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Abstract. This paper deals with a special halftoning process, also called stippling, which aims to create the
illusion of a gray-value image by appropriately distributing black dots. Recently a framework for this task was
proposed by minimizing an attraction-repulsion functional consisting of the difference of two continuous, convex
functions. One of them describes attracting forces caused by the image gray values, the other one enforces repulsion
between dots. In this paper, we generalize this approach by considering quadrature error functionals on reproducing
kernel Hilbert spaces (RKHSs) with respect to the quadrature nodes, where we ask for optimal distributions of these
nodes. For special reproducing kernels these quadrature error functionals coincide with discrepancy functionals. It
turns out that the attraction-repulsion functional appears for a special RKHS of functions on R2. Moreover, our
more general framework enables us to consider optimal point distributions not only in R2 but also on the torus T2

and the sphere S2. For a large number of points the computation of such point distributions is a serious challenge
and requires fast algorithms. To this end, we work in RKHSs of bandlimited functions on T2 and S2. Then the
quadrature error functional can be rewritten as a least squares functional. We propose a nonlinear conjugate gra-
dient method to compute a minimizer of this functional and show that each iteration step can be computed in an
efficient way by fast Fourier transforms at nonequispaced nodes on the torus and the sphere. Numerical examples
demonstrate the good halftoning results obtained by our method.

Math Subject Classifications. 65T40, 65K10 53B21 49M15, 33C55.
Keywords and Phrases. Halftoning, dithering, stippling, point distributions, quadrature rules, discrepancies, opti-
mization methods on Riemannian manifolds, CG method, nonequispaced fast Fourier transform, spherical Fourier
transform.

1. Introduction. Halftoning is a method for creating the illusion of a continuous tone image
having only a small number of tones available. In this paper, we focus just on two tones, black
and white and ask for appropriate distributions of the black ’dots’. Applications of halftoning
include printing and geometry processing [46] as well as sampling problems occurring in rendering
[50], re-lighting [31] or object placement and artistic non-photorealistic image visualization [4,
41]. Halftoning has been an active field of research for many years. Dithering methods which
place the black dots at image grid points include, e.g., ordered dithering [7, 39], error diffusion
[10, 18, 27, 44, 45] global or direct binary search [1, 6] and structure-aware halftoning [37]. In
this paper we consider stippling algorithms which use the continuous domain as possible black dot
positions instead of the image grid. More precisely, consider a gray-value image u : G → [0, 1] on
a (squared) grid G := G×G, where G := { 1

2n + i
n : i = 0, . . . , n− 1}. Since ’black’ is 0 and ’white’

1, we will later use the corresponding weight distribution w := 1 − u. Now one intends to find
the positions pi ∈ [0, 1]2, i = 1, . . . ,M , of M black dots which create the illusion of the original
gray-value image u, see Figure 1.1 for illustration. One prominent method for placing such points
was proposed by Secord [41]. It is based on weighted centroidal Voronoi tessellations and Lloyd’s
iterative algorithm [23, 34]. A capacity-constrained variant of Lloyd’s algorithm was introduced
by Balzer et al. [4]. Recently, a novel halftoning framework was proposed in [47], where the vector
p :=

(
pi
)M
i=1
∈ R2M of the black dot positions was determined to be a minimizer of the functional

E(p) :=
M∑
i=1

∑
x∈G

w(x)‖pi − x‖2 − λ

2

M∑
i,j=1

‖pi − pj‖2. (1.1)

Here λ := 1
M

∑
x∈G w(x) is an equilibration parameter between the ’opposite’ functionals. The

intention for considering minimizers of this functional as ’good’ black dot positions comes originally
from electrostatic principles used in [40] for halftoning. The black points are considered as small
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particles of equal size moving in an environment, e.g., a glass pane above the image w. The
particles are attracted by the image forces w(x) at the points x ∈ G. On the other hand, there is
a force of repulsion between the particles modeled by the negative sign of the second sum which
becomes minimal if the distances between the particles are maximized.

Fig. 1.1. Left: Original 256 × 256 image. Right: Stippling result by minimizing (1.1) with m = 30150 points
using the technique from [47].

In this paper, we deal with the continuous version of the above attraction-repulsion functional

E(p) :=
M∑
i=1

∫
[0,1]2

w(x)‖pi − x‖2 dx− λ

2

M∑
i,j=1

‖pi − pj‖2, (1.2)

where w : [0, 1]2 → [0, 1] is defined on the whole cube [0, 1]2 and λ := 1
M

∫
[0,1]2

w(x) dx. We can
also consider (1.2) with more general functions ϕ : [0,∞)→ R:

Eϕ(p) :=
λ

2

M∑
i,j=1

ϕ(‖pi − pj‖2)−
M∑
i=1

∫
[0,1]2

w(x)ϕ(‖pi − x‖2) dx. (1.3)

In (1.2) the function ϕ(r) = −r was used. In [40] the function ϕ(r) = − log(r) with a modification
near zero was applied. Further, the authors in [47] also mentioned ϕ(r) = −rτ , 0 < τ < 2 and
ϕ(r) = r−τ , τ > 0 with a modification near zero as possible choices.

In this paper we look at the halftoning problem from different points of view. Our framework
arises primarily from approximation theory but touches many different areas in mathematics as
well. The proposed setting is quite general and enables us to consider in some sense optimal point
distributions not only in R2 but also on the torus T2 and the sphere S2. Let us remark that
even in the seemingly easiest case with w ≡ 1 the search for optimal point configurations is a very
tough problem, at least in more than one dimension. For example on the sphere with the Coulomb
potential ϕ(r) = r−1 we are confronted with the Thomson problem [48], which asks for the ground
states of a given number of electrons on the sphere. This famous problem originated lots of
publications concerning the computations [53], asymptotics [32] and characteristics [9] of optimal
distributions on the sphere, to name but a few. Another interesting application of our halftoning
procedure on the sphere may be found in methods for solving partial differential equations arising
in geoscience [19].
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In the following, we consider worst case quadrature errors on RKHSs in dependence on the quadra-
ture nodes and ask for optimal node distributions. In the literature this was mainly done for
constant weights w ≡ 1. A weighted setting appears in connection with the so-called ’importance
sampling’, see [36] and the references therein. It turns out that the attraction-repulsion functional
(1.2) leads to the same optimal point distributions as the quadrature error functional for a certain
RKHS of functions on R2 with the Euclidean distance kernel. For special reproducing kernels
we show that the quadrature error functionals coincide with discrepancy functionals. This adds
another interesting point of view which is closely related to the notation of ’capacity constraints’
in halftoning, see [3, 4]. As already mentioned before, the main challenge for computing optimal
point distributions is the design of fast algorithms. Here, we present an algorithm which works on
RKHSs of bandlimited functions on T2 and S2. We show that the quadrature error functional can
be rewritten as a least squares functional. Then we propose a nonlinear conjugate gradient (CG)
method for computing a minimizer. Indeed, on S2 we apply the CG method on manifolds, see
[16, 43]. This method was also successfully used for the approximation of spherical designs in [22].
We show how each step within the CG method can be realized in an efficient way by fast Fourier
transforms at nonequispaced nodes on the torus (NFFT) and the sphere (NFSFT), respectively.
Finally, we provide proof-of-concept numerical examples based on the NFFT library [29].

Our paper is organized as follows: In Section 2, we introduce the worst case quadrature errors on
RKHSs in dependence on the quadrature nodes and show that the attraction-repulsion functional
(1.2) appears as a special case. The relation to discrepancy functionals is proved in Section 3.
Furthermore, we provide discrepancy kernels on S1, T2 and S2 and compare them numerically with
the kernels −‖x−y‖2. Section 4 deals with the efficient computation of optimal point distributions.
In Subsection 4.1, the functionals are considered on RKHSs of bandlimited functions on S1, T2

and S2, where they can be rewritten as least squares functionals. We show that the evaluation
of these functionals as well as the computation of their gradients and vector multiplications with
their Hessians are realized in a fast way by using NFFTs/NFSFTs. Subsection 4.2 provides the
CG algorithms with respect to our setting. Finally, we present stippling examples on T2 and S2

in Section 5.

2. Quadrature Errors in RKHSs and Halftoning. In this section, we consider worst case
quadrature errors in RKHSs. We show that for special RKHSs the minimizers of the corresponding
error functional coincide with those of the halftoning functional (1.3). Of course our more general
setting can be used as starting point for various applications. In this paper, we will use it to design
halftoning procedures on submanifolds of Rd, more precisely on the torus T2 and the sphere S2.

2.1. Quadrature Error in RKHSs. Let X ∈ {Rd, [0, 1]d,S1,T2,S2}. A symmetric function
K : X × X → R is said to be positive semi-definite if for any M ∈ N points x1, . . . , xM ∈ X and
any a = (a1, . . . , aM )T 6= 0 the relation

aT (K(xi, xj))
M
i,j=1 a ≥ 0, (2.1)

holds true and positive definite if we have strict inequality in (2.1). A (real) reproducing kernel
Hilbert space (RKHS) is a Hilbert space having a reproducing kernel, i.e., a function K : X×X → R
which fulfills

Kx := K(·, x) ∈ HK ∀x ∈ X ,
f(x) = 〈f,K(·, x)〉HK ∀x ∈ X and ∀f ∈ HK . (2.2)

An equivalent definition of a RKHS says that it is a Hilbert space on which the point evaluation
functionals are continuous. To every RKHS there corresponds a unique positive semi-definite
kernel and conversely given a positive semi-definite function K there exists a unique RKHS of
real-valued function having K as its reproducing kernel, see [52, Theorem 1.1.1].
If K is in addition continuous and in L2(X × X ) it can be expanded into an absolutely and
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uniformly convergent series

K(x, y) :=
∞∑
l=1

λlψl(x)ψl(y) =
∞∑
l=1

λlψl(x)ψl(y)

of orthonormal eigenfunctions ψl ∈ L2(X ) and associated eigenvalues λl > 0 of the integral
operator TK associated with the kernel K

TKf(x) :=
∫
X
K(x, y)f(y) dy.

For more information on RKHSs we refer to [2].
In the following, let w : X → R≥0 be a nontrivial, continuous function. In the case X = Rd, which
is only of interest in Subsection 2.2, we suppose that w has compact support. Furthermore, we
suppose that

hw(x) :=
∫
X
w(y)K(x, y) dy ∈ HK , (2.3)

i.e.,

‖hw‖2HK = 〈
∫
X
w(y)K(·, y) dy, hw〉HK =

∫
X
w(y)〈K(·, y), hw〉HK dy

=
∫
X
w(y)hw(y) dy =

∫
X

∫
X
w(x)w(y)K(x, y) dxdy <∞. (2.4)

Set p := (p1, . . . , pM ) ∈ XM . We are interested in approximating the integrals

Iw(f) :=
∫
X
f(x)w(x) dx for f ∈ HK

by a quadrature rule

Q(f,p) := λ

M∑
i=1

f(pi), λ :=
1
M

∫
X
w(x) dx (2.5)

for appropriately chosen points pj ∈ X . This quadrature rule appears to play a key role in our
paper. In the literature mainly the case w ≡ 1 was considered, see [36] and the references therein.
The worst case quadrature error is given by

errK(p) := sup
f∈HK
‖f‖HK≤1

|Iw(f)−Q(f,p)| = ‖Iw −Q(·,p)‖, (2.6)

where the later norm is the operator norm of the linear functionals on HK . In particular, we see
that Iw(f) = Q(f,p) for some p ∈ XM and all f ∈ HK if and only if errK(p) = 0.
The following proposition shows a relation between this error functional and the halftoning func-
tional (1.3).
Theorem 2.1. Let K be a positive semi-definite function and HK the associated RKHS. Then
the relation

errK(p)2 = 2λEK(p) + ‖hw‖2HK
holds true, where

EK(p) :=
λ

2

M∑
i,j=1

K(pi, pj)−
M∑
i=1

∫
X
w(x)K(pi, x) dx. (2.7)
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In particular, the minimizers of errK and EK coincide.
Proof: We rewrite Iw as

Iw(f) =
∫
X
〈f,K(·, x)〉HKw(x) dx

= 〈f,
∫
X
w(x)K(·, x) dx〉HK = 〈f, hw〉HK ,

so that by (2.2) and (2.5)

Iw(f)−Q(f,p) = 〈f, hw − λ
M∑
i=1

K(·, pi)〉HK

and consequently

errK(p) = ‖hw − λ
M∑
i=1

K(·, pi)‖HK .

Now the squared worst case error reads

errK(p)2 = ‖hw‖2HK − 2λ〈hw,
M∑
i=1

K(·, pi)〉HK + λ2
M∑

i,j=1

K(pi, pj)

= ‖hw‖2HK − 2λ
M∑
i=1

hw(pi) + λ2
M∑

i,j=1

K(pi, pj)

= ‖hw‖2HK − 2λ
M∑
i=1

∫
X
w(x)K(pi, x) dx+ λ2

M∑
i,j=1

K(pi, pj) (2.8)

and the minimizers of this functional coincide with those of EK .

By the following proposition, slight modifications of the kernel do not change the minimizers of
the functional.
Proposition 2.2. Let K : X × X → R be a symmetric function and K̃(x, y) := aK(x, y) +
b(K(x, 0) +K(0, y)) + c with a > 0 and b, c ∈ R. Then the minimizers of EK and EK̃ coincide.
Proof: By (2.7) and the definition of λ, we obtain with constants Ci, i = 1, 2 independent of p
that

EK̃(p) =
λ

2

M∑
i,j=1

(
aK(pi, pj) + b (K(pi, 0) +K(0, pj))

)
−

M∑
i=1

∫
X

w(x)
(
aK(pi, x) + b (K(pi, 0) +K(0, x))

)
dx + C1

=
aλ

2

M∑
i,j=1

K(pi, pj)− a
M∑
i=1

∫
X

w(x)K(pi, x) dx

+
bλ

2
2M

M∑
i=1

K(pi, 0)− b
M∑
i=1

K(pi, 0)
∫
X

w(x) dx + C2,

=
aλ

2

M∑
i,j=1

K(pi, pj)− a
M∑
i=1

∫
X

w(x)K(pi, x) dx+ C2 = aEK(p) + C2.
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Hence the functionals EK̃ and EK have the same minimizers.

The functional EK looks as those in (1.3) if K is a radial kernel K(x, y) = ϕ(‖x− y‖2). Therefore
we ask for radial kernels which are positive semi-definite in the next subsection.

2.2. Relation to Halftoning Functionals on Rd. In this subsection, we consider the
relation between EK and (1.3) in detail. To this end, let in this subsection X := Rd and w : Rd →
R≥0 be a nontrivial, continuous function with compact support in [0, 1]d.
A kernel K : Rd × Rd → R is called a radial kernel if K(x, y) = ϕ(‖x − y‖2) for some function
ϕ : [0,∞) → R. We are looking for positive semi-definite, radial kernels K. Note that since
Rl is a subspace of Rd for l ≤ d positive semi-definiteness of a kernel on Rd implies its positive
semi-definiteness on Rl. There are positive definite, radial kernels on Rd as for example the inverse
multiquadric K(x, y) := (ε2 + ‖x − y‖)2

2)−τ , ε > 0, τ > d/2 related to ϕ(r) = r−τ in (1.3) or the
’hat function’ in R1. For other examples see [54, 17].
To get the kernel in (1.2) we have to consider conditionally positive definite, radial functions
Φ(x) := ϕ(‖x‖2) of order 1. These functions are determined to be continuous with the property
that for any M ∈ N points x1, . . . , xM ∈ Rd the relation

aT (Φ(xi − xj))Mi,j=1 a > 0 ∀a = (a1, . . . , aM )T 6≡ 0 with
M∑
i=1

ai = 0

holds true. For conditionally positive definite, radial functions of higher order which are not
relevant in this paper, we refer to [54]. Examples of conditionally positive definite, radial functions
of order 1 in Rd are

Φ(x) := −‖x‖τ2 , 0 < τ < 2,
Φ(x) := −(ε2 + ‖x‖22)τ , 0 < τ < 1, (multiquadrics).

Of course our dithering functional (1.2) is exactly EΦ(x−y) for the first function with τ = 1, while
the multiquadrics is related to (1.3) with ϕ(r) = −rτ . Unfortunately the above kernels Φ(x− y)
are not positive semi-definite. However, the slight modification of conditionally positive definite
radial kernels Φ of order 1 given by

KΦ(x, y) := Φ(x− y)− Φ(y)− Φ(x) + Φ(0) + 1

defines again a positive semi-definite kernel which gives rise to a RKHS HKΦ . These spaces can be
characterized as in [54, Theorem 10.18 - 10.21]. However, by Proposition 2.2, we see that EΦ(x−y)

and EKΦ have the same minimizers, so that we can work with the original kernel Φ.
Remark 2.3. (Halftoning in R1)
For X = R, the minimizers of (1.3) with ϕ(r) = −r can be described analytically. In one dimension
we can suppose that the point positions are ordered by p1 ≤ . . . ≤ pM such that our functional
simplifies to the strictly convex functional

Eϕ(p) :=
M∑
i=1

∫ 1

0

w(x)|pi − x|dx− λ

2

M∑
i,j=1

|pi − pj |

=
M∑
i=1

∫ 1

0

w(x)|pi − x|dx+ λ

M∑
i=1

(M − (2i− 1))pi.

The minimizer p̂ of this functional are computed componentwise by

0 =
∂

∂pi
Eϕ(p̂) = λ(M − (2i− 1)) +

∫ p̂i

0

w(x) dx−
∫ 1

p̂i

w(x) dx

= λ(M − (2i− 1)) +
∫ p̂i

0

w(x) dx− (λM −
∫ p̂i

0

w(x) dx)
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which leads to ∫ p̂i

0

w(x) dx = λ(i− 1
2

), i = 1, . . . ,M.

In other words, p̂1 is determined by
∫ p̂1

0
w(x) dx = λ/2 and the other points by

∫ p̂i+1

p̂i
w(x) dx = λ ,

i = 1, . . . ,M − 1.
There is an interesting connection to the Sobolev spaces

HKβ := {f : [0, 1]→ R : f(β) = 0, f abs. continuous, f ′ ∈ L2([0, 1])}

anchored at β ∈ [0, 1] which were considered in [36]. These RKHSs have the reproducing kernels

Kβ(x, y) :=
1
2
(|x− β|+ |y − β| − |x− y|).

Using similar arguments as in the proof of Proposition 2.2 one can check that our functional Eϕ
and the functionals EKβ , β ∈ [0, 1] have the same minimizers.

3. Discrepancies. The quadrature errors considered in the previous section are closely re-
lated to discrepancies which adds another interesting point of view. We consider in the following
X ∈ {[0, 1]d,S1,T2,S2} with the Lebesgue measure and the spherical measure µX respectively.
Let D := X × [0, R] and let B(c, r) := {x ∈ X : dX (c, x) ≤ r} be the ball centered at c ∈ X with
radius 0 ≤ r ≤ R. By 1B(c,r) we denote the characteristic function of B(c, r). Then we define

KB(x, y) :=
∫ R

0

∫
X

1B(c,r)(x)1B(c,r)(y) dcdr (3.1)

=
∫ R

0

µX (B(x, r) ∩ B(y, r)) dr,

where we used the for dµX (c) the abbreviation dc. Since

aT (KB(xi, xj))
M
i,j=1 a =

∫ R

0

∫
X

 M∑
j=1

aj1B(c,r)(xj)

2

dcdr ≥ 0

we see that KB is a positive semi-definite function. Integration on the RKHSs HKB is related to
the notation of discrepancy, see [36] and the references therein. Set t := (c, r) ∈ D and dt := dcdr.
We define the L2-discrepancy as

discB2 (p) :=

∫
D

(∫
X
w(x)1B(t)(x) dx− λ

M∑
i=1

1B(t)(pi)

)2

dt

 1
2

. (3.2)

The expression in the inner brackets relates the integral of w on B(c, r) with the number of
points contained in B(c, r) for fixed (c, r) ∈ D. The discrepancy is then the squared error of
their differences taken over all t ∈ D. This point of view is closely related to capacity-constrained
methods used in [3, 4].
The relation between the discrepancy discB2 and the quadrature error errKB is given by the following
theorem.
Theorem 3.1. Let KB be defined by (3.1) and let HKB be the associated RKHS of functions
on X . Then errKB given by (2.6) and discB2 determined by (3.2) coincide

errKB(p) = discB2 (p).
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Proof: Using the definition (3.1) of KB and (3.2) we obtain

(discB2 (p))2 =
∫
D

(∫
X
w(x)1B(t)(x)dx

)2

dt− 2λ
∫
D

∫
X
w(x)1B(t)(x)dx

( M∑
i=1

1B(t)(pi)
)
dt

+ λ2
M∑

i,j=1

∫
D

1B(t)(pi)1B(t)(pj)dt

=
∫
D

(∫
X
w(x)1B(t)(x) dx

)2

dt− 2λ
M∑
i=1

∫
X
w(x)

∫
D

1B(t)(x)1B(t)(pi)dtdx

+ λ2
M∑

i,j=1

KB(pi, pj)

=
∫
D

(∫
X
w(x)1B(t)(x)dx

)2

dt− 2λ
M∑
i=1

∫
X
w(x)KB(pi, x)dx+ λ2

M∑
i,j=1

KB(pi, pj).

Finally we see by (2.4) that∫
D

(∫
X
w(x)1B(t)(x) dx

)2

dt =
∫
X

∫
X
w(x)w(y)

∫
D

1B(t)(x)1B(t)(y)dtdxdy

=
∫
X

∫
X
w(x)w(y)KB(x, y)dtdx dy = ‖hw‖2HKB .

and we are done by (2.8).

Next we want to examine the relation between the distance kernel K(x, y) = Φ(x−y) = −‖x−y‖2
considered in Subsection 2.2 and the ’discrepancy kernel’ KB defined in (3.1) for X ∈ {S1,T2,S2}.

Kernels on S1. The circle S1 is naturally embedded in R2 by

S1 := {x := (2π)−1(cos 2πα, sin 2πα)T ∈ R2 : α ∈ [0, 1)},
where the correspondence between x ∈ S1 and α ∈ [0, 1) is one-to-one. The geodesic distance is
given for x := (cos 2πα, sin 2πα)T and y := (cos 2πβ, sin 2πβ)T by

dS1(x, y) = (2π)−1 arccos (cos 2π(α− β)) = min{|α− β|, 1− |α− β|} ≤ 1
2
.

The restriction of the negative Euclidean distance on S1 is

Φ(x− y) = −‖x− y‖2 = −(2π)−1
√

(cos 2πα− cos 2πβ)2 + (sin 2πα− sin 2πβ)2

= − 1
π
| sinπ(α− β)| = − 1

π
| sinπdS1(x, y)| .

For the discrepancy kernel we use the balls B(c, r), c ∈ S1, 0 ≤ r ≤ 1/2 and obtain with d :=
dS1(x, y) that

KB(x, y) =
∫ 1

2

0

µS1(B(x, r) ∩ B(y, r)) dr

=
∫ 1

2

d
2

2
(
r − d

2

)
dr +

∫ 1
2

1
2−

d
2

2
(
r − 1

2
+
d

2

)
dr

=
1
4

+
1
2
d(d− 1).
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Note that Wahba’s smoothing spline kernel R of order m = 1 on S1, cf., [52, pp. 21], is given by

R(x, y) = 1 + 2
∞∑
k=1

1
(2πk)2

cos(2πkd)

=
13
12

+
1
2
d(d− 1)

=
5
6

+KB(x, y)

so that EKB and ER have the same minimizers. The kernel R is the reproducing kernel of the
Hilbert space consisting of the functions

f(x) = f̃(α) := f0 + 2
∞∑
k=1

fk cos(2πkα) with
∞∑
k=1

k2f2
k <∞,

x := (cos 2πα, sin 2πα)T, with inner product

〈f, g〉HR =
∫ 1

0

f̃(α) dα
∫ 1

0

g̃(α) dα+
∫ 1

0

f̃ ′(α)g̃′(α) dα.

The kernels Φ(x − (−(2π)−1, 0)T) and KB(x, (−(2π)−1, 0)T) as functions of α are plotted in Fig-
ure 3.1. Since adding a constant and multiplying the kernel by a positive constant does not change
the local minimizers of our functional (2.7), we compare the different kernels after an appropriate
affine scaling. That is the maximum and the minimum of the scaled kernels are set without loss
of generality to 1 and 0, respectively. The figure shows that both kernels are quite similar.

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

Φ(x− (−(2π)−1, 0)T)

KB(x, (−(2π)−1, 0)T)

Fig. 3.1. Scaled kernels Φ(x− (−(2π)−1, 0)T) and KB(x, (−(2π)−1, 0)T) on S1 as functions of α.

By the following remark, the minimizers of EK for the discrepancy kernel K can be characterized
analytically. The arguments are similar as those in Remark 2.3.
Remark 3.2. (Halftoning in S1)
The discrepancy kernel reads up to a constant as K(x, y) = 1

2 ([x− y]21 − [x− y]1), where

[x− y]1 :=
{ |x− y| if |x− y| ≤ 1/2,

1− |x− y| otherwise, x, y ∈ [0, 1].

We are looking for minimizers of

M∑
i=1

∫ 1

0

w(x)[pi − x]1 dx− λ

2

M∑
i,j=1

[pi − pj ]1 −
M∑
i=1

∫ 1

0

w(x)[pi − x]21 dx+
λ

2

M∑
i,j=1

[pi − pj ]21.
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If |pi − pj | ≥ 1/2 we obtain that

−[pi − pj ]1 + [pi − pj ]21 = −1 + |pi − pj |+ 1− 2|pi − pj |+ |pi − pj |2 = −|pi − pj |+ |pi − pj |2.
Thus we can replace [·]1 by | · | in the functional. Now an ordering of the point positions 0 ≤ p1 ≤
. . . ≤ pM ≤ 1 results as in Remark 2.3 in

λ

M∑
i=1

(M − (2i− 1))pi +
M∑
i=1

∫ 1

0

w(x)|pi − x|dx+
λ

2

M∑
i,j=1

(pi − pj)2 −
M∑
i=1

∫ 1

0

w(x)(pi − x)2 dx.

Setting the gradient to zero we obtain∫ p̂i

0

w(x) dx = λ(i− 1
2

) + λ
( M∑
i=1

p̂i −M
∫ 1

0
xw(x) dx∫ 1

0
w(x) dx

)
, i = 1, . . . ,M.

Subtracting the i-th equation from the (i + 1)-st one we see that the points have to fulfill∫ p̂i+1

p̂i
w(x) dx = λ , i = 1, . . . ,M − 1. For a constant weight w ≡ c, it follows that p̂1 can be

chosen arbitrarily in [0, λ], where λ = c/M .
Kernels on T2. The torus T2 := S1 × S1 ⊂ R2 × R2 = R4 is naturally embedded in R4 by

T2 := {x := (2π)−1(cos 2πα1, sin 2πα1, cos 2πα2, sin 2πα2)T ∈ R4 : α1, α2 ∈ [0, 1)}
with geodesic distance

dT2(x, y) =
√

dS1(α1, β1)2 + dS1(α2, β2)2

for

x := (2π)−1(cos 2πα1, sin 2πα1, cos 2πα2, sin 2πα2)T,

y := (2π)−1(cos 2πβ1, sin 2πβ1, cos 2πβ2, sin 2πβ2)T.

The restriction of the negative Euclidean distance is

Φ(x− y) := −‖x− y‖2 = − 1
π

√
sin2 π(α1 − β1) + sin2 π(α2 − β2)

= − 1
π

√
1− cosπ(α1 + α2 − β1 − β2) cosπ(α1 − α2 − β1 + β2).

Since the torus is flat, the balls B(x, r) on T2 with radius r ≤ R ≤ 1/2 can be considered as
two-dimensional Euclidean balls B̃((α1, α2), r). In the Euclidean plane R2 the area of intersection
of two balls of radius r with distance d between their centers is

a(r, d) :=

{
2r2 arccos(d/(2r))− d√r2 − d2/4, r ≥ d/2,
0, else.

With the integral

AR(d) :=
∫ R

0

a(r, d) dr

=

{
R
3 (2R2 arccos(d/(2R))−√4R2 − d2)− d3

12 log
(
d/(2R+

√
4R2 − d2)

)
, d ≤ 2R,

0, else,
(3.3)

we obtain the kernel

KB(x, y) =
∫ R

0

µT2(Br(x) ∩ Br(y))dr =
4∑
i=1

∫ R

di/2

a(r, di) dr =
4∑
i=1

AR(di),
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d1

d2

d4

d3

Fig. 3.2. Visualization of the intersection of two balls on the torus T2, cf. (3.3) - (3.4).

where

d1 :=
√
|α1 − β1|2 + |α2 − β2|2, d2 :=

√
(|α1 − β1| − 1)2 + |α2 − β2|2,

d3 :=
√
|α1 − β1|2 + (|α2 − β2| − 1)2, d4 :=

√
(|α1 − β1| − 1)2 + (|α2 − β2| − 1)2.

(3.4)

For an illustration of the above relations see Figure 3.2, where one easily observes that this kernel
is the periodization of the radial kernel A1/2(d). We remark that this kernel can not be written
in the form KB(x, y) = K̃(dT2(x, y)), hence it is not rotationally invariant. Figure 3.3, left shows
the appropriately scaled kernels Φ(x) and KB(x, 0) as functions of (α1, α2) which have nearly the
same shape.
For our implementations it will be necessary to approximate the kernels by a trigonometric poly-
nomial. Therefore we expand the kernel KB in a Fourier series

KB(x, y) =
∑

(n1,n2)T∈Z2

K̂B(n1, n2)e−2πi(n1,n2)T·(α1−β1,α2−β2)T
.

Since the kernel KB is the periodization of the radial kernel A1/2(d) the Fourier coefficients of KB
are given by

K̂B(n1, n2) = k̂B(
√
n2

1 + n2
2),

where

k̂B(0) = 2π
∫ 1

0

xAR(x)dx,

k̂B(r) = 2π
∫ 1

0

xAR(x)J0(2πxr)dx, r > 0,

and J0 is the Bessel function of first kind and order 0. We further approximate k̂B(r) by a function

ˆ̃
kB(r) := a/r3 + (b+ c sin(d+ 2πr))/r4,
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where the parameters a, b, c, d are determined such that the least squares fit ‖(ˆ̃kB(rj))1200
i=0 −

(k̂B(ri))1200
i=0 ‖22 with ri := 1 + i/100 becomes minimal. This results in

ˆ̃
kB(r) = 0.00599

(
1/r3 + (0.21 + 0.35 sin(1.87 + 2πr))/r4

)
. (3.5)

The right-hand side of Figure 3.3 depicts the scaled versions of the kernel KB(x, 0) and the
truncation of K̃B(x, 0) with bandwidth N = 40.

Fig. 3.3. Left: Scaled kernels Φ(x) and KB(x, 0) on T2. Right: Scaled kernels KB(x, 0) and K̃B(x, 0) as
functions of (α1, α2).

Kernels on S2. The sphere S2 is embedded in R3 by S2 := {x ∈ R3 : ‖x‖2 = 1}. For x ∈ S2 we
make use of the parameterization in spherical coordinates

x = x(θ, ϕ) := (sin θ cosϕ, sin θ sinϕ, cos θ)T, (ϕ, θ) ∈ [0, 2π)× [0, π].

The geodesic distance is given by

dS2(x, y) = arccos(x · y), x, y ∈ S2.

The restricted distance kernel has the form

Φ(x− y) = −‖x− y‖2 = −2 sin(dS2(x, y)/2).

On the sphere there is no special direction. Hence the discrepancy kernel KB obtained from
the spherical caps B(c, r), c ∈ S2 with radius r ≤ π is rotationally invariant, i.e., KB(x, y) =
K̃B(dS2(x, y)). For computing the function K̃B we need the area of intersection of two spherical
caps with center distance d and radius r which is given by

a(r, d) =



0, 0 ≤ r ≤ d/2,
4 [arccos (sin(d/2)/ sin r)− cos r arccos (tan(d/2) cot r)] , d/2 < r < π/2,
4r − 2d, r = π/2,
4 [arccos (sin(d/2)/ sin r)− cos r arccos (tan(d/2) cot r)] , π/2 < r < π − d/2,
−4π cos r, π − d/2 ≤ r < π.

Then the discrepancy kernel is given by

K̃B(d) =
∫ π

0

a(r, d) dr.

Figure 3.4 shows a plot of the scaled distance and discrepancy kernels as functions of dS2(x, (0, 0, 1)T).
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0.0
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0.6

0.8

1.0

0 1 2 3
d = dS2(x, (0, 0, 1)T)

Φ(x)

KB(x, (0, 0, 1)T)

Fig. 3.4. Scaled kernels Φ(x) and KB(x, (0, 0, 1)T) on S2 as functions of dS2 (x, (0, 0, 1)T).

4. Computation of Minimizers on S1, T2 and S2. In this section, we develop algorithms
for the efficient computation of minimizers p̂ of functionals EK for given functions w on X ∈
{S1,T2,S2}. The case X = S1 is only included for convenience. In the next section, we will
use the resulting coordinates p̂i, i = 1, . . . ,M as point positions for halftoning w on the torus
and the sphere. Our algorithms rest upon bandlimited kernels K = KN which approximate the
distance/discrepancy kernels from the previous section. First, we reformulate EKN as a nonlinear
least squares functional EN . We will see that the evaluation of this functional, its gradient and
the vector multiplication with its Hessian at any point p ∈ XM can be realized in an efficient way.
This will be used within the nonlinear CG method to compute a minimizer of EN .

4.1. A Least Squares Setting. Let X ∈ {S1,T2,S2} and let {ψl : l ∈ N} be an orthonormal
basis of L2(X ). Then any real-valued function w ∈ L2(X ) can be written in the form

w(x) =
∞∑
l=1

ŵlψl(x), ŵl = 〈f, ψl〉L2 =
∫
X
w(x)ψl(x) dx. (4.1)

We will work in spaces of bandlimited functions

ΠN (X ) := span{ψl : l = 1, . . . , dN}
of dimension dN := dimΠN (X ). More precisely, we will use the following settings:

ΠN (S1) := span{ e−2πin(·) : n = −N/2, . . . , N/2}, dN = N + 1,
ΠN (T2) := span{ e−2πin(·) : n = (n1, n2), nj = −N/2, . . . , N/2, j = 1, 2}, dN = (N + 1)2,

ΠN (S2) := span{Y kn : n = 0, . . . , N ; k = −n, . . . , n}, dN = (N + 1)2,

where N is supposed to be even in the first two cases. Here Y kn denote the spherical harmonics of
degree n and order k, cf. [35],

Y kn (x) = Y kn (θ, ϕ) :=

√
2n+ 1

4π
P |k|n (cos θ) eikϕ,

where the associated Legendre functions P kn : [−1, 1] → R and the Legendre polynomials Pn :
[−1, 1]→ R are given by

P kn (x) :=
(

(n− k)!
(n+ k)!

)1/2 (
1− x2

)k/2 dk

dxk
P kn (x), n ∈ N0, k = 0, . . . , n,

Pn(x) :=
1

2nn!
dn

dxn
(
x2 − 1

)n
, n ∈ N0.
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We will apply bandlimited kernels of the form

KN (x, y) :=
dN∑
l=1

λlψl(x)ψl(y) (4.2)

with λl > 0. Note that these kernels are reproducing kernels for the RKHSs HKN := ΠN (X ) with
the inner product

〈f, g〉HKN =
dN∑
l=1

f̂lĝl
λl

.

We are interested in minimizers of EKN for given w ∈ L2(X ). For the efficient computation of
these minimizers it is useful to rewrite the functional as a weighted least squares problem.
Theorem 4.1. Let the kernel KN be given by (4.2) and let HKN := ΠN (X ) be the associated
RKHS. Then the relation errKN (p)2 = EN (p) holds true, where

EN (p) :=
dN∑
l=1

λl

∣∣∣∣∣λ
M∑
i=1

ψl(pi)− ŵl
∣∣∣∣∣
2

= ‖Λ 1
2F (p)‖22 (4.3)

with Λ := diag(λl)dNl=1 and F (p) = (Fl(p))dNl=1, Fl(p) := λ
M∑
i=1

ψl(pi) − ŵl. In particular, the

functionals EKN and EN have the same minimizers.
Proof: We rewrite the function in (4.3) as

EN (p) = λ2
dN∑
l=1

λl

∣∣∣∣∣
M∑
i=1

(
ψl(pi)− ŵl

Mλ

)∣∣∣∣∣
2

= λ2
dN∑
l=1

λl

M∑
i=1

(
ψl(pi)− ŵl

Mλ

) M∑
j=1

(
ψl(pj)− ŵl

Mλ

)

= λ2
dN∑
l=1

λl

M∑
i=1

M∑
j=1

( |ŵl|2
M2λ2

− ŵl
Mλ

ψl(pi)− ŵl
Mλ

ψl(pj) + ψl(pi)ψl(pj)
)

=
dN∑
l=1

λl|ŵl|2 − 2λRe

(
dN∑
l=1

λlŵl

M∑
i=1

ψl(pi)

)
+ λ2

M∑
i=1

M∑
j=1

KN (pi, pj).

Using the relation hw(x) =
∑dN
l=1 λlŵlψl(x), cf. (2.3), we further conclude that

EN (p) = ‖hw‖2HKN − 2λ
M∑
i=1

∫
X
w(x)KN (pi, x)dx+ λ2

M∑
i=1

M∑
j=1

KN (pi, pj)

which yields the assertion.

Remark 4.2. (Relation to spherical designs)
By Theorem 4.1 we have that Iw(f) = Q(f,p) for some p ∈ XM and all f ∈ HKN if and only if
errKN (p)2 = EN (p) = 0.
Consider the case X = S2, w ≡ 1 =

√
4πY 0

0 and

KN (x, y) :=
N∑
n=0

n∑
k=−n

λnY
k
n (x)Y kn (y) =

N∑
n=0

λn
2n+ 1

4π
Pn(x · y). (4.4)
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A set {pi : i = 1, . . . ,M} satisfying∫
S2
f(x) dx =

4π
M

M∑
i=1

f(pi), for all f ∈ ΠN (S2)

is called spherical N -design. The concept of spherical N -designs was introduced by Delsarte,
Goethals and Seidel [13]. Up to now there is no theoretical result which proves the existence of
an N -design with M = (N + 1)2 nodes for arbitrary N ∈ N. But recently, in [11] it was verified
that for N = 1, . . . , 100, spherical N -designs with (N + 1)2 nodes exist using the characterization
of fundamental spherical N -designs and interval arithmetic. For further recent developments on
spherical N -designs and related topics we refer to the survey article [5]. Finally, we remark that
the equivalence between spherical N -designs and the relation

EN (p) = λ2
N∑
n=1

n∑
k=−n

λn

∣∣∣∣∣
M∑
i=1

Y kn (pi)

∣∣∣∣∣
2

= 0

was applied by Sloan and Womersley in [42].
The rest of this section describes how to compute for given ŵl, l = 1, . . . , dN local minimizers of
EN (p) in an efficient way also for large numbers M of point positions. As our algorithm of choice
we present the nonlinear CG method in the next subsection. However, the efficient computation
of each CG step rests upon

• algorithms for the fast evaluation of bandlimited functions on S1,T2 and S2,
• simple representations of the gradient and the Hessian of EN .

In the following, we describe these two items in more detail. The evaluation of bandlimited
functions

f(pi) =
dN∑
l=1

f̂lψl(pi), i = 1, . . . ,M

can be written in matrix-vector form as

f = AN f̂ ,

where f := (f(pi))
M
i=1, f̂ :=

(
f̂l

)dN
l=1

appropriately ordered and

AN :=


FN =

(
e−2πinpi

)
i=1,...,M ;n=−N/2,...,N/2 ∈ CM,N+1 for S1,

F 2,N =
(

e−2πi(n1,n2)T·pi
)
i=1,...,M ;ni=−N/2,...,N/2,i=1,2

∈ CM,(N+1)2
for T2,

Y N = (Y nk (pi))i=1,...,M ;n=0,...,N, |k|≤n ∈ CM,(N+1)2
for S2.

(4.5)

Recently fast algorithms for the matrix-vector multiplication with AN and A
T

N were proposed.
More precisely, the algorithms for the first two cases S1 and T2, called nonequispaced fast Fourier
transform (NFFT) or unequally spaced fast Fourier transform can be found, e.g., in [8, 15, 29, 38].
The algorithms on the sphere S2, called nonequispaced fast spherical Fourier transform (NFSFT)
were developed in [30, 33], see also [14, 26]. In our numerical examples we have applied the software
package [28]. These algorithms for the multiplication with the matrices AN and A

T

N given in (4.5)
achieve the following arithmetic complexity:

O(N logN +M log(1/ε)) for S1,

O(N2 logN +M log2(1/ε)) for T2,

O(N2 log2N +M log2(1/ε)) for S2,
(4.6)

where ε is the prescribed accuracy.
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Using these algorithms the same complexity as in (4.6) is required for the evaluation of EN (p) as
the following corollary states.
Corollary 4.3. (Efficient evaluation of F (p) and EN (p))
For a given point p ∈ XM and ŵl, l = 1, . . . , dN , the computation of F (p) and EN (p) can be
realized with the arithmetic complexity (4.6).
Proof: We have that (

M∑
i=1

ψl(pi)

)dN
l=1

= A
T

Ne, e := (1, . . . , 1)T ∈ RM .

Hence the vector on the left-hand side can be computed with (4.6) arithmetic operations by ap-
plying NFFT or NFSFT. The remaining operations do not increase this complexity.

Next we consider the gradient of EN . By ∇Xψ we denote the gradient of ψ on X and by ∇iXEN the
derivative of EN with respect to the i-th component vector pi. Then straightforward computation
shows that the gradient ∇ = ∇XM of EN at p ∈ XM is given by ∇EN (p) =

(∇iXEN (p)
)M
i=1

, where

∇iXEN (p) = 2λRe
[ dN∑
l=1

λl (λ
M∑
j=1

ψl(pj)− ŵl)︸ ︷︷ ︸
Fl(p)

∇Xψl(pi).
]

Hence the gradient can be written as

∇EN (p) = 2Re
[
JF (p)

T
ΛF (p)

]
, (4.7)

where

JF (p) :=
((∇iXFl(pi))T

)dN ,M
l=1,i=1

= λ
(
∇Xψl(pi)

)dN ,M
l=1,i=1

denotes the Jacobian matrix of F . For our three settings the gradients specify as follows:

Gradient on S1. For

EN (p) =
N/2∑

n=−N/2

λn|λ
m∑
i=1

e−2πinpi − ŵn|2

we obtain with ∇S1ψn(pi) = −2πin e−2πinpi that

JF (p)
T

= λ
(−2πin e−2πinpi

)M,N/2

i=1,n=−N/2 = λFNDN , DN := diag (−2πin)N/2n=−N/2 . (4.8)

Gradient on T2. For

EN (p) =
N/2∑

n1,n2=−N/2

λn|λ
M∑
i=1

e−2πin·pi − ŵn|2, n := (n1, n2)T

we get with ∇T2ψn(pi) = −2πin e−2πin·pi and an appropriate ordering that

JF (p)
T

= λ(I2 ⊗ F 2,N )
(

IN ⊗DN

DN ⊗ IN

)
, (4.9)

where IN denotes the N ×N identity matrix and ⊗ the Kronecker product.
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Gradient on S2. On the sphere we will only work with kernels of the form (4.4) such that

EN (p) =
N∑
n=0

n∑
k=−n

λn|λ
m∑
i=1

Y kn (pi)− ŵkn|2.

Then we have to clarify the definition of the gradient of a function on S2. To this end, let
TxS2 := {v ∈ R3 : 〈v,x〉 = 0} be the tangent space at a point x ∈ S2. For x := x(θ, ϕ) ∈
S2\{(0, 0,±1)T} this tangent space is spanned by the orthonormal vectors eϕ := (− sinϕ, cosϕ, 0)T

and eθ := (cos θ cosϕ, cos θ sinϕ,− sin θ)T. Then the spherical gradient operator is defined as

∇S2 := eϕ
1

sin θ
∂

∂ϕ
+ eθ

∂

∂θ
,

cf. [20, 49]. Note that this is the orthogonal projection of ∇ψ̃(x) ∈ R3 onto TxS2, where ψ̃ denotes
an extension of ψ to R3. In particular, the derivatives of the spherical harmonics can be computed
by

∂

∂ϕ
Y kn (θ, ϕ) = ikY kn (θ, ϕ),

sin θ
∂

∂θ
Y kn (θ, ϕ) = n

√
(n+ 1)2 − k2

(2n+ 1)(2n+ 3)︸ ︷︷ ︸
akn+1

Y kn+1(θ, ϕ)− (n+ 1)

√
n2 − k2

(2n+ 1)(2n− 1)︸ ︷︷ ︸
bkn−1

Y kn−1(θ, ϕ),

where Y kn−1 := 0 for |k| > n−1, see [51, pp. 146]. Using this relation we obtain for pi = x(θi, ϕi) ∈
S2\{(0, 0,±1)T} that

∇S2Y kn (pi) =
1

sin θi
ik Y kn (ϕi, θi) eϕi +

1
sin θi

(
akn+1Y

k
n+1(ϕi, θi)− bkn−1Y

k
n−1(ϕi, θi)

)
eθi

and consequently

∇iS2EN (p) =
2λ

sin θi
Re

[
N∑
n=0

n∑
k=−n

Y kn (ϕi, θi) ik λnF kn (p)

]
eϕi (4.10)

+
2λ

sin θi
Re

[
N+1∑
n=0

n∑
k=−n

Y kn (ϕi, θi)
(
aknλn−1F

k
n−1(p)− bknλn+1F

k
n+1(p)

)]
eθi

= xϕieϕi + xθieθi ,

where F kN+1(p) = F kN+2(p) = 0. Hence the coordinate vectors xϕ := (xϕi)
M
i=1 and xθ := (xθi)

M
i=1

can be computed by(
xϕ
xθ

)
= 2λRe

[
(I2 ⊗ S−1)

(
Y NDN,ϕ

Y N+1D̃N,θ

)
ΛF (p)

]
(4.11)

where S := diag (sin θi)
M
i=1, DN,ϕ is the diagonal matrix determined by the first summand in

(4.10) and D̃N,θ the matrix with at most two non-zero entries in each row corresponding to the
second summand in (4.10).
In summary we obtain the following corollary.
Corollary 4.4. (Efficient evaluation of ∇EN (p))
For a given point p ∈ XM and given ŵl, l = 1, . . . , dN , the gradient ∇EN (p) can be computed
with the arithmetic complexity given by (4.6).
Proof: The proof follows by Corollary 4.3 and the relation (4.7) together with (4.8), (4.9), (4.11).



18 Manuel Gräf, Daniel Potts, and Gabriele Steidl

Finally, we are interested in the Hessian H = HXM of EN . By HXψ we denote the Hessian of ψ
on X . By straightforward computation we obtain that

HEN (p) =
(
Hi,jEN (p)

)M
i,j=1

,

where

Hi,jEN (p) = 2λ2Re

[
dN∑
l=1

λl∇Xψl(pi)
(
∇Xψl(pj)

)T

]
(4.12)

+ δi,j2λRe


dN∑
l=1

λl
(
λ

M∑
m=1

ψl(pm)− ŵl
)

︸ ︷︷ ︸
Fl(p)

HXψl(pi)

 . (4.13)

Instead of the Hessian of EN we will also apply its approximation H̃EN which involves only the
first summand (4.12) in the above expression, i.e., the diagonal part is neglected so that

H̃EN (p) := 2λ2Re

(
dN∑
l=1

λl∇Xψl(pi)
(
∇Xψl(pj)

)T

)M
i,j=1

= 2Re
[
JF (p)

T
Λ JF (p)

]
. (4.14)

This matrix does not depend on the values ŵl. Note that the approximate Hessian is also used in
the Gauss-Newton method for solving nonlinear least squares problems. see [25, p. 185]. Let us
specify the Hessian for our three settings.

Hessian on S1. Since HS1

(
e−2πinpi

)
= (2πin)2 e−2πinpi , we obtain together with (4.14) and (4.8)

that

HEN (p) = 2λ2Re
[
FND2

NΛFN
T
]

+ 2λdiag
(
Re
[
FND2

NΛF (p)
])
.

Hessian on T2. We have that

HT2

(
e−2πin·pi

)
= −4π2

(
n2

1 n1n2

n1n2 n2
2

)
e−2πin·pi .

Hence, the block-diagonal part (4.13) of the Hessian is given by

2λRe
[
(I2 ⊗ F 2,N )

(
IN ⊗D2

N DN ⊗DN

DN ⊗DN D2
N ⊗ IN

)
(I2 ⊗ΛF (p))

]
and corresponding sorting. Thus, the multiplication of the first (4.12) and second part (4.13) of
the Hessian with a vector can be realized in a fast way by applying (4.14) and (4.9).

Hessian on S2. The Hessian HS2ψ(x) is linear operator on TxS2. For x := x(θ, ϕ) we consider
the corresponding matrix with respect to the basis {eθ, eϕ}. Then, the Hessian reads as

sin2 θHS2 =
(

sin θ
∂

∂θ
,
∂

∂θ

)T(
sin θ

∂

∂θ
,
∂

∂θ

)
− cos θ

(
sin θ ∂∂θ

∂
∂ϕ

∂
∂ϕ − sin θ ∂∂θ

)
,

cf. [49]. Using the relations for the derivatives of the spherical harmonics again, we conclude that
the block-diagonal part (4.13) of the Hessian can be expressed by

2λRe
[
(I2 ⊗ S−2) M (I2 ⊗ΛF (p))

]
, (4.15)
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where

M :=
(

Y N+2D̃N+1,θD̃N,θ −CY N+1D̃N,θ Y N+1D̃N,θDN,ϕ −CY NDN,ϕ

Y N+1D̃N,θDN,ϕ −CY NDN,ϕ Y NDN,ϕDN,ϕ + CY N+1D̃N,θ

)
.

with C := diag(cos θi)Mi=1 and corresponding sorting. Hence, the multiplication of the first part
(4.12) and second one (4.13) of the Hessian with a vector can be realized in a fast way by applying
(4.14) and (4.9).

We summarize our findings (4.12) - (4.15) in the following corollary.
Corollary 4.5. (Efficient vector multiplication with HEN (p))
For a given point p ∈ XM and given ŵl, l = 1, . . . , dN , the multiplication of a vector with the
Hessian HEN (p) can be computed with the arithmetic complexity (4.6).

4.2. Nonlinear CG Algorithm. Among the various minimization strategies for weighted
least squares functionals as the Newton method, the Levenberg-Marquardt algorithm and the
nonlinear CG algorithm we restrict ourselves to the later one. The reason for this is that very
good results were achieved by this method for the computation of spherical designs in [22]. Since
we can mainly follow the lines of [22] we only briefly sketch the approach for our halftoning setting.
For X = S1 and X = T2 we apply the nonlinear CG algorithm in the Euclidean space. A good
survey of this topic was given in [24].

Algorithm: (CG algorithm in the Euclidean space)
Initialization: p(0), h(0) := ∇EN (p(0)), d(0) = −h(0)

For r = 0, 1, . . . repeat until a convergence criterion is reached
1. Determine the step size αr by the search of a local minimum along the line p(r) + td(r),
t > 0, i.e., by (d(r))T∇EN

(
p(r) + αrd

(r)
)

= 0.

2. p(r+1) := p(r) + αrd
(r)

3. h(r+1) := ∇EN (p(r+1))
4. Compute βr by

βr :=
〈h(r+1),HEN (p(r+1))d(r)〉
〈d(r),HEN (p(r+1))d(r)〉 .

5. d(r+1) := −h(r+1) + βrd
(r)

There exist other CG algorithms which differ by the choice of βr. The above method is the one
for exact conjugacy proposed by Daniel in [12]. In the numerical part we will also apply a CG
variant, where the Hessian HEN is replaced by the approximate Hessian H̃EN . Furthermore, we
replace the first step of the algorithm by a one-dimensional Newton step, where the step size is
determined by

αr := − 〈d(r),h(r)〉
〈d(r),HEN (p(r))d(r)〉 . (4.16)

Using the results from the previous subsection, we conclude that every CG iteration can be real-
ized with the arithmetic complexity given in (4.6).

In the case X = S2 we use the nonlinear CG algorithm on Riemannian manifolds (M, gM) with
Riemannian metric gM, see [16, 43]. In Riemannian geometry the addition of a tangent vector
from TxM to the base point x ∈ M as required in step 2 of the CG algorithm is replaced by
the exponential map expx : TxM→M. Furthermore, the translation of tangent vectors which is
needed in steps 4 and 5 of the CG algorithm is replaced by the concept of parallel transport of a
vector along geodesics which is itself based on the Levi-Civita connection.
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In our applications we deal with M := (S2)M . In the following, we introduce the above concepts
on S2 which generalize in a straightforward way to (S2)M . For x ∈ S2 and v ∈ TxS2, we consider
the geodesic curve g : [0, T ]→ S2, T > 0 given by

g(t) = cos(t‖v‖2)x+ sin(t‖v‖2)
v

‖v‖2︸ ︷︷ ︸
ṽ

, t > 0,

i.e., g(0) = x and ġ(0) = v. Note that the vectors ṽ := v
‖v‖2 and x× ṽ form an orthonormal system

of TxS2 and that any w ∈ TxS2 can be written as w = 〈w, ṽ〉ṽ+ 〈w, x× ṽ〉(x× ṽ). The exponential
map expx : TxS2 → S2 is explicitely parameterized by the geodesic due to expx(v) = g(1), see [49,
p. 19]. Now the parallel transport of a vector w ∈ TxS2 along the geodesic g is realized by

Pg(t)(w) := 〈w, ṽ〉 ġ(t)
‖v‖2 + 〈w, x× ṽ〉(g(t)× ġ(t)

‖v‖2 ),

= 〈w, ṽ〉 (cos(‖v‖2t) ṽ − sin(‖v‖2t)x) + w − 〈w, ṽ〉ṽ, t ≥ 0.

An illustration of the parallel transport is given in Figure 4.1.
After these preliminaries the CG algorithm to minimize EN on M := (S2)M reads as follows:

Algorithm: (CG algorithm on Riemannian manifolds)
Initialization: p(0), h(0) := ∇EN (p(0)), d(0) = −h(0)

For r = 0, 1, . . . repeat until a convergence criterion is reached
1. Determine the step size αr by (P g(αr)d

(r))T∇EN (g(αr)) = 0.

2. p(r+1) := expp(r)

(
αrd

(r)
)

3. h(r+1) := ∇EN (p(r+1))
4. Compute βr by

βr :=
〈h(r+1),HEN (p(r+1))d̃

(r)〉
〈d̃(r)

,HEN (p(r+1))d̃
(r)〉

, d̃
(r)

:= P g(αr)(d
(r)).

5. d(r+1) := −h(r+1) + βrd̃
(r)

For an illustration of one CG iteration see Figure 4.1. Again, in our numerical examples, step
1 is replaced by a one-dimensional Newton step, where the step size αr is determined by (4.16).
Moreover, on the sphere S2 we prefer the approximate Hessian H̃EN over the Hessian since this led
to similar results but requires less computational effort. For a comparison of different minimization
methods to produce spherical designs we refer to [22].

5. Numerical results. In the following, we present some numerical result on the torus
T2 and the sphere S2. We apply our iterative optimization algorithm on the functional EN (p)
for randomly distributed starting points p(0) ∈ XM . To this end, we have to determine the
Fourier coefficients ŵl and λl of the function w : X → R≥0, cf. (4.1), and the bandlimited kernel
KN : X ×X → R, cf. (4.2), respectively. If the Fourier coefficients ŵl are not given explicitely, we
compute them approximately by well-known quadrature rules on X . More precisely, we sample
the function w on sampling points x := (xi)Li=1 ∈ XL and obtain approximate Fourier coefficients

ŵl :=
L∑
i=1

ωiw(xi)ψl(xi), l = 1, . . . , dN , (5.1)

where the weights ωi are given such that∫
X
f(x)dx =

L∑
i=1

ωif(xi), f ∈ ΠN (X ).
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Fig. 4.1. An iteration step of the nonlinear CG method on the sphere S2.

We remind that the above sums can be evaluated in an efficient way by fast Fourier transforms.

In general we aim to use our method also for computing approximate minimizers of some ar-
bitrarily given kernel K, which need not to be bandlimited. Then it is crucial to determine a
good approximation, i.e., we need to know an appropriate bandwidth N of the truncation KN .
A quite simple heuristic rule is based on the following observation: For the constant function
w ≡ 1, we are in the setting of standard quadrature rules. For example, on the torus T2 the
standard Gauss quadrature with sampling nodes x := ((i/(N + 1), j/(N + 1))T)Ni,j=0 and quadra-
ture weights ωi,j = 1/(N + 1)2 is exact for trigonometric polynomials f up to degree N , i.e.,
f ∈ Π2N (T2). Obviously, these points x are minimizers of the functional E2N for every kernel
K2N . Hence, for a sufficiently accurate kernel approximation a bandwidth N ≥ c

√
M , c ≥ 2 is

required. Furthermore it is plausible that for regions of higher point densities a more accurate
approximation is needed and we obtain for w > 0 the heuristic rule

N ≥ cX
(
M

∫
X dx∫

X w(x)dx
max
x∈X

w(x)
)1/d

, cX ≥ 1,

where d is the dimension of the manifold X . Of course, the ’optimal’ constant cX depends on
the application and is given by a tradeoff between accuracy and computational costs. In the fol-
lowing, we have used bandwidths N which appear to be sufficiently large for good approximations.

The proposed algorithms are implemented in Matlab R2010a, where the mex-interface to the
NFFT library [29] is used. The internal parameters in this library were set as follows: In both
routines NFFT for T2 and NFSFT for S2 we set the cutoff parameter m = 9. In the NFSFT we set
furthermore the threshold parameter κ = 1000 and used the flags PRE PSI and PRE PHI HUT.
The computations are performed on an Intel(R) Core(TM) i7 CPU 920 with 12GB RAM.

Examples on T2. For all test images we determine the Fourier coefficients ŵl by the above
mentioned Gauss quadrature rule. The underlying kernel is given by the bandlimited version of
the approximated discrepancy kernel K̃B with certain bandwidths, cf. (3.5). Moreover, in the CG
algorithm we have used the Hessian of EN .
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For a comparison of our results with other stippling and dithering methods we refer to the extensive
experiments provided in [47]. Note that in contrast to [47] our assumption of periodic boundary
conditions leads to some boundary artefacts.
Our first example deals with the image in Figure 1.1, left. The left image in Figure 5.1 shows
the stippling result after r = 500 iterations with a kernel of bandwidth N = 650. At this stage the
norm of the descent direction satisfies ‖αrd(r)‖2 ≈ 1e-3. This point distribution is far from being
a local minimizer of EK̃B , but it looks quite nice, and the computation took less than 15min. The
right image shows the result for the kernel with bandwidth N = 1300 after r = 20000 steps, where
we have ‖αrd(r)‖2 ≈ 1e-11. One observes that the points are arranged in more regular patterns,
but in this case the computation took about 1 day.

Fig. 5.1. Halftoning results on the torus T2 for the image in Figure 1.1 with M = 30150 points. Left: kernel
bandwidth N = 650 after r = 500 iterations. Right: kernel bandwidth N = 1300 after r = 20000 iterations.

In the second example we consider a Gaussian weight w. Figure 5.2 depicts our stippling result
for a kernel of bandwidth N = 1300 after r = 20000 iterations.

Examples on S2. In the following, we will use in our functional EN the bandlimited version of
the restricted kernel Φ(x− y) = −2 sin(dS2(x, y)/2), where the coefficients, cf. (4.4), are explicitly
given by

λn =
16π

(2n+ 3)(2n+ 1)(2n− 1)
, n ∈ N0.

In the CG algorithm we apply the approximate Hessian of H̃EN , cf. (4.14).

The first example uses the topography map of the earth from Matlab. This map consists of
the earth’s elevation data. Since the values ranging from −7473 to 5731 we have scaled it to
the range 0 to 1, in order to avoid negative values. The data is sampled on the grid x :=
(x (πi/180, πj/180))180,360

i=1,j=1. For this grid we have computed nonnegative quadrature weights ωi,j
for a polynomial degree N = 179 by the simple CG algorithm proposed in [21]. After applying
the quadrature rule (5.1) we obtain a polynomial approximation w =

∑179
n=0

∑n
k=−n ŵ

k
nY

k
n of

the earth’s topography, see the left-hand side of Figure 5.3. We have applied our algorithm to
M = 200000 random points p ∈ XM with a kernel of bandwidth N = 1000 and obtained after
r = 3600 iterations the right image in Figure 5.3. Here an iteration takes about 1.5 min.
In our second example, we apply our halftoning procedure to three Gaussians on the sphere.
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Fig. 5.2. Left: Original Gaussian. Right: Halftoning result with M = 10023 points and kernel bandwidth
N = 1300 after r = 20000 iterations.

More precisely, the weight function is determined by

w(x) =
3∑
i=1

exp(−5 arccos(x · qi)2),

where qi are three orthonormal vectors which were produced by the Matlab command
[q,r]=qr(rand(3)). Figure 5.4, right shows the result with M = 5000 points for a kernel of
bandwidth N = 400 after r = 1000 iterations.
The final example is motivated by applications in geoscience. In [19] one is concerned with
the problem of solving partial differential equations on the sphere by the method of radial basis
functions. There the authors present an algorithm for placing sampling nodes adequately for
some given partial differential equation to increase the accuracy and stability of the solvers. In a
particular test case the nodes are distributed accordingly to the function

w(θ, ϕ) =

{ √
3

2 sin θ sech2(3 sin θ) tanh(3 sin θ), 0 < θ < π
3
√

3
2 , else,

(5.2)

by a method based on electrostatic repulsion. In Figure 5.5 we see that our method produces sim-
ilar point distributions as in [19]. Again we computed the Fourier coefficients ŵkn, n = 0, . . . , 179,
k = −n, . . . , n as in the previous example. The result for M = 1849 points and kernel bandwidth
N = 400 after r = 1000 iterations is presented in Figure 5.5.
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International Conference on Computer Graphics and Visualization, pages 11–18, 2008.

[51] D. Varshalovich, A. Moskalev, and V. Khersonskii. Quantum Theory of Angular Momentum. World Scientific
Publishing, Singapore, 1988.

[52] G. Wahba. Spline Models for Observational Data. Springer, SIAM, 1990.
[53] D. J. Wales, H. McKay, and E. L. Altschuler. Defect motifs for spherical topologies. Phys. Rev. B, 79:224115,

2009.
[54] H. Wendland. Scattered Data Approximation. Cambridge University Press, Cambridge, 2005.


