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Abstract. We consider parallel, identical machine scheduling problems, where the jobs are
subject to precedence constraints and release dates, and where the processing times of jobs are
governed by independent probability distributions. Our objective is to minimize the expected value
of the total weighted completion time. Building upon a linear programming relaxation by Möhring,
Schulz, and Uetz [J. ACM, 46 (1999), pp. 924–942] and a delayed list scheduling algorithm by Chekuri
et al. [SIAM J. Comput., 31 (2001), pp. 146–166], we derive the first constant-factor approximation
algorithms for this model.
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1. Introduction. This paper addresses stochastic parallel machine scheduling
problems with the objective of minimizing the expected value of the total weighted
completion time. Machine scheduling problems have attracted researchers for decades
since such problems play an important role in various applications from the areas of
operations research, management science, and computer science. The total weighted
completion time objective is of particular importance in parallel processing, where
many jobs are to be scheduled on a limited number of machines and a good average
performance is desired. Prominent examples for such a scheduling situation are prob-
lems that arise, e.g., in compiler optimization [4] and in parallel computing [2]. The
main characteristic of stochastic scheduling problems is the fact that the processing
times of the jobs may be subject to random fluctuations. Hence, the effective process-
ing times are not known with certainty in advance. This characteristic is of particular
practical relevance in many applications.

Problem definition. Denote by V = {1, . . . , n} a set of jobs which must be
scheduled on m parallel, identical machines. Each machine can handle only one job
at a time, and the jobs can be scheduled on any of the machines. Once the processing
of a job is started on one machine, it must be processed without preemption on this
machine. Precedence constraints are given by an acyclic digraph G = (V,A), where
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any arc (i, j) ∈ A restricts the start time of job j to be not earlier than the completion
time of job i. We consider problems with and without release dates rj for the jobs,
with the intended meaning that job j must not start earlier than rj . In the classical
(deterministic) setting, the objective is to minimize the total weighted completion time∑

j∈V wj Cj , where wj is a nonnegative weight and Cj denotes the completion time of
job j. In the stochastic model, it is assumed that the processing time pj of a job j is
not known in advance. It becomes known only upon completion of the job. However,
the distribution of the corresponding random variable Pj is given beforehand. Let
P = (P1, . . . , Pn) denote the vector of random variables for the processing times, and
denote by p = (p1, . . . , pn) a particular realization of the processing times. By E[Pj ]
we denote the expected processing time of a job j. We assume throughout that the
processing times of the jobs are stochastically independent. In the classical α |β | γ
notation of Graham et al. [9], the problem of minimizing the expected total weighted
completion time can be denoted by P| prec, rj |E [

∑
wj Cj ]. Here, P stands for the

parallel machine environment, prec and rj the existence of precedence constraints and
release dates, respectively, and E [

∑
wj Cj ] the objective of minimizing the expected

total weighted completion time.

Dynamic view on stochastic scheduling. The twist from deterministic to
stochastic processing times changes the nature of the scheduling problem considerably.
The solution of a stochastic scheduling problem is no longer a simple schedule, but a
so-called scheduling policy. We adopt the notion of scheduling policies as defined by
Möhring, Radermacher, and Weiss [14]. In the following, we briefly summarize what
that means.

Apart from the data that specifies the input of the problem, the state of the
system at any time t � 0 is determined by the time t itself, as well as the (conditional)
probability distributions of the jobs’ processing times. At any time t > 0, the state
thus depends on the observed past up to time t. This includes the start and completion
times of the jobs already completed by t, together with the start times of the jobs
in process at time t. The action of a scheduling policy at time t is given by a set
of jobs B(t) ⊆ V that is started at t, together with a tentative next decision time
ttent > t. The tentative decision time ttent is the latest point in time when the next
action of the policy takes place, subject to the condition that no other job is released
or ends before ttent. Notice that B(t) may be empty, and ttent = ∞ implies that
the next action of the policy takes place when the next job is released or some job
ends, whatever occurs first. Of course, the definition of B(t) must respect potential
release dates, precedence constraints, and the number of available machines. A policy
is required to be nonanticipatory, meaning that the action of a policy at any time t
must depend only on the state of the system at time t (together with the given input
data, of course). The time instances at which a policy takes its actions are called
decision times. Given an action of a policy at a decision time t, the next decision
time is ttent, or the time of the next job completion, or the time when the next job is
released, whatever occurs first. Depending on the action of the policy, the state at the
next decision time is realized according to the (conditional) probability distributions
of the jobs’ processing times.

A given policy eventually yields a feasible m-machine schedule for each realiza-
tion p of the processing times. For a given policy, denoted by Π, let SΠ

j (p) and CΠ
j (p)

denote the start and completion times, respectively, of job j for a given realization p,
and let SΠ

j (P ) and CΠ
j (P ) denote the associated random variables.
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Approximation. It follows from simple examples that, in general, a scheduling
policy cannot yield the optimal schedule for each possible realization of the process-
ing times; see, e.g., [21]. Hence, our goal is to find a policy Π which minimizes the
objective, say ZΠ(P ), in expectation. But even under this mild notion of optimality,
few special cases exist for which optimal scheduling policies are known to be effi-
ciently computable. One example is the optimality of list scheduling according to
SEPT (shortest expected processing time first) for the problem without precedence
constraints or release dates, with unit weights, and with exponentially distributed
processing times, P| pj ∼ exp(λj)|E [

∑
Cj ] [1, 24]. This result was extended by

Kämpke [12] to the case where the weights wj are compliant with the expected pro-
cessing times. In general, however, there exist examples which show that optimal
policies can be rather complicated in the sense that they must indeed utilize the
full information on the conditional distributions of the jobs’ processing times; see,
e.g., [22]. In this paper, we therefore concentrate on approximation algorithms. In
stochastic scheduling, a scheduling policy Π is said to be an α-approximation if its
expected performance E[ZΠ(P )] is within a factor of α of the expected performance
E[ZΠ∗

(P )] of an optimal (nonanticipatory) scheduling policy Π∗. The value α is called
the performance guarantee.

List scheduling policies. There exist essentially three different classes of list
scheduling policies, all of which have in common that there is a fixed priority list L
of jobs which determines the order in which the jobs are considered. We call a job j
available with respect to a partial schedule at time t if all predecessors of j are
completed by t and if rj � t.

Graham’s list scheduling. This is perhaps the most natural class of policies, often
referred to as the list scheduling algorithm of Graham [7, 8]. Iterating over decision
times, it greedily starts as many available jobs as possible, always in the order of the
list L. It always holds that ttent = ∞, and jobs are thus started only at release dates
or upon completion of other jobs. If precedence constraints or release dates exist, it
may happen that the order of start times of jobs differs from the order of the jobs in
the priority list L; the jobs are scheduled “out of order” with respect to the priority
list L. For the deterministic problem with makespan objective, P|prec|Cmax, it is well
known that Graham’s list scheduling achieves a performance guarantee of 2 − 1/m
for any priority list of the jobs [7]. This result straightforwardly extends to stochastic
processing times and the expected makespan objective, P| prec|E [Cmax] [3]. For the
expected total weighted completion time, Graham’s list scheduling in the WSEPT
order1 yields a constant-factor approximation for the problem without precedence
constraints or release dates, P||E [

∑
wjCj ] [15]. In the presence of release dates or

precedence constraints, even in the deterministic setting, there are examples which
show that the performance of Graham’s algorithm can be arbitrarily bad. For an
example with precedence constraints, see [18].

Job-based list scheduling. This is, in fact, the same list scheduling policy as before,
only with the additional constraint that no job is started earlier than any of its prede-
cessors in the priority list L. Hence, this policy preserves the order of the jobs in the
priority list L at the cost of deliberate idle times on the machines. For the determin-
istic problem P|rj , prec|

∑
wjCj , the currently best known performance guarantee

of 4 relies on (a slight variation of) job-based list scheduling, and the priority list is
defined on the basis of an optimal solution to a linear programming relaxation [16].

1In the WSEPT order, jobs appear in nonincreasing order of the ratios wj/E[Pj ].
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For the stochastic problem without precedence constraints, P|rj |E [
∑

wjCj ], job-
based list scheduling yields a constant performance guarantee, too. This result is
also based on a priority list that is defined on the basis of an optimal solution to an
LP-relaxation [15].

Delayed list scheduling. As a matter of fact, approximation results for stochastic
parallel machine scheduling were previously known only for problems without prece-
dence constraints [23, 15]. In this paper, we close this gap, relying on yet another
class of list scheduling policies which generalizes both Graham’s and job-based list
scheduling algorithms. It has been suggested in a paper by Chekuri et al. [5] to ob-
tain a 5.828-approximation for the deterministic problem P|rj , prec|

∑
wj Cj . We

consider the analogous stochastic variant of this algorithm. The basic idea is to ex-
tend Graham’s list scheduling in such a way that a job may be scheduled out of order
only if a certain amount of deliberate idle time has accumulated before. Thus, in
this algorithm we use values ttent < ∞, and jobs may be started at times different
from release dates or completion times of other jobs. The algorithm is parametric
on a parameter β � 0 that controls the tradeoff between the amount of out-of-order
processing of jobs and the desire to adhere to the order of the given priority list L.
For β = 0 and β = ∞ we get Graham’s and job-based list scheduling algorithms,
respectively. The algorithm will be described in more detail in section 2.

Contribution of this paper. We derive the first constant performance guar-
antees for stochastic parallel machine scheduling with precedence constraints. The
results are derived by borrowing heavily from two previous approaches. On the one
hand, we use (an appropriate adaptation of) the delayed list scheduling algorithm
of Chekuri et al. [5]. On the other hand, the priority list is derived from an opti-
mal solution for (a generalized version of) the LP-relaxation by Möhring, Schulz, and
Uetz [15]. It seems, however, that only this combination of the previous techniques is
capable of yielding the desired approximation results.

Table 1 gives an overview of performance guarantees for stochastic parallel ma-
chine scheduling problems with the total weighted completion time objective. The
last column indicates which of the results are proved in [15]; the asterisk [∗] indicates
that the results are derived in this paper. The term Δ denotes some common upper
bound on the values Var[Pj ]/(E [Pj ])

2 for all jobs j ∈ V . In other words,
√

Δ is a

common upper bound on the coefficient of variation CV [Pj ] =
√

Var[Pj ]/E [Pj ] for
all processing time distributions Pj , j ∈ V . Moreover, the number of machines is
denoted by m, and β is the nonnegative parameter used to control the delayed list
scheduling algorithm. The third column shows the respective performance bounds for
processing time distributions where the coefficient of variation is bounded by 1, which
is the case for exponential, uniform, or Erlang distributions, to name a few.

Relations to online optimization and other models. Compared to the
model described above, online optimization is another way of coping with the fact
that the future is uncertain. We refer to Fiat and Woeginger [6] for details about
online optimization. There is, however, a significant difference between the under-
lying paradigms of the above described analysis and the usual competitive analysis
that prevails in online optimization. First, competitive analysis is based upon the a
posteriori comparison, “What was achieved under uncertainty about the future, and
what could have been achieved if the future would not have been uncertain?” This is
expressed by the fact that the adversary is generally an oracle that knows the optimal
solution. In contrast, stochastic scheduling addresses the a priori question, “What is
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Table 1

Performance bounds for stochastic scheduling problems. Asterisks [∗] mark results of this paper.

Scheduling model Performance guarantee
Arbitrary Pj CV[Pj ] � 1

1|prec|E [
∑

wjCj ] 2 2 [15]

1|rj , prec|E [
∑

wjCj ] 3 3 [15]

P| |E [
∑

wjCj ] 1 + (m−1)(Δ+1)
2m

2 − 1
m

[15]

P|rj |E [
∑

wjCj ] 3 − 1
m

+ max{1, m−1
m

Δ} 4 − 1
m

[15]

P|in-forest|E [
∑

wjCj ] 2 − 1
m

+ max{1, m−1
m

Δ} 3 − 1
m

[∗]

P|prec|E [
∑

wjCj ] (1 + β)
(
1 + m−1

mβ
+ max{1, m−1

m
Δ}

)
3 + 2

√
2 − 1+

√
2

m
[∗]

P|rj , prec|E [
∑

wjCj ] (1 + β)
(
1 + 1

β
+ max{1, m−1

m
Δ}

)
3 + 2

√
2 [∗]

the best that can be achieved under the given uncertainty about the future?” Here, the
underlying adversary is much weaker: the adversary must not anticipate future in-
formation, just like the policy itself. Second, in competitive analysis the adversary is
allowed to determine, to a certain extent, the input distribution. This is not the case
in the stochastic model considered here, since the input distributions are considered
exogenous. It is interesting to note that two generalized online frameworks were sug-
gested by Koutsoupias and Papadimitriou [13]. They restrict the adversary’s power in
two ways: its ability to choose an input distribution, and its ability to find an optimal
solution. To some extent, the stochastic scheduling model incorporates both ideas,
too. We refer to [13] for details and to [21] for a brief discussion. Another type of
analysis for stochastic models has been proposed recently by Scharbrodt, Schickinger,
and Steger [17]. They analyze the expected competitive ratio E[ZΠ(P )/ZOPT(P )],
where ZOPT(p) is the optimal solution value for a realization p. In this type of analy-
sis the adversary is again an oracle that knows the optimal solution. We refer to [17]
for a more detailed discussion of the benefits of their approach in comparison to the
approach of this paper.

2. List scheduling with deliberate idle times. We start with a few pre-
liminaries that will be used later in the analysis. First, recall that we refer to a
job j available with respect to a partial schedule at time t if all predecessors of j are
completed by t and if rj � t.

Assumption 2.1. For any instance of P|rj , prec| γ , assume that rj � ri when-
ever job i is a predecessor of job j in the precedence constraints.

(Here, γ is used to denote an arbitrary objective function.) Obviously, Assump-
tion 2.1 can be made without loss of generality. Additionally, we use the following
definitions.

Definition 2.2 (critical predecessor). Let some realization p of the processing
times and a feasible schedule be given. For any job j, a critical predecessor of j is
a predecessor i of j (with respect to the precedence constraints) with Ci > rj and Ci

maximal among all predecessors.
Definition 2.3 (critical chain). Let some realization p of the processing times

and a feasible schedule be given. For a given job j, a critical chain for job j and its
length �j(p) is defined backwards recursively: If j has no critical predecessor, j is the
only job in the critical chain, and �j(p) = rj + pj. Otherwise, �j(p) = pj + �k(p),
where job k is a critical predecessor of job j.

Definition 2.3 is illustrated in Figure 1. Notice that the critical chain as well
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jh = j

Cjrj1

j1

j2

j3

Fig. 1. Example of a critical chain for job j. Its length is �j(p) = rj1 +
∑h

i=1 pji .

as its length �j(p) depend on both the realization of the processing times p and the
underlying schedule. Moreover, since a critical predecessor is not necessarily unique,
the critical chain and its length also depend on a tie-breaking rule for choosing critical
predecessors. This is not relevant for our analysis, but in order to make the above
definition unique, let us suppose that some arbitrary but fixed tie-breaking rule is
used. Notice further that the first job j1 of a critical chain is available at its release
date rj1 . This follows directly from the definition.

Like Graham’s list scheduling, the algorithm we use iterates over decision times
until all jobs have been scheduled. Assume a priority list L is given. As with job-based
list scheduling, the algorithm strives to schedule the jobs in the order of the list L by
leaving deliberate idle times. But if the accumulating deliberate idle time exceeds a
certain threshold, the algorithm “panics” and schedules the first available job from
the list. The algorithm is parametric on a parameter β � 0 that controls the tradeoff
between the amount of out-of-order processing of jobs and the desire to adhere to the
order of the given priority list L. At each stage of the algorithm, the sublist of L
containing all jobs that are not yet scheduled is referred to as the residual list. The
following is a direct adaptation of the algorithm introduced by Chekuri et al. [5].

Algorithm CMNS (Chekuri–Motwani–Natarajan–Stein).
2

Whenever a machine is idle and the first job in the residual list is
available, the job is scheduled. Otherwise, if the first job is not
available, the first available job j in the residual list (if any) is de-
liberately delayed. If j was deliberately delayed for an accumulated
time of βE[Pj ], it is scheduled out of order.

We emphasize that deliberate idle time accumulates m′ times faster when a job
is deliberately delayed while m′ machines are idle. For the purpose of analyzing the
performance of Algorithm CMNS, any job j gets charged the amount of deliberate
idle time that accumulates during time intervals when j is deliberately delayed. An
alternative interpretation is the following: whenever a job j is deliberately delayed,
the tentative next decision time ttent is that point in time where the accumulated
deliberate idle time charged to job j would equal βE[Pj ].

Analogous to [5], we introduce some additional notation. For a given job j, denote
by Bj and Aj the sets of jobs that come before and after job j in the priority list L,
respectively; by convention, Bj also includes job j. For the remaining definitions,
we consider a fixed realization p of the processing times and the resulting schedule
constructed by Algorithm CMNS. Then, rj(p) � rj denotes the earliest point in time
when job j becomes available; let j1, j2, . . . , jh = j be the critical chain for job j and

2The only difference between CMNS and the algorithm presented in [5] is the use of the thresh-
old βE[Pj ] instead of βpj . CMNS coincides with the classical list scheduling algorithm of Graham [7]
if we choose β = 0 and coincides with the job-based list scheduling algorithm if we choose β = ∞.
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define Bj(p) := Bj \ {j1, . . . , jh}. That is, the set Bj(p) contains all jobs that come
before job j in the priority list L, except for those which belong to the critical chain.
Moreover, let Oj(p) ⊆ Aj be the jobs in Aj that are started out of order, that is,
before j.

The following observation is the analogue to the results for the deterministic
setting by Chekuri et al. [5, Fact 4.6, Lemma 4.7].

Observation 2.4. For any realization p of the processing times and any job j,
(i) job j is charged no more than β E[Pj ] deliberate idle time;
(ii) the deliberate idle time in [rj(p), Sj(p)[ is charged only to jobs in Bj ;
(iii) there is no uncharged deliberate idle time.

Proof. Part (i) follows by construction of the algorithm and part (iii) by definition
of deliberate idle time. Finally, for (ii), observe that no job from Aj is the first
available job from the residual list in the time interval [rj(p), Sj(p)[, since job j is
available from rj(p) on, and j has higher priority than any job in Aj .

The following analysis of Algorithm CMNS closely resembles the analysis per-
formed in [5] for the deterministic case. We first derive an upper bound on the
completion time of any job for a fixed realization p.

Lemma 2.5. Consider the schedule constructed by Algorithm CMNS for any β �
0, any realization p of the processing times, and any priority list L which is a linear
extension of the precedence constraints. Let Cj(p) denote the resulting completion
time of any job j, and let �j(p) denote the length of the critical chain for job j. Then

Cj(p) � m− 1

m
�j(p) +

1

m
rj +

1

m

⎛
⎝∑

i∈Bj

(pi + β E[Pi]) +
∑

i∈Oj(p)

pi

⎞
⎠ .(2.1)

Proof. The basic idea resembles Graham’s analysis for the makespan objec-
tive [7]. Consider the critical chain for job j with total length �j(p), consisting of
jobs j1, j2, . . . , jh = j. Now partition the interval [rj1 , Cj(p)[ into time intervals,
where some job from the critical chain is in process, and the remaining time intervals.
The latter are exactly [ri(p), Si(p)[, i = j1, . . . , jh. (Recall that rj1 = rj1(p) due to
the definition of the critical chain.) By definition,

Cj(p) = �j(p) +

jh∑
i=j1

(
Si(p) − ri(p)

)
.(2.2)

To bound the total length of the intervals [ri(p), Si(p)[, i = j1, . . . , jh, observe that
in each of these intervals there is no idle time except (possibly) deliberate idle time,
since job i is available in [ri(p), Si(p)[. Hence, the total processing in these intervals
can be partitioned into three categories as follows:

– processing of jobs from Bj which do not belong to the critical chain, i.e., jobs
in Bj(p);

– deliberate idle time;
– processing of jobs from Aj which are scheduled out of order, i.e., jobs in Oj(p).

Due to Observation 2.4(ii), all deliberate idle time in the interval [ri(p), Si(p)[
is charged only to jobs in Bi, i = j1, . . . , jh. Since the priority list L is a linear
extension of the precedence constraints, we have Bj1 ⊂ Bj2 ⊂ · · · ⊂ Bjh = Bj . Hence,
all deliberate idle time in the intervals [ri(p), Si(p)[, i = j1, . . . , jh, is charged only to
jobs in Bj . Since there is no uncharged deliberate idle time (Observation 2.4(iii)), and
since each job i ∈ Bj gets charged no more than β E[Pi] idle time (Observation 2.4(i)),
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the total amount of deliberate idle time in the intervals [ri(p), Si(p)[, i = j1, . . . , jh,
is bounded from above by β

∑
i∈Bj

E[Pi]. This yields

jh∑
i=j1

(
Si(p) − ri(p)

)
� 1

m

⎛
⎝ ∑

i∈Bj(p)

pi +
∑
i∈Bj

β E[Pi] +
∑

i∈Oj(p)

pi

⎞
⎠ .(2.3)

Finally, due to Assumption 2.1 we have rj1 � rj ; thus

∑
i∈Bj(p)

pi �
∑
i∈Bj

pi −
(
�j(p) − rj

)
.(2.4)

Now put (2.4) into (2.3), and then (2.3) into (2.2), and the claim follows.
Before we take expectations in (2.1), we concentrate on the term

∑
i∈Oj(p)

pi. The

following lemma shows that the expected total processing time of the jobs in Oj(p)—
the jobs that are scheduled out of order with respect to j (and p)—is independent of
their actual processing times.

Lemma 2.6. We have

E

⎡
⎣ ∑

i∈Oj(P )

Pi

⎤
⎦ = E

⎡
⎣ ∑

i∈Oj(P )

E[Pi]

⎤
⎦ .

Proof. We can write
∑

i∈Oj(P ) Pi equivalently as
∑

i∈Aj
δi(P )Pi, where δi(P ) is

a binary random variable which is 1 if and only if i ∈ Oj(p). Linearity of expectation
yields

E

⎡
⎣ ∑

i∈Oj(P )

Pi

⎤
⎦ = E

⎡
⎣ ∑

i∈Aj

δi(P )Pi

⎤
⎦ =

∑
i∈Aj

E[δi(P )Pi].

Notice that δi(P ) is dependent on βE[Pi] but stochastically independent of Pi, as the
decision to process job i out of order is made before it is actually processed. (Here
we require that the processing times be stochastically independent and that policies
be nonanticipatory.) Hence,

∑
i∈Aj

E[δi(P )Pi] =
∑
i∈Aj

E[δi(P )]E[Pi] =
∑
i∈Aj

E
[
δi(P )E[Pi]

]
= E

⎡
⎣ ∑

i∈Oj(P )

E[Pi]

⎤
⎦ .

This concludes the proof.
The following lemma bounds the expected amount of processing time of jobs

from Aj which are scheduled out of order in terms of the expected length of the
critical chain for job j; compare to [5, Lemma 4.8].

Lemma 2.7. We have

1

m
E

⎡
⎣ ∑

i∈Oj(P )

E[Pi]

⎤
⎦ � 1

β
E[�j(P )].

Proof. Consider a fixed realization p of the processing times. If some job i ∈ Aj

is scheduled out of order, i gets charged exactly β E[Pi] deliberate idle time. Hence,
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the total amount of deliberate idle time in [0, Sj(p)[ that is charged to jobs in Oj(p)
is β

∑
i∈Oj(p)

E[Pi]. Now consider the critical chain j1, . . . , jh = j for job j with total

length �j(p). From the proof of Lemma 2.5, we know that all deliberate idle time in the
intervals [ri(p), Si(p)[, i = j1, . . . , jh, is charged only to jobs in Bj . In other words, all
deliberate idle time in [0, Sj(p)[ that is charged to jobs in Aj lies in the complementary
intervals [0, rj1 [ and [Si(p), Ci(p)[, i = j1, . . . , jh−1. (Recall that rj1 = rj1(p) due to the
definition of a critical chain.) The total length of these intervals is exactly �j(p)− pj .
Hence, the total amount of deliberate idle time in [0, Sj(p)[ that is charged to jobs
in Aj is at most m (�j(p)−pj) � m�j(p). Hence, we obtain β

∑
i∈Oj(p)

E[Pi] � m�j(p)
for any realization p of the processing times. Taking expectations yields the claimed
result.

Finally, we obtain an upper bound on the expected completion time of any job
under Algorithm CMNS; compare to [5, Theorem 4.9].

Theorem 2.8. For any instance of a stochastic scheduling problem P|rj , prec| γ
and any priority list L, which is a linear extension of the precedence constraints,
the expected completion time of any job j under Algorithm CMNS (with parameter
β � 0) fulfills

E[Cj(P )] �
(
m− 1

m
+

1

β

)
E[�j(P )] +

1 + β

m

∑
i∈Bj

E[Pi] +
1

m
rj .(2.5)

(Again, γ is used to denote an arbitrary objective function.)
Proof. Taking expectations in (2.1) together with Lemma 2.6 yields

E[Cj(P )] � m− 1

m
E[�j(P )] +

1

m

⎛
⎝rj + (1 + β)

∑
i∈Bj

E[Pi] + E

⎡
⎣ ∑

i∈Oj(P )

E[Pi]

⎤
⎦
⎞
⎠ .

Plugging in the inequality from Lemma 2.7 gives the desired result.

3. LP-relaxation. To obtain a priority list L as input for Algorithm CMNS,
and to obtain a lower bound on the optimum, Chekuri et al. [5] use a single ma-
chine relaxation. This approach does not help in the stochastic setting, since the
single machine problem does not necessarily provide a lower bound for the parallel
machine problem; see [15, Ex. 4.1] for an example. Instead, we use LP-relaxations,
which extend those used by Möhring, Schulz, and Uetz [15], adding inequalities which
represent the precedence constraints. First, define f : 2V → R by

f(W ) :=
1

2m

⎛
⎜⎝
⎛
⎝∑

j∈W

E[Pj ]

⎞
⎠

2

+
∑
j∈W

E[Pj ]
2

⎞
⎟⎠− (m− 1)(Δ − 1)

2m

⎛
⎝∑

j∈W

E[Pj ]
2

⎞
⎠

(3.1)

for W ⊆ V . Here, Δ � 0 is a common upper bound on Var[Pj ]/E[Pj ]
2 for all jobs

j ∈ V , where Var[Pj ] = E[P 2
j ] − E[Pj ]

2 is the variance of Pj . In other words, the
coefficient of variation

CV[Pj ] :=

√
Var[Pj ]

E[Pj ]

of the distributions Pj is bounded by
√

Δ for all j ∈ V . The following load inequalities
are crucial for the derivation of our results.
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Theorem 3.1 (see [15, Cor. 3.1]). If CV[Pj ] �
√

Δ for all Pj and some Δ � 0,
the load inequalities ∑

j∈W

E[Pj ] E[CΠ
j (P )] � f(W )(3.2)

are valid for all W ⊆ V and any nonanticipatory scheduling policy Π.
In fact, as mentioned in [15], assuming that an upper bound exists on the co-

efficients of variation of the processing time distributions Pj can be a reasonable
assumption for many scheduling problems. For instance, assume that job processing
times follow so-called NBUE distributions.

Definition 3.2 (NBUE). A nonnegative random variable X is “new better than
used in expectation” (NBUE) if E [X − t|X > t] � E [X] for all t � 0.

Here, E [X − t|X > t] is the conditional expectation of X−t under the assumption
that X > t. Roughly speaking, when processing times are NBUE, on average it is not
disadvantageous to process a job. Examples for NBUE distributions are, among oth-
ers, exponential, uniform, and Erlang distributions. A result of Hall and Wellner [11]
states that the coefficient of variation CV[X] of any NBUE distribution X is bounded
by 1. Hence, by choosing Δ = 1 the second term of the right-hand side of (3.2) can be
neglected for NBUE distributions, which leads to simplified performance guarantees
in section 4.

Observe that under any scheduling policy Π the trivial inequalities

E[CΠ
j (P )] � E[CΠ

i (P )] + E[Pj ], (i, j) ∈ A,

and

E[CΠ
j (P )] � E[Pj ], j ∈ V,

are valid, since they even hold pointwise for any realization of the processing times.
Due to Theorem 3.1, the following is thus an LP-relaxation for the problem
P|rj , prec|E [

∑
wj Cj ]:

Minimize
∑
j∈V

wj C
LP
j

subject to
∑
j∈W

E[Pj ]C
LP
j � f(W ), W ⊆ V,

CLP
j � CLP

i + E[Pj ], (i, j) ∈ A,

CLP
j � E[Pj ], j ∈ V,

where f : 2V → R is the set function defined in (3.1). It is known that the load
inequalities

∑
j∈W E[Pj ]C

LP
j � f(W ), W ⊆ V, can be separated in time O(n log n )

[15, 21]. Hence, due to the fact that the remaining number of inequalities is poly-
nomial in terms of n, this LP-relaxation can be solved in time polynomial in n by
the equivalence of separation and optimization [10]. The following technical lemma
of Möhring, Schulz, and Uetz [15] is required later in the analysis.

Lemma 3.3 (see [15, Lemma 4.2]). Let CLP ∈ R
n be any point that satisfies the

first and the last set of inequalities from the LP-relaxation. Assuming CLP
1 � CLP

2 �
· · · � CLP

n , we then have for all j ∈ V

1

m

j∑
k=1

E[Pk] �
(

1 + max

{
1,

m− 1

m
Δ

})
CLP

j .
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4. Results. We are now ready to prove approximation results for stochastic
machine scheduling problems with precedence constraints.

General precedence constraints. We consider the general problem with prece-
dence constraints and release dates, P|rj , prec|E [

∑
wj Cj ] . From an optimal so-

lution for the LP-relaxation, we define a priority list L according to nondecreas-
ing “LP completion times” CLP

j . It is perhaps interesting to note that inequalities

CLP
j � CLP

i + E[Pj ], (i, j) ∈ A, are required only to ensure that the order according

to nondecreasing LP completion times CLP
j is a linear extension of the precedence

constraints. They are not required elsewhere in the analysis. Moreover, instead of
the weaker inequalities CLP

j � E[Pj ] we could use CLP
j � rj + E[Pj ] as well, but this

does not yield an improvement of our results.
Theorem 4.1. Consider an instance of the stochastic machine scheduling prob-

lem P|rj , prec|E [
∑

wj Cj ] with CV[Pj ] �
√

Δ for all processing times Pj and some
Δ � 0. Let L be a priority list according to an optimal solution CLP of the LP-
relaxation. Then Algorithm CMNS (with parameter β > 0) is an α-approximation
with

α = (1 + β)

(
1 +

1

β
+ max

{
1,

m− 1

m
Δ

})
.

Proof. Since L is a linear extension of the precedence constraints, Theorem 2.8
yields

E[Cj(P )] �
(
m− 1

m
+

1

β

)
E[�j(P )] +

1 + β

m

∑
i∈Bj

E[Pi] +
1

m
rj

for any job j ∈ V . (Recall that Bj denotes the jobs that come before job j in the
priority list L.) Lemma 3.3 yields

1

m

∑
i∈Bj

E[Pi] �
(

1 + max

{
1,

m− 1

m
Δ

})
CLP

j

for all j ∈ V . Hence,

∑
j∈V

wj E[Cj(P )] �
(
m− 1

m
+

1

β

) ∑
j∈V

wj E[�j(P )]

+ (1 + β)

(
1 + max

{
1,

m− 1

m
Δ

}) ∑
j∈V

wj C
LP
j +

1

m

∑
j∈V

wj rj .

Now, for any job j and any realization p of the processing times, the length �j(p) of
a critical chain for job j is a lower bound for job j’s completion time, �j(p) � Cj(p).
This is true by definition of a critical chain. Hence, the value E[�j(P )] is a lower
bound on the expected completion time E[Cj(P )] of any job j for any scheduling
policy. (Notice that the critical chain may be different for different realizations of the
processing times, and thus the fact that E[�j(P )] � E[Cj(P )] cannot be derived from
the precedence constraints in the LP-relaxation.) Thus,

∑
j∈V wj E[�j(P )] is a lower

bound on the expected performance of an optimal scheduling policy. Moreover, both
terms

∑
j∈V wj C

LP
j and

∑
j∈V wj rj are lower bounds on the expected performance

of an optimal scheduling policy as well. This gives a performance bound of(
m− 1

m
+

1

β

)
+ (1 + β)

(
1 + max

{
1,

m− 1

m
Δ

})
+

1

m
.
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Rearranging the terms yields the desired result.
Notice that Theorem 4.1 implies a performance bound of 3 + 2

√
2 ≈ 5.828 if

β = 1/
√

2 and if the jobs’ processing times are distributed according to NBUE distri-
butions (see Definition 3.2). This matches the performance guarantee achieved in [5]
for the corresponding deterministic scheduling problem P|rj , prec|

∑
wj Cj . The per-

formance bound in Theorem 4.1 can be slightly improved if release dates are absent.
Theorem 4.2. Consider an instance of the stochastic machine scheduling prob-

lem P|prec|E [
∑

wj Cj ] with CV[Pj ] �
√

Δ for all processing times Pj and some
Δ � 0. Let L be a priority list according to an optimal solution CLP of the LP-
relaxation. Then Algorithm CMNS (with parameter β > 0) is an α-approximation
with

α = (1 + β)

(
1 +

m− 1

mβ
+ max

{
1,

m− 1

m
Δ

})
.

The tighter bound follows from two modifications in the proof of Theorem 4.1.
On the one hand, in the proof of Lemma 2.7, one can show that

1

m
E

⎡
⎣ ∑

i∈Oj(P )

E[Pi]

⎤
⎦ � m− 1

mβ
E[�j(P )].

The reason is that there are only m − 1 machines available for the deliberate idle
time that is charged to jobs which are scheduled out of order: Simultaneous to the
deliberate idle time, at least one job from the critical chain j1, j2, . . . , jh is in process.
(This argument does not hold if release dates are present, since deliberate idle time
could possibly accumulate before rj1 .) On the other hand, it is immediate that the last
term (1/m) rj on the right-hand side of (2.5) disappears. With these modifications,
the claim follows exactly as in Theorem 4.1.

In-forest precedence constraints. Let us now turn to the special case of the
problem denoted by P|in-forest|E [

∑
wj Cj ] . In-forest precedence constraints are

characterized by the fact that each job has at most one successor. Moreover, we
assume that there are no release dates. For this problem, the results of the preceding
section can be further improved.

We start with the following observation which is also contained in [5, Lemma 4.16];
we nevertheless give a short proof for the sake of completeness.

Lemma 4.3. Consider the schedule constructed by Graham’s list scheduling for
an arbitrary priority list L, which is a linear extension of the (in-forest) precedence
constraints, and any realization p of the processing times. Then, in the interval
[rj(p), Sj(p)[ there is no processing of jobs in Aj.

Proof. Suppose the claim is false and, among all jobs which violate it, let job j be
one that is scheduled earliest. Obviously, Sj(p) > rj(p); otherwise the claim is trivially
true. In the interval [rj(p), Sj(p)[ no job from Aj is started, since j is available from
time rj(p) on. Hence, there must be some job k ∈ Aj that has been started before
rj(p) and that is still in process at rj(p). Thus rj(p) > 0. Denote by h the number
of jobs that are started at time rj(p). All of these jobs i have higher priority than j,
and the fact that j is the first job that violates the claim yields ri(p) = rj(p). (At
this point it is crucial that the priority list extends the precedence constraints.) In
other words, for each of these jobs a critical predecessor ends at time rj(p) and, due
to the fact that the precedence constraints form an in-forest, all of these predecessors
are different. Hence, including j’s critical predecessor, h+1 different jobs end at time
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rj(p), but only h are started. This is a contradiction since job j is available at time
rj(p).

Lemma 4.4. For any instance of the stochastic scheduling problem P|in-forest| γ
and any priority list L, which is a linear extension of the precedence constraints, the
expected completion time of any job j under Graham’s list scheduling fulfills

E[Cj(P )] � m− 1

m
E[�j(P )] +

1

m

∑
i∈Bj

E[Pi].(4.1)

(Again, γ is used to denote an arbitrary objective function.)
Proof. Consider any realization p of the processing times. Given any job j,

consider a critical chain for j, consisting of jobs j1, j2, . . . , jh = j and with total
length �j(p). The time interval [0, Cj(p)] can be partitioned into time intervals, where
a job from a critical chain for j is in process, and the remaining time intervals. Due
to Lemma 4.3, in each time interval [ri(p), Si(p)[ there is no job from Ai in process
for all i = j1, . . . , jh. Moreover, there is no idle time on any of the machines in these
time intervals (we consider Graham’s list scheduling, and there are no release dates).
Since Aj1 ⊃ Aj2 ⊃ · · · ⊃ Ajh = Aj , it follows that the only jobs processing in these
time intervals are the jobs in Bj , or more precisely, in Bj(p). In other words, the total
processing time of jobs in these time intervals is at most

∑
i∈Bj

pi − �j(p). Hence,

Cj(p) � m− 1

m
�j(p) +

1

m

∑
i∈Bj

pi

for any realization p. Taking expectations, we see that the claim follows.
Theorem 4.5. Consider an instance of P|in-forest|E[

∑
wj Cj ] with CV[Pj ] �√

Δ for all processing times Pj and some Δ � 0. Let L be a priority list according to
an optimal solution CLP of the LP-relaxation. Then Graham’s list scheduling is an
α-approximation with

α = 2 − 1

m
+ max

{
1,

m− 1

m
Δ

}
.

Proof. Graham’s list scheduling coincides with Algorithm CMNS for β = 0. The
proof is therefore exactly the same as that of Theorem 4.1, except that Lemma 4.4 is
used instead of Theorem 2.8.

For NBUE distributions (see Definition 3.2), Theorem 4.5 yields a performance
guarantee of 3 − 1/m.

Single machine problems. Theorem 4.2 implies a 2-approximation for the spe-
cial case of a single machine: In this case the term (m − 1)/(mβ) disappears, and
we can choose β = 0 to obtain performance guarantee 2. (For β = 0, the algorithm
corresponds to Graham’s list scheduling.) This holds for arbitrarily distributed, in-
dependent processing times. In fact, this matches the best bound currently known
in the deterministic setting; see Open Problem 9 in the collection of Schuurman and
Woeginger [19].

5. Further remarks. A scheduling policy defines a mapping of processing times
to start times of jobs. This mapping has to be universally measurable in order to grant
existence of the expected objective function value [14]. Without going into further
detail we just mention that the scheduling policies discussed in this paper fulfill this
requirement; refer to [21, Cor. 3.6.15] for further details.
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We point out that, apart from the expected processing times of the jobs, a uni-
form upper bound on their coefficients of variation is the sole stochastic information
required as input for the presented scheduling policy. Nevertheless, in our analysis we
compare its performance to a lower bound on the performance of any nonanticipatory
scheduling policy. This refers to the broadest possible sense of scheduling policies as
defined by Möhring, Radermacher, and Weiss [14]. In particular, an optimal schedul-
ing policy is therefore allowed to take advantage of the complete knowledge of the
conditional distributions of the processing times, at any time.

Finally, we mention that our analysis indeed requires policies to be nonanti-
cipatory, because the LP lower bound does not hold otherwise. This can be seen from
the observation that an anticipatory “scheduling policy” could, for instance, compute
an optimal schedule for any realization of the processing times. Theorem 3.1, however,
is no longer valid in this case; see [21]. In other words, our analysis is based upon
an adversary that is just as powerful as the scheduling policy itself. This constitutes
a major difference compared to the rather “unfair” competitive analysis known from
online optimization.

Acknowledgment. We thank the anonymous referee for many valuable com-
ments and suggestions for improvements. In particular, the compact formulation of
the algorithm in section 2 was kindly proposed by the referee.
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