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Bonnet Pairs in the 3-Sphere

Boris A. Springborn

1. Introduction

Two non-congruent surfaces that are isometric and have the same mean curva-
ture at corresponding points are called a Bonnet pair of surfaces or simply a Bonnet
pair. The interest in such pairs arises from the following considerations: One of
the fundamental problems of surface theory is to find invariants which characterize
surfaces geometrically. The Bonnet theorem states that a surface is determined up
to congruence by its first and second fundamental forms. However, this description
has some redundancy since the first and second fundamental forms must satisfy the
Gauss and Codazzi equations. So it may be that some pieces of information can
be eliminated from this description, but which? It seems wise to retain the metric.
But given the metric, we know the Gaussian curvature, i.e. the product of the two
principal curvatures. The second fundamental form contains the following extra
pieces of information: the mean curvature, i.e. half the sum of the two principal
curvatures, and the principal curvature directions. It seems worthwhile to inves-
tigate what happens if we do not prescribe the curvature directions and ask the
question: Is a surface already determined by its metric and mean curvature?

Bonnet himself [6] gave the following answer: In general, a surface is determined
up to congruence by its metric and mean curvature. There are only three exceptions:

• Constant mean curvature surfaces can be continuously deformed while keep-
ing their metric and mean curvature fixed.

• If a surface is not determined by its metric and mean curvature and the
mean curvature is not constant, then there is either a one-parameter familiy
of non-congruent isometric surfaces with the same mean curvature (Bonnet
surfaces), or

• there is exactly one non-congruent isometric surface with the same mean
curvature.

Constant mean curvature surfaces form their own field of study, and we will
not go in this direction at all.
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Bonnet surfaces were studied by many mathematicians; an incomplete list in-
cludes Hazzidakis [10], Graustein [9], Cartan [7], Chern [8], Kenmotsu [13], Rous-
sos [16], Bobenko and Eitner [4, 5]. Cartan develops a more or less complete local
theory. Bobenko and Eitner describe Bonnet surfaces using Painlevé equations.
This makes it possible to give a global classification.

Much less is known about the case in which there are exactly two non-congruent
surfaces with the same mean curvature. However, there are trivial examples: he-
licoidal surfaces [15]. Suppose F (x, y) is an immersion in R3 such that there is
a non-compact one parameter subgroup T (s) of the group of rigid motions with
F (x, y + s) = T (s)F (x, y). Then −F (x,−y) is by symmetry an isometric immer-
sion with the same mean curvature function. But there is in general no isometry S
of R3, with −F (x,−y) = SF (x, y). Note that if the helicoidal surface degenerates
to a surface of rotation, the the Bonnet pair degenerates to a single isothermic
surface.

There is a relationship between Bonnet pairs in R3 and isothermic surfaces in
S3 that was discovered by Servant [17]. It is due to an equivalence of the Gauss and
Codazzi equations specialized to either class of surfaces. This relationship was stud-
ied further by Bianchi [1] and Jonas [11], who consider Darboux transformations
of Bonnet pairs. More recently, this relationship was rediscovered by Kamberov,
Pedit and Pinkall [12], using their quaternionic calculus.

Lawson and Tribuzy [14] show among other things that there are no Bonnet
pairs that are topologically spheres. It is an open question whether there are any
compact Bonnet pairs. Bobenko [3] takes some steps towards attacking this problem
by treating Bonnet pairs as integrable systems.

In this article, we study Bonnet pairs not in R3, but in the three dimensional
sphere S3. The author is not aware of any previous work done on Bonnet pairs in
S3. This theory is at first completely analogous to the R3-theory. However, it turns
out that there are trivial compact examples. We present a duality transformation
by which a Bonnet pair in S3 is transformed into another such pair.

2. Surfaces in the 3-Sphere and Quaternionic Frames

In this section we outline the use of complex notation and quaternionic frames
in the analytic description of conformally immersed surfaces in the 3-sphere. See
also [2]. Throughout this paper, let D be a simply connected domain in C with
coordinate z = x + iy.

Suppose F : D → S3 ⊂ R4 is a conformal immersion with normal N : D → S3.
Conformality is equivalent to

〈Fz, Fz〉 = 0, 〈Fz, Fz̄〉 =
1
2

eu, 〈Fz̄, Fz̄〉 = 0,

for some real valued function u. (We use the Wirtinger operators ∂z = 1
2 (∂x − i∂y)

and ∂z̄ = 1
2 (∂x + i∂y) and denote partial differentiation by subscripts. The scalar

products are complexified bilinearly: 〈x, y〉 =
∑n

1 xkyk for x, y ∈ Rn or Cn.)
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The first fundamental form is therefore

〈dF, dF 〉 = eu dz dz̄,

and the second fundamental form is

−〈dF, dN〉 = Qdz2 + euH dz dz + Q dz2,

where

Q = 〈Fzz, N〉 and H = 2e−u〈Fzz, N〉.
The (2, 0)-form Qdz2 is the Hopf differential and H is the mean curvature function
of F . The zeros of Q are the umbilics of F . If (and only if) F is parametrized by
curvature-line coordinates, then Q takes either only real or only purely imaginary
values. One obtains the following frame equations:

Fzz = uz Fz + QN

Fzz̄ = − 1
2eu F + 1

2euH N

Fz̄z̄ = uz̄ Fz̄ + QN

Nz = − H Fz − 2e−uQFz̄

Nz̄ = − 2e−uQFz − H Fz̄

(2.1)

Now we introduce quaternionic frames. Identify R4 with the algebra H of
quaternions, so that the canonical basis of R4 corresponds to the quaternions
1, i, j,k. Further, use the following representation of the quaternions as complex
2×2-matrices:

1 =
(

1 0
0 1

)
, i =

(
0 −i
−i 0

)
, j =

(
0 −1
1 0

)
, k =

(−i 0
0 i

)
.

Then the special unitary group SU(2) is just the unit sphere in H. For (Φ1, Φ2) ∈
SU(2) × SU(2), the linear map H → H, X 7→ Φ−1

2 XΦ1 is orientation preserving
and orthogonal. One obtains thus a right action of SU(2) × SU(2) on R4. It
defines a two-to-one Lie-group anti-homomorphism onto SO(4), the kernel being
{(1,1), (−1,−1)}.

By a quaternionic frame of F we mean a map

(Φ1, Φ2) : D → SU(2)× SU(2)

with
F = Φ2

−11Φ1,

Fx = eu/2 Φ2
−1 iΦ1,

Fy = eu/2 Φ2
−1 jΦ1,

N = Φ2
−1kΦ1.

The last equation could have been omitted in this definition, because it follows from
the others. Instead of the second and third equation, it is sometimes helpful to use
the equivalent

Fz = eu/2 Φ2
−1

(
0 0
−i 0

)
Φ1,

Fz = eu/2 Φ2
−1

(
0 −i
0 0

)
Φ1.
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This setup leads to the fundamental theorem of surface theory in the following
guise.

Proposition 1. The metric eu dz dz̄, mean curvature function H, and Hopf
differential Qdz2 of a conformal immersion into S3 satisfy the compatibility con-
ditions

uzz̄ +
1
2
eu(H2 + 1)− 2e−u|Q|2 = 0,(Gauss)

2e−u/2Qz̄ = eu/2Hz(Codazzi)

and determine the immersion up to congruence.

Conversely, if the real valued functions u and H and the complex valued function
Q satisfy these compatibility conditions, then the systems

Φ1z = U1Φ1

Φ1z̄ = V1Φ1
and

Φ2z = U2Φ2

Φ2z̄ = V2Φ2
(2.2)

with

U1 =
(

uz/4 −e−u/2Q
1
2eu/2(H − i) −uz/4

)
, V1 =

(−uz̄/4 − 1
2eu/2(H + i)

e−u/2Q uz̄/4

)
,

U2 =
(

uz/4 −e−u/2Q
1
2eu/2(H + i) −uz/4

)
, V2 =

(−uz̄/4 − 1
2eu/2(H − i)

e−u/2Q uz̄/4

)
,

(2.3)

are compatible. Solutions Φ1, Φ2 : D → SU(2) yield a conformal immersion
F = Φ2

−1Φ1 into S3 with metric eu dz dz̄, mean curvature H and Hopf differential
Qdz2.

Proof-outline. We omit the somewhat lengthy calculations needed to prove
this. The main ingredient of the proof is the Maurer-Cartan lemma stating that
a system Φz = UΦ, Φz̄ = V Φ is compatible if and only if Uz̄ − Vz + [U, V ] = 0.
First, suppose (Φ1, Φ2) is a quaternionic frame of a conformal immersion in S3

and define U and V by equations (2.2). Use the frame equations (2.1) to derive
equations (2.3). Finally, show by straightforward calculation that the Gauss and
Codazzi equations are equivalent to Uk z̄ − Vk z + [Uk, Vk] = 0. This also takes care
of the converse.

3. Bonnet Pairs

A Bonnet pair in S3 is a pair of immersions that have the same metric and
mean curvature, but are not congruent. Hence their Hopf differentials must be
different. We specialize proposition 1 to Bonnet pairs.

Proposition 2. Suppose F, F̃ : D → S3 are two immersions with the same
metric eu dz dz̄ and mean curvature function H, but non-identical Hopf differentials
Qdz2 and Q̃ dz2. Let Q1 = i(Q− Q̃)/2 and Q2 = (Q+ Q̃)/2, so that Q = Q2− iQ1
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and Q̃ = Q2 + iQ1. Then the following compatibility conditions are satisfied:

uzz̄ +
1
2
eu(H2 + 1)− 2e−u(|Q1|2 + |Q2|2) = 0,(3.1)

Q1Q2 −Q1Q2 = 0,(3.2)

2e−u/2Q2 z̄ − eu/2Hz = 0,(3.3)

Q1 z̄ = 0.(3.4)

Conversely, suppose the functions u,H : D → R, Q1, Q2 : D → C satisfy the above
equations. Then the systems

{
Φ1z = U1Φ1

Φ1z̄ = V1Φ1

}
,

{
Φ2z = U2Φ2

Φ2z̄ = V2Φ2

}
,

{
Φ̃1z = Ũ1Φ̃1

Φ̃1z̄ = Ṽ1Φ̃1

}
,

{
Φ̃2z = Ũ2Φ̃2

Φ̃2z̄ = Ṽ2Φ̃2

}
,

with

U1 =

ţ
uz/4 −e−u/2(Q2 − iQ1)

1
2
eu/2(H − i) −uz/4

ű
, V1 =

ţ −uz̄/4 − 1
2
eu/2(H + i)

e−u/2(Q2 + iQ1) uz̄/4

ű
,

U2 =

ţ
uz/4 −e−u/2(Q2 − iQ1)

1
2
eu/2(H + i) −uz/4

ű
, V2 =

ţ −uz̄/4 − 1
2
eu/2(H − i)

e−u/2(Q2 + iQ1) uz̄/4

ű
,

eU1 =

ţ
uz/4 −e−u/2(Q2 + iQ1)

1
2
eu/2(H − i) −uz/4

ű
, eV1 =

ţ −uz̄/4 − 1
2
eu/2(H + i)

e−u/2(Q2 − iQ1) uz̄/4

ű
,

eU2 =

ţ
uz/4 −e−u/2(Q2 + iQ1)

1
2
eu/2(H + i) −uz/4

ű
, eV2 =

ţ −uz̄/4 − 1
2
eu/2(H − i)

e−u/2(Q2 − iQ1) uz̄/4

ű

(3.5)

are all compatible. Solutions Φ1, Φ2, Φ̃1, Φ̃2, : D → SU(2) yield conformal immer-
sions F = Φ2

−1Φ1, F̃ = Φ̃−1
2 Φ̃1 with metric eu dz dz̄, mean curvature H, and

Hopf differentials (Q2− iQ1) dz2 and (Q2 + iQ1) dz2. Hence, if Q1 does not vanish
identically, they form a Bonnet pair.

Proof. Subtract the Gauss equations of F and F̃ to obtain |Q| = |Q̃| and
hence equations (3.1) and (3.2). Adding and subtracting the Codazzi equations
gives (3.3) and (3.4). The rest of the proposition follows immediately from propo-
sition 1.

The following proposition is obtained in exactly the same way as in the case of
Bonnet pairs in R3; see [3].

Proposition. The immersions of a Bonnet pair in S3 have umbilics at cor-
responding points. They are the zeros of a not identically vanishing holomorphic
quadratic differential and therefore isolated.

There are no Bonnet pairs that are spheres. If Bonnet pair tori exist, they
have no umbilics. If Bonnet pairs of genus g > 1 exist, they have 4g − 4 umbilics,
counting multiplicities.

Standard arguments also imply:

Lemma. Let F, F̃ : D → S3 form a Bonnet pair with fundamental invariants
as in proposition 2, and assume that they have no umbilics. Then the conformal
parametrization can be chosen such that Q1 ≡ 1

2 and Q2 is real valued.



6 BORIS A. SPRINGBORN

The development so far has been completely parallel to the case of Bonnet
pairs in R3. With the following theorem, however, we depart from the common
features and turn to the properties peculiar to Bonnet pairs in S3. As in the R3

case, helicoidal surfaces provide trivial examples of Bonnet pairs. But in S3, such
surfaces can be compact. That is:

Theorem. There are compact Bonnet pairs in S3 which are helicoidal im-
mersed tori.

Next we introduce a duality transformation for Bonnet pairs.

Theorem. Suppose F, F̃ : D → S3 form a Bonnet pair with fundamental
invariants as in proposition 2. Assume the immersions have no umbilics and are
parametrized such that Q = 1

2 (q − i) dz2 and Q̃ = 1
2 (q + i) dz2 with real-valued q.

Let (Φ1, Φ2) and (Φ̃1, Φ̃2) be quaternionic frames for F and F̃ .

Then G = Φ̃−1
1 Φ1 and G̃ = Φ̃−1

2 Φ2 are conformal immersions into S3 forming
another—the dual—Bonnet pair with metric e−u dz dz̄, mean curvature q, and Hopf
differentials 1

2 (H − i) dz2 and 1
2 (H + i) dz2. The dual Bonnet pair to G, G̃ is again

F, F̃ .

Proof. The idea is to show that (jΦ1, jΦ̃1) is a quaternionic frame of an im-
mersion G with the required fundamental invariants. Similarly, (jΦ2, jΦ̃2) is a
quaternionic frame for G̃. To this end, substitute 1

2 for Q1 and q for Q2 in equa-
tions (3.5) and compare these matrices to the corresponding ‘U ’ and ‘V ’ matrices
of jΦ1, jΦ̃1, jΦ2 and jΦ̃2. For example, for Φ1, calculate (jΦ1)z(jΦ1)−1 = −jU1j
and (jΦ1)z̄(jΦ1)−1 = −jV1j and compare them to U1 and V1.

Corollary. The dual Bonnet pair satisfies the following equations.

F = G̃−1F̃ G,

Fx = G̃−1F̃x G,

Fy = G̃−1F̃y G.

In other words, (G, G̃), interpreted as a map into SU(2)×SU(2), rotates the frame
of F̃ into the frame of F .

The following interesting questions are left unanswered: Can the theory of
Bonnet pairs in S3 be generalized to encompass Bonnet pairs in R3? Is there an
integrable system connected to Bonnet pairs in S3? Are there compact examples
apart from helicoidal tori?
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