Universität Bonn, Wintersemester 2010/11 Boris Springborn Klaus Dankwart

7.12.2010

Aufgabenblatt 8 zur Vorlesung Geometrie 1

Aufgabe 1. (Tensoren)

Sei M eine differenzierbare Mannigfaltigkeit und sei $F:\Gamma(TM)\to\Gamma(TM)$ C^∞ -linear, d.h.:

$$F(X+Y) = F(X) + F(Y)$$

$$F(h \cdot X) = h \cdot F(X), \ h \in C^{\infty}(M)$$

1. Zeigen Sie, dass für eine Karte (U,φ) es Funktionen $F_{i,j}\in C^\infty(U)$ gibt, so dass für $X\in\Gamma(TM),\ X|_U=\sum_i X_i\frac{\partial}{\partial\varphi_i}$ gilt

$$F(X)|_{U} = \sum_{i} \left(\sum_{j} (F_{i,j} X_{j}) \right) \frac{\partial}{\partial \varphi_{i}}$$

Warnung: Beachten Sie, dass $\frac{\partial}{\partial \varphi_i}$ kein Vektorfeld auf ganz M ist.

2. Zeigen Sie, dass für $p \in M, X \in \Gamma(TM), F(X)_p$ nur von X_p abhängt. Zeigen Sie, dass eine lineare Abbildung $F_p: T_pM \to T_pM$ existiert, so dass $F(X)_p = F_p(X_p)$.

5 Punkte

Aufgabe 2. (Immersionen und Riemannsche Metriken)

Eine Riemmannsche Mannigfaltigkeit (M, g) ist eine differenzierbare Mannigfaltigkeit mit einer Riemannschen Metrik.

- 1. Zeigen Sie, dass für jeden Punkt $p \in M$ auf einer Riemannschen Mannigfaltigkeit es eine offene Umgebung U von p und lokale differenzierbare Vektorfelder $X^i \in \Gamma(U)$ gibt, so dass für alle $q \in U$, X_q^i eine Orthonormalbasis von T_qM bildet.
- 2. Sei $f: M \to \mathbb{R}^n$ eine Immersion einer differenzierbaren Mannigfaltigkeit und sei $\langle \cdot, \cdot \rangle$ das Standardskalarprodukt auf \mathbb{R}^n .

Für $p \in M$ und $v \in T_{f(p)}\mathbb{R}^n$, sei $v^{\tau} \in df(T_pM)$ die orthogonale Projektion. Zeigen Sie, dass für ein differenzierbares Vektorfeld $Y: M \to T\mathbb{R}^n$ längs f die Projektion $Y^{\tau}: M \to df(TM)$ wieder ein differenzierbares Vektorfeld längs f ist.

Tipp: Benutzen Sie Teil 1.

3. Sei die orthogonale Projektion definiert wie in 2 und sei Y ein differenzierbares Vektorfeld längs f. Zeigen Sie, dass ein differenzierbares Vektorfeld $Z \in \Gamma(TM)$ existiert so dass $df(Z) = Y^{\tau}$.

5 Punkte

Aufgabe 3. (Hyperbolische Ebene)

Die hyperbolischen Ebene (im Halbebenenmodell) ist $\mathbb{H}^2 := \{(x,y) \in \mathbb{R}^2 | y > 0\}$ versehen mit der Riemannschen Mektrik $g_{(x,y)}(v,w) := \frac{1}{y^2} < v, w >$. Wir messen die Länge einer differenzierbaren Kurve $c: [a,b] \to \mathbb{H}^2$ durch

$$l(c) = \int_a^b \sqrt{g_{c(t)}(\dot{c}(t), \dot{c}(t))} dt$$

Berechnen Sie die Länge der Kurve

$$c_1: [a,b] \to \mathbb{H}^2, \ t \mapsto (x,t), \ x \in \mathbb{R}, \ 0 < a < b$$

Sei $c_2: [\theta, \pi/2] \to \mathbb{H}^2, \ t \mapsto (\cos(t), \sin(t)), \ 0 < \theta < \pi/2$. Zeigen Sie

$$l(c_2) = -\log(\tan(\theta/2))$$

5 Punkte

Viel Spass!

Abgabe ist am 14.12. in der Vorlesung.

Die Aufgabenblätter erhält man auch auf der Homepage: http://www.math.uni-bonn.de/people/klaus