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Abstract

The aim of this paper is a short introduction to a fundamental al-

gorithm for the fast multiplication of vectors with fully populated, spe-

cial matrices arising in various applications. The basic idea is known as

fast multipole method, fast multiplication by H–matrices or by mosaic–

skeleton matrices. We prefer a linear algebraic approach which may serve

as a basis for student seminars in Mathematics, Computer Science or En-

gineering. Our introduction is accompanied by a broad, but far away from

complete, list of references, where the reader may find more sophisticated

material.

1 Introduction

This paper gives a short introduction to a fundamental algorithm for the fast
multiplication of a vector by a fully populated matrix M = (mjk)

N

j,k=1 which
of course must have some special properties. Otherwise the straightforward
matrix-vector multiplication requires O(N2) arithmetic operations. In litera-
ture the considered algorithm appears under three names, namely fast multipole
method (FMM), fast mosaic-skeleton matrix multiplication and fast H-matrix
multiplication. Each of these approaches shows some special features mainly
due to the applications the authors had in mind, but the basic ideas coincide.

The FMM with arithmetic complexity O(N) and its slower variant, the hi-
erarchical multipole method with arithmetic complexity O(N logN) were de-
signed by L. Greengard and V. Rokhlin [17, 19] for the particle simulation in
R

d. Here
mj,k = K(xj − xk),

where K is the radial function (isotropic kernel) K(x−y) = log ||x−y|| if d = 2
and K(x− y) = ||x− y||−1 if d = 3. L. Greengard and other authors have also
used the method for the fast Gauss transform, where K is the Gaussian [22, 23]
and for many other large-scale matrix computations [2, 11, 20, 10, 13, 18, 21, 37].
Further the FMM was adapted to other radial basic functions arising in the
approximation of curves and surfaces by R. Beatson, W. Light and co-workers
[4, 3, 5, 12].

E. Tyrtyshnikov et al. [39, 40, 16] have designed algorithms for fast O(N logN)
matrix-vector multiplications from a linear algebraic point of view. E. Tyrtysh-
nikov calls the idea behind the algorithm ’mosaic-skeleton approximation’ of
M and refers to [41] for an early appearance of the idea. Here the matrix
coefficients are mj,k = K(xj,xk), where the kernel has to be a modified asymp-
totically smooth function [9].
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W. Hackbusch et al. [25, 29, 28, 27, 30, 26] have created the concept of H-
matrices, where H abbreviates ’hierarchical’. It includes the concept of panel
clustering earlier developed by W. Hackbusch and co-workers in order to solve
boundary integral equations in an efficient numerical way [31, 24]. The matrix
entries arise from a collocation or Galerkin approach and have e. g. the form

mj,k =

∫

Ωi

∫

Ωj

K(x,y) dxdy,

where K is the same kernel as in the particle simulation. The original algorithm
is of arithmetic complexity O(N logN). In case of H2-matrices one can develop
an O(N) algorithm if in addition a so-called ’consistency condition’ is fulfilled.
The idea coincides with those of the FMM. We mention that the whole H-matrix
concept is not restricted to fast matrix-vector multiplications but includes also
fast H-matrix inversions via Schur complement methods.

Although we restrict our attention to FMM-like algorithms we like to men-
tion the existence of other algorithms for the fast matrix-vector multiplication
which don’t fit into the FMM/H-matrix/mosaic-skeleton-matrix concept:

• Wavelet methods [1, 7, 32] are based on an approximation of M by

M ≈ W̃SW ,

where the vector multiplications with the wavelet transform matrices W̃ ,W
require only O(N) arithmetic operations and where S is a sparse matrix
containing only O(N logN) nonzero elements.

Note that the wavelet method works without the explicit knowledge of K.
For a completely discrete approach see [33].

• Based on the fast Fourier transform for nonequispaced knots (NFFT) one
can find an approximation of M by

M ≈ ByTBx, (1)

where the vector multiplications with the sparse matrices By and Bx

require only O(N) arithmetic operations and where T is a Toeplitz matrix
which can be multiplied by a vector with O(N logN) arithmetic operations
[36, 35].

• G. Beylkin et al. [8] have suggested an algorithm based on two-scale rela-
tions of scaling functions arising in wavelet theory or subdivision schemes.
This algorithm is closely related to the NFFT based algorithm, in parti-
cular it can be written in the form (1), see [36].

In the following we want to describe the basic idea of both the O(N logN)
algorithm and the O(N) algorithm in a simple way. Here we mainly profit from
[38]. For this we restrict our attention to the fast computation of

f = Mα (2)

where
M =

(
K(xk, yj)

)M,N

j=1,k=1
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and where xk, yj ,∈ [0, 1) are one-dimensional knots. We assume that, except
for some singular points, the kernel K is sufficiently smooth and satisfies one of
the following conditions

|∂p
xK(x, y)| ≤ Cp!|x− y|−p (p ∈ N), (3)

|∂β
x∂

γ
yK(x, y)| ≤ Cp!|x− y|−p (β + γ = p; p ∈ N). (4)

As typical example we consider the kernel K(x, y) = log |x − y| which satisfies
(3) and (4) with C = 1/p ≤ 1. In literature a couple of different conditions on
the kernel was considered, see e.g. [9, 39, 7, 33].
Further, we assume for sake of simplicity that both the source knots xk and the
target knots yj are uniformly distributed and ordered so that x1 < . . . < xN

and y1 < . . . < yM . Indeed it is sufficient that either source or target points are
uniformly distributed. If this is not the case additional adaptation techniques
are required [10, 34].

The algorithm is based on

• a hierarchical splitting of M into admissible blocks and

• a low rank approximation of each admissible block.

2 Hierarchical splitting into admissible blocks

The following notation is mainly adapted from W. Hackbusch and co-workers.
Although its strength becomes more clear in the multi-dimensional setting we
find it also useful in one dimension.

Let I = {1, . . . , N} and J = {1, . . . ,M} be index sets and let X = {xi : i ∈
I} and Y = {yj : j ∈ J}. Let P(I) be a partition of I, i.e.

I =
˙⋃

σ∈P(I)

σ.

For σ ∈ P(I) and τ ∈ P(J), let

X(σ) = {xi ∈ X : i ∈ σ}, Y (τ) = {yj ∈ Y : j ∈ τ}.

According to any block of indices b = τ×σ, τ ∈ P(J), σ ∈ P(I), we can consider
the matrix block

M b =
(
mji

)

j∈τ,i∈σ
.

We are mainly interested in so-called admissible blocks. These will be the blocks
which can be approximated by low rank matrices. Let rσ and rτ denote the
diameters and cσ and cτ be the centers of X(σ) and Y (τ), respectively, i.e.,

|xi − cσ| ≤ rσ (i ∈ σ), |yj − cτ | ≤ rτ (j ∈ τ)

and let
dist(τ, σ) = min

j∈τ,i∈σ
|yj − xi|

be the distance of two clusters τ and σ. Then a block b = τ × σ is called
admissible, if there exists η ∈ ( 0, 1] so that

η dist(τ, σ) ≥ rτ + rσ. (5)
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In order to split our matrix into admissible blocks we use a hierarchical split-
ting of the index sets I and J . The tree which corresponds to this hierarchical
index splitting is called H-tree by W. Hackbusch. In one dimension we can
simply use the following binary splitting to obtain a binary tree:

Let TI(0) = I. At level ℓ, the vertices of our tree are given by the index sets

σ = σ(ℓ,m) =
{
k ∈ I : xk ∈ [m/2ℓ, (m+ 1)/2ℓ)

}
(m = 0, . . . , 2ℓ − 1).

By TI(ℓ) we denote the corresponding partition of I. We obtain a similar tree TJ

for J . Since our knots xk and yj are uniformly distributed, each σ ∈ TI(ℓ) has
approximately the same number [N/2ℓ] of indices. Here [a] denotes the integer
part of a. Note that rσ ≈ 1/2ℓ+1 and cσ ≈ (m+1/2)/2ℓ, where both values are
smaller than the right-hand sides. We stop our binary partitioning if each index
set contains only a small number, say ≤ ν, of indices. Let n = [log2(N/ν)] be
the number of levels.

By TJ×I(ℓ) = TJ (ℓ) × TI(ℓ) we denote the tensor block partition of J × I.
Now we can produce a hierarchical splitting of our coefficient matrix M into

admissible blocks. We start at level 2. We split M with respect to the blocks
b = τ × σ ∈ TJ×I(2) and sort admissible and nonadmissible blocks:

M = M2 + N2,

where M2 consists of the admissible blocks of TJ×I(2) and N2 of the other ones.
We proceed with N2, i.e.

N2 = M3 + N3,

where M3 consists of the admissible blocks of TJ×I(3) contained in N2 and N3

of the other ones. Repeating this procedure up to level n we obtain the final
additive splitting

M =

n∑

ℓ=2

Mℓ + Nn (6)

of M into admissible blocks contained in the matrices Mℓ and into a ’near-field
matrix’ Nn.

It is easy to check that there is only a small number ≤ γ of non-zero blocks
in each row/column of Mℓ. In particular, if η = 2−r (r ∈ N small) then
γ = [2/η]+1. Therefore, Mℓ consists of no more than 2ℓγ non-zero blocks. The
same holds for Nℓ. Figure 1 shows the non-zero blocks of Mℓ (thick lines) for
ℓ = 2, 3, 4 in the cases η = 1 and η = 1/2. Indeed for the upper figure η can be
chosen smaller than 1.

3 Low rank approximation of admissible blocks

Next we will see how admissible blocks can be approximated by low rank ma-
trices. Of course, supposed that a ’good’ low rank approximation exists, it is
easy to find, if the singular value decomposition (SVD) of the admissible blocks
is accessible. But the SVD is computationally very expensive, so that approx-
imations based on the SVD cannot lead to fast algorithms. In this context E.
Tyrtyshnikov et al. have proposed a CGR decomposition of admissible blocks
[39, 40], M. Bebendorf an iterative approximation scheme [6] and W. Hackbusch
et al. Taylor expansion [25, 29, 27] and polynomial interpolation [26].
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η = 1

η = 1
2

ℓ = 2 ℓ = 3 ℓ = 4

Figure 1: Non-zero blocks of M ℓ

In this paper, we consider only the simplest case thatK is known and satisfies
one of the properties (3) or (4).

Let b = τ × σ be an admissible block and let x ∈ X(σ) and y ∈ Y (τ). If K
satisfies (3), then we obtain by Taylor expansion at cσ with respect to x

K(x, y) =

p−1
∑

ℓ=0

1

ℓ!
(x− cσ)ℓ ∂ℓ

xK(cσ, y) + Rp(x, y)

=

p−1
∑

ℓ=0

1

ℓ!
ϕσ

ℓ (x)ψτ,σ
ℓ (y) + Rp(x, y),

where
ϕσ

ℓ (x) = (x − cσ)ℓ and ψτ,σ
ℓ (y) = ∂ℓ

xK(cσ, y).

For the approximation error we have by (3) that |x̃ − y| ≥ (rτ + rσ)/η and
consequently

|Rp(x, y)| =
1

p!
|x− cσ|

p |∂p
xK(x̃, y)| ≤ C

|x− cσ|
p

|x̃− y|p
,

where x̃ = cσ + θ(x − cσ) (θ ∈ (0, 1)), and by the admissibility condition (5)
that

|Rp(x, y)| ≤ Cηp

(
rσ

rτ + rσ

)p

.

Thus, if η ≤ 1, then M b =
(
K(xk, yj)

)

j∈τ,k∈σ
can be approximated with a

small error by
M b ≈ M̃ b = (Ψτ,σ)T D Φσ (7)

where D = diag (1/ℓ!)ℓ∈P with index set P = {0, . . . , p− 1} and

Φσ =
(
ϕσ

ℓ (xk)
)

ℓ∈P,k∈σ
∈ R

p,#σ, Ψτ,σ =
(
ψτ,σ

ℓ (yj)
)

ℓ∈P,j∈τ
∈ R

p,#τ .
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The error decays exponentially with increasing p. Since M̃b is a matrix of rank
≤ p its multiplication with a vector requires only O(p(#σ + #τ)) arithmetic
operations. Note that E. Tyrtyshnikov calls the rank-1 matrices
(
ψτ,σ

ℓ (yj)
)

j∈τ

(
ϕσ

ℓ (xk)
)T

k∈σ
skeletons.

If K satisfies (4), then we obtain by bivariate Taylor expansion at (cσ, cτ )

K(x, y) =

p−1
∑

ℓ=0

1

ℓ!

(
(x− cσ)∂x + (y − cτ )∂y

)ℓ
K(cσ, cτ ) + Rp(x, y)

=
∑

0≤ℓ+m≤p−1

1

ℓ!m!
∂ℓ

x∂
m
y K(cσ, cτ ) (x − cσ)ℓ(y − cτ )m + Rp(x, y)

=
∑

0≤ℓ+m≤p−1

1

ℓ!m!
∂ℓ

x∂
m
y K(cσ, cτ )ϕσ

ℓ (x)ψτ
m(y) + Rp(x, y),

where
ϕσ

ℓ (x) = (x − cσ)ℓ and ψτ
m(y) = (y − cτ )m.

For the approximation error we have by (4) that

|Rp(x, y)| =
1

p!

∣
∣(x− cσ)∂x + (y − cτ )∂y

∣
∣
p
K(x̃, ỹ)

≤ C

(
|x− cσ| + |y − cτ |

)p

|x̃− ỹ|p

where x̃ = cσ +θ(x−cσ), ỹ = cτ +θ(y−cτ) (θ ∈ (0, 1)), and by the admissibility
condition (5) that

|Rp(x, y)| ≤ Cηp.

Thus, if η < 1, then M b =
(
K(xk, yj)

)

j∈τ,k∈σ
can be approximated with small

error by
M b ≈ M̃ b = (Ψτ )T Aτ,σ Φσ (8)

where

Φσ =
(
ϕσ

ℓ (xk)
)

ℓ∈P,k∈σ
∈ R

p,#σ, Ψτ =
(
ψτ

m(yj)
)

ℓ∈P,m∈τ
∈ R

p,#τ

and Aτ,σ =
(
aτ,σ

ℓ,m

)

ℓ,m∈P
∈ R

p,p with

aτ,σ
ℓ,m =

1

ℓ!m!
∂ℓ

x∂
m
y K(cσ, cτ ) if 0 ≤ ℓ+m ≤ p− 1

and aτ,σ
ℓ,m = 0 otherwise. Again the error decreases exponentially with increasing

p. Since M̃ b is a matrix of rank ≤ p(p + 1)/2 its multiplication with a vector
requires only O(p(#σ+(p+1)/2+#τ)) arithmetic operations. Of course we can
also use a Taylor expansion of K such that Aτ,σ is a fully populated p×pmatrix.

Example. Let K(x, y) = log |x− y|. Then

aτ,σ
ℓ,m =







log |cτ − cσ| for ℓ = m = 0,

− (−1)ℓ

ℓ+m
(cτ − cσ)−ℓ−m

(
ℓ+m

ℓ

)
for ℓ+m ≤ p− 1,

0 otherwise.
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In the following, we assume that each admissible block M b can be approxi-
mated with only small error by a matrix M̃ b of one of the following forms

M̃ b = (Ψτ,σ)T Dτ,σ Φτ,σ, (9)

M̃ b = (Ψτ )T Aτ,σ Φσ, (10)

where
Φ• ∈ R

p×#σ, Ψ• ∈ R
p×#τ , A• ∈ R

p×p

and D• ∈ R
p×p is a diagonal matrix. The first representation (9) may be simply

obtained from an SVD, while (10) is of the form (8). The approximation (7)
corresponds to a mixture of both forms and a fast matrix-vector multiplication
algorithm follows straightforward if we have algorithms for (9) and (10).

Note that one can use level-dependent approximations of admissible blocks

M b where the rank of the approximating matrix M̃
b

depends on the decompo-
sition level ℓ of the H-tree, see [27]. This is beyond the scope of this paper.

Now (6) can be approximated by

M ≈

n∑

ℓ=2

M̃ℓ + Nn, (11)

where the blocks in M̃ ℓ are low rank approximations of the form (9) or (10)
of the admissible blocks in M ℓ. W. Hackbusch calls the matrix on the right-
hand side of (11) an H-matrix (in case of (10) an uniform H-matrix ) and E.
Tyrtyshnikov a mosaic-skeleton approximation of M .

If we have an approximation of type (10) then M̃ ℓ can be further rewritten
as

M̃ℓ = blockdiag(Ψτ )T
τ∈TJ(ℓ) Aℓ blockdiag(Φσ)σ∈TI (ℓ), (12)

where Aℓ ∈ R
p2ℓ,p2ℓ

has the non-zero blocks Aτ,σ ∈ R
p,p at the ’position’ of the

non-zero blocks of M ℓ.

4 The hierarchical O((N + M) log N)–Algorithm

Assume that the non-zero blocks of M ℓ are of the form (9). Using (11) the
matrix–vector multiplication (2) can be computed approximately by

f = Mα ≈

n∑

ℓ=2

M̃ℓα

︸ ︷︷ ︸

far-field

+ Nnα
︸ ︷︷ ︸

near-field

= fF + fN .

We call the computation of the first n− 1 matrix–vector products on the right-
hand side ’far-field computation’ and the last matrix-vector multiplication ’near-
field computation’.

Since multiplication with a block M̃ b requires O(p(#σ + #τ)) arithmetic
operations, where #τ ≤ M/2ℓ, #σ ≤ N/2ℓ, and there are no more than 2ℓγ
such blocks in M̃ ℓ, the computation of M̃ ℓα requires O(p(M +N)) arithmetic
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operations. Adding this up over all levels, we get an arithmetic complexity of
O(p(N +M) logN) for the far-field computation. Note that the approximation
error becomes smaller with increasing p.

Since Nn has at most γ non-zero blocks per row each with ≤ ν columns,
the near-field correction requires O(Mνγ) arithmetic operations.

Since ν, γ and p are constants, the whole algorithm requiresO((N+M) logN)
arithmetic operations.

5 The fast O(N + M)-Algorithm

In this section we introduce a fast algorithm of arithmetic complexity O(N+M).
The algorithm is only practicable if the admissible blocks of the matrix can

be approximated by an expression of the form (10). In addition, the matrices
Φσ and Ψτ have to be ’nested’, i. e., fulfil the following consistency conditions:
let σ′, σ′′ ∈ TI(ℓ+ 1) be the sons of σ ∈ TI(ℓ) and let τ ′, τ ′′ ∈ TJ(ℓ + 1) be the
sons of τ ∈ TJ(ℓ). Then they have to fulfil

Φσ = [Cσ,σ′

Cσ,σ′′

]

(

Φσ′

0

0 Φσ′′

)

= Cσ,σ′

Φσ′

+ Cσ,σ′′

Φσ′′

, (13)

Ψτ = [Cτ,τ ′

Cτ,τ ′′

]

(

Ψτ ′

0

0 Ψτ ′′

)

= Cτ,τ ′

Ψτ ′

+ Cτ,τ ′′

Ψτ ′′

. (14)

Then the matrices in (10) are called H2-matrices and the corresponding algo-
rithm either FMM or fast H2-matrix multiplication.

For Φσ ∈ R
p×#σ and Ψτ ∈ R

p×#τ arising from Taylor expansions as in (8)
the consistency conditions are clearly fulfilled: since

(x− cσ)ℓ =
(
(x − cσ′) − (cσ − cσ′)

)ℓ

=
ℓ∑

m=0

(
ℓ

m

)

(cσ′ − cσ)ℓ−m(x− cσ′)m

for all ℓ = 0, . . . , p− 1, we obtain

(
(xk − cσ)ℓ

)T

k∈σ′
=

ℓ∑

m=0

Cσ,σ′

ℓ,m ((xk − cσ′)m)
T
k∈σ′ ,

(
(xk − cσ)ℓ

)T

k∈σ′′
=

ℓ∑

m=0

Cσ,σ′′

ℓ,m ((xk − cσ′′ )m)T
k∈σ′′ .

Thus (13) is fulfilled with the lower triangular matrix Cσ,σ′

=
(

Cσ,σ′

ℓ,m

)

ℓ,m∈P
,

where

Cσ,σ′

ℓ,m =

{

0 for ℓ < m,
(

ℓ
m

)
(cσ − cσ′ )ℓ−m for ℓ ≥ m.

Note that it is often also sufficient if the consistency conditions (13) and (14)
are satisfied only approximately, i.e., up to a small error, see [15, 14].
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For ℓ = 2, . . . , n− 1, let

DΦ
ℓ,ℓ+1 = blockdiag

(

[Cσ,σ′

Cσ,σ′′

]
)

σ∈TI(ℓ)
∈ R

p,2p

denote the transform matrices arising from the consistency conditions for all
σ ∈ TI(ℓ). Then the consistency condition at level ℓ reads as

blockdiag (Φσ)σ∈TI (ℓ) = DΦ
ℓ,ℓ+1 blockdiag (Φσ)σ∈TI(ℓ+1) .

Now successive application of the consistency condition leads to

M̃ ℓ = blockdiag
(
Ψτ
)T

τ∈TJ(ℓ+1)

(
DΨ

ℓ,ℓ+1

)T
Aℓ DΦ

ℓ,ℓ+1 blockdiag
(
Φσ
)

σ∈TI (ℓ+1)

= . . .

= blockdiag(Ψτ )T
τ∈TJ(n)(D

Ψ
n−1,n)T · · · (DΨ

ℓ,ℓ+1)
T Aℓ ×

×DΦ
ℓ,ℓ+1 · · ·D

Φ
n−1,nblockdiag(Φσ)σ∈TI (n). (15)

The important observation is that the factors blockdiag(Φσ)σ∈TI(n) and

blockdiag(Ψτ )σ∈TI(n) appear in all matrices M̃ ℓ (ℓ = 2, . . . , n) and that the

factors DΦ
i,i+1 and DΨ

i,i+1 appear in all matrices M̃ ℓ with ℓ ≤ i.
Using (15) and (11) we can formulate the whole algorithm now. (For readers

familiar with the FMM we have written the FMM notation of the algorithm in
brackets, where FFE stands for far-field extension and LFE for near-field exten-
sion.)

Algorithm

1. Forward Transformation (FFE → FFE)

Initialization:
xn = blockdiag

(
Φσ
)

σ∈TI(n)
α ∈ R

p2n

Arithmetic complexity: O(pN)

For ℓ = n− 1, . . . , 2 compute

xℓ = DΦ
ℓ,ℓ+1xℓ+1.

Arithmetic complexity:

Since DΦ
ℓ,ℓ+1 consists of 2ℓ non-zero blocks of the form [Cσ,σ′

Cσ,σ′′

] ∈

R
p×2p we have an amount of ≤ 2p2 2ℓ arithmetic operations in step ℓ.

This adds up over all levels to O(2p2 N
ν

) arithmetic operations.

2. Multiplication Phase (FFE → LFE)

For ℓ = 2, . . . , n compute
yℓ = Aℓ xℓ.

Arithmetic complexity:
There are at most 2ℓγ non-zero blocks on level ℓ and each block in Aℓ

is of size p × p. Thus the computation of Aℓxℓ requires O(p22ℓ) arith-
metic operations which adds up to O(p2N/ν) arithmetic operations over
all levels.
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3. Backward Transform (LFE → LFE)

In the far–field it remains to compute

fF =
n−1∑

ℓ=2

blockdiag
(
Ψτ
)T

τ∈TJ(n)
(DΨ

n−1,n)T · · · (DΨ
ℓ,ℓ+1)

T yℓ.

We apply Horner’s rule. Set

z2 = y2

and compute for ℓ = 3, . . . , n the vectors

zℓ = (DΨ
ℓ−1,ℓ)

T zℓ−1 + yℓ.

Arithmetic complexity:
Multiplication with (DΨ

ℓ,ℓ+1)
T requires as in Step 1 only O(2p22ℓ) opera-

tions such that we have a total of O(p2N/ν) arithmetic operations.

Final multiplication:

fF = blockdiag
(
Ψτ
)T

τ∈TJ(n)
zn.

Arithmetic complexity: O(pM)

4. Near-Field Correction: Compute fN = Nn α directly and add fF .

Arithmetic complexity:
O(Mνγ) as in the hierarchical algorithm.

Choosing ν = p the arithmetic complexity of the whole algorithm is

O(p(N +M)) = O(N +M),

where p is a constant which regulates the approximation error.
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