Technische Universität Berlin Fakultät II - Mathematik und Naturwissenschaften
Institut für Mathematik
AG Geometrie und Mathematische Physik

Boris Springborn

TU Berlin, MA 8-3
Strasse des 17. Juni 136
10623 Berlin
office MA 871
tel +49 30 314 23617
fax +49 30 314 79282
secretary (MA 8-3)
Mathias Kall
tel +49 30 314 29273


Projects A01, A11 in SFB/Transregio 109 "Discretization in Geometry and Dynamics"

Office hours / Sprechstunde

Sommer '17 (Vorlesungszeit) Dienstag 13:00-14:15
vorlesungsfreie Zeit nach Vereinbarung

Die Sprechstunde am 11. Juli muss leider ausfallen.


Summer 2017 Differentialgeometrie I
Komplexe Analysis I
Winter 2016/17 Forschungsfreisemester
previous semesters

Mündliche Modulprüfungen (oral exams)

Nächste Termine:

Bitte vereinbaren Sie Ihren Prüfungstermin mit Herrn Kall, Raum MA 873.

Please make arrangements with my secratary Mathias Kall, room MA 873.

Publications and Preprints

[21] B. Springborn. The hyperbolic geometry of Markov's theorem on Diophantine approximation and quadratic forms. arXiv:1702.05061v1, Feb 2017.
[20] R. Richter, J. E. Kyprianidis, B. Springborn, M. Alexa. Constrained modeling of 3-valent meshes using a hyperbolic deformation metric. Computer Graphics Forum (2016) (online).
[19] H. Kouřimská, L. Skuppin, B. Springborn. A variational principle for cyclic polygons with prescribed edge lengths. Pages 177-195 in: A. I. Bobenko (editor). Advances in Discrete Differential Geometry. Springer, Berlin, 2016 (open access). arXiv:1506.08069
[18] A. I. Bobenko, S. Sechelmann, B. Springborn. Discrete conformal maps: Boundary value problems, circle domains, Fuchsian and Schottky uniformization. Pages 1-56 in: A. I. Bobenko (editor). Advances in Discrete Differential Geometry. Springer, Berlin, 2016 (open access).
[17] S. Born, U. Bücking, B. Springborn. Quasiconformal distortion of projective transformations and discrete conformal maps. Discrete Comput. Geom. (2017 online), DOI: 10.1007/s00454-016-9854-7. arXiv:1505.01341, May 2015.
[16] I. Izmestiev, R. B. Kusner, G. Rote, B. Springborn, J. M. Sullivan. There is no triangulation of the torus with vertex degrees 5, 6, ..., 6, 7 and related results: Geometric proofs for combinatorial theorems. Geom. Dedicata 166:1 (2013), 15-29 (online). arXiv:1207.3605
[15] A. Bobenko, U. Pinkall, B. Springborn. Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol. 19-4 (2015), 2155-2215 (online). arXiv:1005.2698
[14] B. Springborn, P. Schröder, U. Pinkall. Conformal Equivalence of Triangle Meshes. ACM Transactions on Graphics 27:3 [Proceedings of ACM SIGGRAPH 2008] (online). [PDF]
[13] M. Fisher, B. Springborn, P. Schröder, A. I. Bobenko. An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing. Computing 81 (2007), 199-213 (online). [PDF]
[12] U. Pinkall, B. Springborn, S. Weißmann. A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow. J. Phys. A: Math. Theor. 40 (2007), 12563-12576 (online). arXiv:0708.0979
[11] B. Springborn. A variational principle for weighted Delaunay triangulations and hyperideal polyhedra. J. Differential Geom. 78 (2008) 333-367 (online). [PDF]
[10] L. Kharevych, B. Springborn, P. Schröder. Discrete conformal maps via circle patterns. ACM Transactions on Graphics 25:2 (2006) 412-138 (online). [PDF]
[9] A. I. Bobenko, B. A. Springborn. A discrete Laplace-Beltrami operator for simplicial surfaces. Discrete Comput. Geom. 38:4 (2007) 740-756 (online). arXiv:math/0503219
[8] B. A. Springborn. A unique representation of polyhedral types. Centering via Möbius transformations. Math. Z. 249:3 (2005), 513-517 (online). arXiv:math/0401005
[7] A. I. Bobenko, T. Hoffmann, B. A. Springborn. Minimal surfaces from circle patterns: Geometry from combinatorics. Ann. of Math. 164:1 (2006), 231-264 (online). arXiv:math/0305184
[6] A. I. Bobenko, B. A. Springborn. Variational principles for circle patterns and Koebe's theorem. Trans. Amer. Math. Soc. 356 (2004), 659-689 (online). [PDF].
[5] B. A. Springborn. Variational principles for circle patterns. PhD thesis, Technische Universität Berlin, 27 Nov 2003. Supervisor: A. I. Bobenko. Published online and as arXiv:math/0312363 Errata page [PDF]
[4] A. I. Bobenko, T. V. Pavlyukevich, B. A. Springborn. Hyperbolic constant mean curvature one surfaces: Spinor representation and trinoids in hypergeometric functions. Math. Z. 245 (2003), 63--91 (online). arXiv:math/0206021g
[3] B. A. Springborn. Constructing circle patterns using a new functional. In H.-Chr. Hege and K. Polthier (eds.), Visualization and Mathematics III, Springer-Verlag, 2003. [ps.gz].
[2] B. A. Springborn. Bonnet pairs in the 3-sphere. In M. Guest, R. Miyaoka, and Y. Ohnita (eds.), Differential Geometry and Integrable Systems, Contemporary Mathematics series, volume 308, American Mathematical Society, 2002. [PDF]
[1] B. A. Springborn. The toy top, an integrable system of rigid body dynamics. Nonlinear Math. Phys. 7 (2000), 386--410 (online). [PDF]

Some Old Stuff

Doyle Spiral Demo (A Java-webstart application. For info on Doyle spirals see this article.)
Gallery of Polyhedral Types (Needs Java-plugin.)
Some pictures of discrete minimal surfaces (See also Stefan Sechelmann's homepage.)
Boris Springborn
Last modified: Monday, 26-Jun-2017 16:04:19 CEST .