∑
m∈I
|〈f, φm〉|2.

By Parseval’s identity (17) and definition (18) we obtain∣∣〈f,R′Lψhj,k,m〉∣∣2 =
1

N2

∣∣〈f̂ , ̂R′Lψhj,k,m〉
∣∣2

=
∣∣ 1

N

∑
ω∈Ω

f̂(ω)ψ̂hj,k,0(ω)e2πi〈ω,m〉/N

︸ ︷︷ ︸
=:gj,k(m)

∣∣2 +
∣∣ 1

N

∑
ω∈Ω

f̂(ω)R̂Lψhj,k,0(ω)e2πi〈ω,m〉/N

︸ ︷︷ ︸
=:g̃j,k(m)

∣∣2

and using Parseval’s identity again∑
m∈I

∣∣〈f,R′Lψhj,k,m〉∣∣2 =
∑
m∈I

(|gj,k(m)|2 + |g̃j,k(m)|2)

=
1

N2

(∑
ω∈Ω

|ĝj,k(ω)|2 +
∑
ω∈Ω

|ˆ̃gj,k(ω)|2
)

=
1

N2

(∑
ω∈Ω

|ĝj,k(ω)|2 +
∑
ω∈Ω

| − ieiϕL(ω)ĝj,k(ω)|2
)

=
2

N2

(∑
ω∈Ω

|f̂(ω)|2|ψ̂hj,k,0(ω)|2
)

=
2

N2

(∑
ω∈Ω

|f̂(ω1, ω2)|2|ψ̂1(4−jω1)|2|ψ̂2(k + 2−j
ω2

ω1
)|2
)
.

The rest of the proof follows exactly the lines in [13].

Analogously to the discrete shearlet transform in [13] we define the quasi-monogenic discrete
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shearlet transform

MSH(f)(κ, j, k,m) :=


〈f, φm〉 for κ = 0,

〈f,R′Lψκj,k,m〉 for κ ∈ {h, v},
〈f,R′Lψh×vj,k,m〉 for κ = ×, |k| = 2j

where j = 0, . . . , j0 − 1, −2j + 1 ≤ k ≤ 2j − 1 and m ∈ I if not stated in another way. For
the computation of the quasi-monogenic shearlet transform we can use

〈f,R′Lψκj,k,m〉 =
(
〈f, ψκj,k,m〉, 〈f,RL,1ψκj,k,m〉, 〈f,RL,2ψκj,k,m〉

)
=
(
〈f, ψκj,k,m〉, 〈R∗L,1f, ψκj,k,m〉, 〈R∗L,2f, ψκj,k,m〉

)
which implies with 〈f, ψκj,k,·〉 :=

(
〈f, ψκj,k,m〉

)
m∈I

that

〈f,R′Lψκj,k,·〉 =
(
〈f, ψκj,k,·〉,R∗L,1〈f, ψκj,k,·〉,R∗L,2〈f, ψκj,k,·〉

)
,

This means that we can just apply the adjoint Riesz transform to the shearlet coefficient
images to obtain the monogenic coefficients.
In Fig. 10 we show the quasi-monogenic coefficients of the test image in Fig. 5 for selected
scale and shear parameters. The small image at the lower left corner shows the support of
the corresponding shearlet in the Fourier domain.

(a) 〈f, ψh×v2,−4,·〉 (b) R∗L,1〈f, ψh×v2,−4,·〉 (c) R∗L,2〈f, ψh×v2,−4,·〉

Figure 10: Quasi-monogenic shearlet coefficients at scale j = 2 (a = 1
16) and k = −4 (s = −1).

As for the Riesz transform we can compute the local amplitude, local orientation and instan-
taneous phase of the coefficients. This is shown in Fig. 11. The orientation and phase are
thresholded with a fixed ratio of 80% of the maximal amplitude within each scale. Fig. 11(b)
shows clearly the phase jump at the edges (see rhombus in the top left corner of the image).
The orientation of the edges can be directly red from the colorbar (see Fig. 11(c)).
We conclude this section by showing the local orientation for several shearlets in Fig. 12.

5 Numerical Examples of Texture Decomposition

In this section we use the quasi-monogenic shearlet transform to analyse several texture images
with inherent directional information.
We start with an image of a metal plate shown in Fig. 13(a). By considering amplitude, phase
and orientation for different scale and shear parameters we can decompose the texture into its
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(a) Amplitude of the quasi-
monogenic shearlet coefficients

(b) Phase of the quasi-monogenic
shearlet coefficients (T = 80)

(c) Orientation of the quasi-
monogenic shearlet coefficients
(T = 80)

Figure 11: Local amplitude, instantaneous phase and local orientation of the quasi-monogenic
shearlet coefficients at scale j = 2 as depicted in Fig. 10.

(a) Orientation of the quasi-
monogenic shearlet coefficients
with j = 2 and k = 0 (T = 80)

(b) Orientation of the quasi-
monogenic shearlet coefficients
with j = 2 and k = 4 (T = 80)

(c) Orientation of the quasi-
monogenic shearlet coefficients
with j = 2 and k = 2 (T = 80)

Figure 12: Orientation of different quasi-monogenic shearlet coefficients
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directional components. Fig. 13(b) shows the amplitude at a coarse scale that corresponds to
the scratch in the original image. Fig. 13(c) and 13(d) contain the phase at a higher scale for
two different shear parameters which provides a decomposition of the rhombi. The respective
orientations are depicted in Fig. 13(e) and 13(f).

(a) metal plate (b) Quasi-monogenic amplitude for j =
0, k = 0 (vertical cone)

(c) Quasi-monogenic phase for j = 1,
k = −1 (horizontal cone)

(d) Quasi-monogenic phase for j = 1,
k = 1 (horizontal cone)

(e) Quasi-monogenic orientation for j =
1, k = −1 (horizontal cone)

(f) Quasi-monogenic orientation for j =
1, k = 1 (horizontal cone)

Figure 13: Quasi-monogenic amplitude, phase and orientation for a metal plate texture.

In our second experiment we consider the image of the woolen net in Fig. 14(a). The coarse
scale amplitude in Fig. 14(b) captures the background of the original image. Fig. 14(c)
and Fig. 14(d) show the amplitude and the orientation of the horizontal parts of the net,
respectively.
Our last example is the image of a metallic surface with scratches in Fig. 15(a). The illu-
mination can be obtained from the coarse scale amplitude, see Fig. 15(b). Using different
shear parameters at a finer scale we can even decompose the scratches. The respective quasi-
monogenic amplitude, phase and orientation is given in Fig. 15(c)-Fig. 15(h).
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(a) woolen net (b) Quasi-monogenic amplitude for j =
0, k = 0 (horizontal cone)

(c) Quasi-monogenic amplitude for j =
2, k = 0 (vertical cone)

(d) Quasi-monogenic orientation for
j = 2, k = 0 (vertical cone)

Figure 14: Quasi-monogenic amplitude, phase and orientation for a woolen net.
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(a) metallic surface with
scratches

(b) Quasi-monogenic amplitude
for j = 0, k = 0 (vertical cone)

(c) Quasi-monogenic amplitude
for j = 2, k = −1 (horizontal
cone)

(d) Quasi-monogenic amplitude
for j = 2, k = 1 (horizontal cone)

(e) Quasi-monogenic phase for
j = 2, k = −1 (horizontal cone)

(f) Quasi-monogenic phase for
j = 2, k = 1 (horizontal cone)

(g) Quasi-monogenic orientation
for j = 2, k = −1 (horizontal
cone)

(h) Quasi-monogenic orientation
for j = 2, k = 1 (horizontal cone)

Figure 15: Quasi-monogenic amplitude, phase and orientation metallic surface
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