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1. Introduction

The last years have witnessed a very fast development in the area of approxima-
tion algorithms for NP-hard scheduling problems. Apart from purely combinato-
rial approaches, linear programming (LP) relaxations have been proved to be a
useful tool in the design and analysis of approximation algorithms for several
machine scheduling problems.1

In this paper, we pursue a somewhat different line of research. We develop
approximation algorithms that are not based on polyhedral relaxations but on
convex quadratic and semidefinite programming relaxations which have, to the
best of our knowledge, never been used in the area of scheduling before. Convex
and more specifically semidefinite programming relaxations of combinatorial
optimization problems have attracted the attention of many researchers (see,
e.g., Goemans [1997b]). Grötschel et al. [1981] used semidefinite programming
to design a polynomial time algorithm for finding the largest stable set in a
perfect graph. The use of semidefinite relaxations in the design of approximation
algorithms was pioneered by Goemans and Williamson [1995].

1.1. THE NETWORK SCHEDULING PROBLEM. We study the following network
scheduling problem: A set J of n jobs has to be scheduled on m unrelated
parallel processors or machines that are connected by a network. The jobs
continually arrive over time and each job originates at some node of the network.
Therefore, before a job can be processed on another machine, it must take the
time to travel there through the network. This is modeled by machine-dependent
release dates rij Ä 0 that denote the earliest point in time when job j may be
processed on machine i. Together with each job j, we are given its positive
processing requirement that also depends on the machine i job j will be
processed on and is therefore denoted by pij. In nonpreemptive schedules, each
job j must be processed for the respective amount of time without interruption
on one of the m machines. In preemptive schedules, a job may repeatedly be
interrupted and continued later on another (or the same) machine. For a given
job j, it may happen that pij 5 ` for some (but not all) machines i such that job
j cannot be scheduled on those machines. Every machine can process at most one
job at a time. This network scheduling model has been introduced in Deng et al.
[1990] and Awerbuch et al. [1992]. We denote the completion time of job j by Cj.
The goal is to minimize the total weighted completion time: a weight wj Ä 0 is
associated with each job j and we seek to minimize ( j[J wjCj.

To avoid annoying case distinctions and thus to simplify presentation, we
always assume in the following that pij , ` for all i, j; however, all techniques
and results presented in this paper can easily be extended to the case of general
processing times.

1.2. NOTATION. In scheduling, it is quite convenient to refer to the respective
problems using the standard classification scheme of Graham et al. [1979]. The
problems that we consider are special variants of the general problem described

1 See, for example, Lenstra et al. [1990], Shmoys and Tardos [1993], Phillips et al. [1998], Hall et al.
[1997], Chakrabarti et al. [1996], Phillips et al. [1998], Möhring et al. [1996], Goemans [1997a],
Chudak and Shmoys [1999], Goemans et al. [2000], Schulz and Skutella [2001a; 2001b], Savelsbergh
et al. [1998], Munier et al. [1998], and Goemans et al. [2001].
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above. Each can be denoted by aubug with the following meaning: The machine
characteristic a is either 1, P, or R, where a 5 1 denotes that the scheduling
environment provides only one machine; a 5 P indicates identical parallel
machines; the general case of unrelated parallel machines described above is
denoted by a 5 R. If the number of parallel machines is fixed to a constant m
that does not depend on the input, this is indicated by a 5 Pm and a 5 Rm,
respectively. The field b can be empty or contains one or both of the job
characteristics rj (or rij) and pmtn, indicating whether there are nontrivial release
dates and whether preemption is allowed. The third field g refers to the objective
function. We are interested in minimizing the total weighted completion time or,
for the special case of unit weights, the total completion time denoted by g 5
( wjCj and g 5 ( Cj, respectively.

1.3. APPROXIMATION ALGORITHMS. Since all problems that we will consider
in the sequel are NP-hard (see, e.g., Lawler et al. [1993]), we cannot hope to be
able to compute optimal schedules efficiently. Therefore, we are interested in
how close one can approach the optimum in polynomial time. A (randomized)
a-approximation algorithm computes in polynomial time a feasible solution to the
problem under consideration whose (expected) value is bounded by a times the
value of an optimal solution; a is called the performance guarantee or performance
ratio of the algorithm. Notice that all randomized approximation algorithms in
this paper can be derandomized.

A family of polynomial time approximation algorithms with performance
guarantee 1 1 e for all fixed e . 0 is called a polynomial time approximation
scheme (PTAS). If the running times of the approximation algorithms are even
bounded by a polynomial in the input size and 1/e, then these algorithms build a
fully polynomial time approximation scheme (FPTAS).

1.4. KNOWN LP BASED APPROXIMATIONS. The first approximation algorithm
for the scheduling problem Ruriju( wjCj was obtained by Phillips et al. [1997] who
gave an algorithm with performance guarantee O(log2 n). The first constant
factor approximation was developed by Hall et al. [1996] (see also Hall et al.
[1997]) whose algorithm achieves performance ratio 16/3. Generalizing a single
machine approximation algorithm of Goemans [1997a], this result was then
improved by Schulz and Skutella [2001b] to a (2 1 e)-approximation algorithm
and a (3/2 1 e)-approximation algorithm for the problem without release dates
Ri( wjCj. Independently, the latter result has also been obtained by Chudak
[1999] after reading a preliminary paper of Schulz and Skutella containing the
(2 1 e)-approximation for Ruriju( wjCj. All those approximation results rely
somehow on (integer) linear programming formulations or relaxations in time-
indexed variables. In the following discussion, we assume that all processing
times and release dates are integral; furthermore, we define pmax :5 maxi, jpij.

Phillips et al. [1997] modeled the network scheduling problem as a hypergraph
matching problem by matching each job j to pij consecutive time intervals of
length 1 on a machine i. The underlying graph contains a node for each job and
each pair formed by a machine and a time interval [t, t 1 1) where t is integral
and can achieve values in a range of size npmax. Therefore, since pmax may be
exponential in the input size, the corresponding integer linear program contains
exponentially many variables as well as exponentially many constraints. Phillips
et al. [1997] eluded this problem by partitioning the set of jobs into groups such
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that the jobs in each group can be scaled down to polynomial size. However, this
complicates both the design and the analysis of their approximation algorithm.

The result of Hall et al. [1996] is based on a polynomial variant of time-
indexed formulations which they called interval-indexed. The basic idea is to
replace the intervals of length 1 by time intervals [2k, 2k11) of geometrically
increasing size. The decision variables in the resulting linear programming
relaxation then indicate on which machine and in which time interval a given job
completes. Notice, however, that one looses already at least a factor of 2 in this
formulation since the interval-indexed variables do not allow a higher precision
for the completion times of jobs. The approximation algorithm of Hall et al.
[1996] relies on Shmoys and Tardos’ [1993] rounding technique for the general-
ized assignment problem.

Schulz and Skutella [2001b] generalized an LP relaxation in time-indexed
variables that was introduced by Dyer and Wolsey [1990] for the corresponding
single machine scheduling problem. It contains a decision variable for each triple
formed by a job, a machine, and a time interval [t, t 1 1) which indicates
whether the job is being processed in this time interval on the respective
machine. The resulting LP relaxation is a 2-relaxation of the scheduling problem
under consideration, that is, the value of an optimal schedule is within a factor 2
of the optimum LP value. However, as the formulation of Phillips et al. [1997],
this relaxation suffers from an exponential number of variables and constraints.
One can overcome this drawback by turning again to interval-indexed variables.
However, in order to ensure a higher precision, Schulz and Skutella used time
intervals of the form [(1 1 e)k, (1 1 e)k11) where e . 0 can be chosen
arbitrarily small; this leads to a (2 1 e)-relaxation of polynomial size. Notice,
however, that the size of the relaxation still depends substantially on pmax and
may be huge for small values of e. The approximation algorithm based on this LP
relaxation uses a randomized rounding technique. In the absence of release
dates, the quality of the relaxation and the performance guarantee of the
algorithm can be improved to 3/2 1 e.

1.5. NEW CONVEX QUADRATIC RELAXATIONS. For the problem of scheduling
unrelated parallel machines in the absence of nontrivial release dates Ri( wjCj,
we introduce a convex quadratic programming relaxation that leads to a simple
3/2-approximation algorithm. One of the basic observations for this result is that
in the absence of nontrivial release dates the parallel machine problem can be
reduced to an assignment problem of jobs to machines; for a given assignment of
jobs to machines the sequencing of the assigned jobs can be done optimally on
each machine i by applying Smith’s ratio rule [Smith 1956]: schedule the jobs in
order of nonincreasing ratios wj/pij. Therefore, the problem can be formulated
as an integer quadratic program in n z m assignment variables. The quadratic
objective function can then be convexified by carefully raising the diagonal
entries of the matrix determining the quadratic term until it becomes positive
semidefinite and the function thus becomes convex. The resulting convex qua-
dratic programming relaxation together with randomized rounding leads to the
approximation result mentioned above. Independently, the same result has later
also been derived by Sethuraman and Squillante [1999]. Since many interesting
optimization problems can be formulated as quadratic programs, this approach
might well prove useful in a more general context.
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Unfortunately, for the general network scheduling problem including release
dates the situation is more complicated; for a given assignment of jobs to
machines, the sequencing problem on each machine is still strongly NP-hard, see
Lenstra et al. [1977]. However, we know that in an optimal schedule a ‘violation’
of Smith’s ratio rule can only occur after a new job has been released; in other
words, whenever two successive jobs on machine i can be exchanged without
violating release dates, the job with the higher ratio wj/pij will be processed first
in an optimal schedule. Therefore, the sequencing of jobs that are being started
between two successive release dates can be done optimally by Smith’s ratio rule.
We make use of this insight by partitioning the processing on each machine i into
n time slots that are essentially defined by the n release dates rij, j [ J; since the
sequencing of jobs in each time slot is easy, we have to solve an assignment
problem of jobs to time slots and can apply similar ideas as for the problem
without release dates. In particular, we derive a convex quadratic programming
relaxation in n2m assignment variables and O(nm) constraints. Randomized
rounding based on an optimal solution to this relaxation finally leads to a very
simple and easy to analyze 2-approximation algorithm for the general network
scheduling problem.

1.6. EXTENSIONS TO PREEMPTIVE NETWORK SCHEDULING. Our technique can
be extended to scheduling problems with preemptions. In the context of network
scheduling, it is reasonable to assume that after a job has been interrupted on
one machine, it cannot immediately be continued on another machine; it must
again take the time to travel there through the network. We call the delay caused
by such a transfer communication delay. In a similar context, communication
delays between precedence constrained jobs have been studied, see, for example,
Papadimitriou and Yannakakis [1990].

We give a 3-approximation algorithm for the problem Rurij, pmtnu( wjCj that,
in fact, does not make use of preemptions but computes nonpreemptive sched-
ules. Thus, the approximation result also holds for preemptive network schedul-
ing with arbitrary communication delays. Moreover, it also implies a bound on
the power of preemption, that is, one cannot gain more than a factor 3 by
allowing preemptions. For the problem without nontrivial release dates
Rupmtnu( wjCj, the same technique yields a 2-approximation algorithm. For the
preemptive scheduling problems without communication delays, Phillips et al.
[1998] gave an (8 1 e)-approximation. In Skutella [1998] the author has achieved
slightly worse results than those presented here, based on a time-indexed LP
relaxation in the spirit of Schulz and Skutella [2001b].

1.7. SEMIDEFINITE PROGRAMMING RELAXATIONS. In the last part of the pa-
per, we study a semidefinite programming relaxation for the special case of two
machines without release dates R2i( wjCj and develop an approximation algo-
rithm in the spirit of Goemans and Williamson’s [1995] MAXCUT approach. They
formulated the problems MAXCUT and MAXDICUT as integer quadratic pro-
grams in {1, 21}-variables and considered a relaxation to a vector program
which is equivalent to a semidefinite program. Moreover, they introduced the
beautiful idea of rounding a solution to this relaxation to a feasible cut with a
random hyperplane through the origin. Their analysis is based on the observation
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that the probability for an edge to lie in the (directed) cut can be bounded from
below in terms of the corresponding coefficient in the vector program. This leads
to performance ratios 0.878 and 0.796 for MAXCUT and MAXDICUT, respectively.

Feige and Goemans [1995] refined this approach by adding additional con-
straints to the vector program and by modifying its solution before applying the
random hyperplane technique. This leads to an improvement in the performance
guarantee from 0.796 to 0.859 for MAXDICUT. More applications of semidefinite
programming relaxations in the design of approximation algorithms can for
instance be found in Karger et al. [1998], Chor and Sudan [1998], and Frieze and
Jerrum [1997].

We contribute to this line of research: The only problems in combinatorial
optimization where the random hyperplane technique discussed above has
proved useful in the design of approximation algorithms so far are maximization
problems. The reason is that up to now only lower bounds on the crucial
probabilities involved have been attained, see Goemans and Williamson [1995,
Lemmas 3.2 and 3.4; Lemmas 7.3.1 and 7.3.2]. Inspired by the work of Feige and
Goemans [1995], we analyze a slightly modified rounding technique and give
upper bounds for those probabilities. Together with a more sophisticated
semidefinite programming relaxation, this leads to the first approximation algo-
rithm for a minimization problem that is based on the random hyperplane
approach; it achieves performance ratio 1.276. For the special case of identical
parallel machines, this result can be improved within the more general context of
an approximation preserving reduction from the problem on a constant number
m of identical parallel machines Pmi( wjCj to MAXkCUT where k 5 m.

1.8. RELATED RECENT RESULTS. Recently, much progress has been made
towards a better understanding of the approximability of scheduling problems
with average weighted completion time objective. Skutella and Woeginger [2000]
developed a polynomial time approximation scheme for the problem of schedul-
ing identical parallel machines in the absence of release dates Pi( wjCj; this
result improves upon the previously best known (1 1 =2)/2-approximation
algorithm due to Kawaguchi and Kyan [1986] (back in the Seventies, Sahni gave
a fully polynomial time approximation scheme for the problem Pmi( wjCj where
the number of machines m is constant and does not depend on the input [Sahni
1976]). Subsequently, several research groups have found polynomial-time ap-
proximation schemes for problems with release dates such as 1 urju( Cj and
Purju( wjCj, the preemptive variant Purj, pmtnu( wjCj, and also for the corre-
sponding problems on a constant number of unrelated machines Rm urju( wjCj

and Rm urj, pmtnu( wjCj; see the resulting joint conference proceedings publica-
tion [Afrati et al. 1999] for details.

On the other hand, it has been shown by Hoogeveen et al. [1998] that the
problems Rurju( Cj and Ri( wjCj are MAXSNP-hard and therefore do not allow
a polynomial time approximation scheme, unless P 5 NP. We give a new and
simpler proof for this observation based on a reduction from an MAXSNP-hard
variant of MAX3SAT.

Recently and inspired by our work, Ageev and Sviridenko [Sviridenko 1999]
developed convex quadratic relaxations and approximation algorithms for sched-
uling problems with additional constraints on the number of jobs on a machine.
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The approximation algorithms presented in this paper also lead to the
currently best-known approximation results for corresponding machine schedul-
ing problems with rejection; in this setting, a job can either be rejected or
accepted for processing. However, rejecting a job causes a certain rejection
penalty which is added to the objective function of the schedule of accepted jobs.
It had been first observed in Engels et al. [1998] that these problems can be
reduced to classical scheduling problems on unrelated parallel machines; notice,
that machine-dependent release dates are crucial for this reduction.

1.9. ORGANIZATION OF THE PAPER. The paper is organized along the same
line as the introduction. In Section 2 we describe the convex quadratic program-
ming relaxation and approximation results for unrelated machine scheduling
without release dates. This approach is generalized to network scheduling with
machine dependent release dates in Section 3. Extensions to the corresponding
preemptive problems are given in Section 4. In Section 5, we present a more
sophisticated vector programming relaxation for the special case of two machines
and apply the random hyperplane approach of Goemans and Williamson. In
Section 6, we discuss relations between MAXCUT and scheduling identical
parallel machines and present an approximation preserving reduction. Finally, in
Section 7, we present a new proof for the MAXSNP-hardness of scheduling an
arbitrary number of unrelated machines.

Throughout the paper, we will use the following convention: The value of an
optimum solution to the scheduling problem under consideration is denoted by
Z*. For a relaxation (R), we denote the optimum value of (R) by Z*R and the
value of an arbitrary feasible solution a to (R) by ZR(a).

2. Scheduling Unrelated Machines without Release Dates

We start by considering the problem of scheduling unrelated parallel machines in
the absence of nontrivial release dates Ri( wjCj. It is one of the basic observa-
tions for our approach that this parallel machine problem can be reduced to an
assignment problem; notice that for a given assignment of jobs to machines the
sequencing of the assigned jobs can be done optimally on each machine by
applying Smith’s ratio rule. Throughout the paper we will use the following
convention: Whenever we apply Smith’s ratio rule on machine i and wk/pik 5
wj/pij for a pair of jobs j, k, the job with smaller index is scheduled first. To
simplify notation, we introduce for each machine i a corresponding total order
( J, a i) on the set of jobs by setting j a i k if either wj/pij . wk/pik or wj/pij 5
wk/pik and j , k.

2.1. AN INTEGER QUADRATIC PROGRAMMING FORMULATION. The observation
in the last paragraph leads to an integer programming formulation in assignment
variables; we introduce for each machine i 5 1, . . . , m and each job j [ J a
binary variable aij [ {0, 1} which is set to 1 if and only if job j is being
processed on machine i. Lenstra et al. [1990] used the same variables to
formulate the problem of minimizing the makespan on unrelated parallel
machines as an integer linear program. However, minimizing the average
weighted completion time forces quadratic terms and leads to the following
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integer quadratic program (IQP):

minimize O
j[J

wjCj

subject to O
i51

m

aij 5 1 for all j (1)

Cj 5 O
i51

m

aij z S pij 1 O
ka ij

a ik z pikD for all j (2)

aij [ $0, 1% for all i, j (3)

Constraints (1) ensure that each job is assigned to exactly one of the m machines.
If job j has been assigned to machine i, its completion time is the sum of its own
processing time pij and the processing times of other jobs k a i j that are also
scheduled on machine i. The right-hand side of (2) is the sum of these
expressions over all machines i weighted by aij; it is thus equal to the completion
time of j. Notice that we could remove constraints (2) and replace Cj in the
objective function by the corresponding term on the right-hand side of (2).

We denote the quadratic programming relaxation of (IQP) that we get by
relaxing the integrality conditions (3) to aij Ä 0, for all i, j, by (QP). A feasible
solution a# to (QP) can be turned into a feasible solution to (IQP), that is, a
feasible schedule, by randomized rounding: Each job j is randomly assigned to
one of the machines with probabilities given through the values a# ij; notice that
( i51

m a# ij 5 1 by constraints (1). We impose the condition that the random
choices are performed pairwise independently for the jobs and refer to this
rounding procedure as Algorithm RANDOMIZED ROUNDING. The idea of using
randomized rounding in the study of approximation algorithms was introduced
by Raghavan and Thompson [1987], an overview can be found in Motwani et al.
[1996].

THEOREM 2.1. Given a feasible solution a# to (QP), the expected value of the
schedule computed by Algorithm RANDOMIZED ROUNDING is equal to ZQP(a#).

The proof of Theorem 2.1 relies on the following lemma:

LEMMA 2.2. Consider an algorithm that assigns each job j randomly to one of
the m machines. Then, the expected completion time of job j is given by

E@Cj# 5 O
i51

m S Pr@ j ° i# z pij 1 O
kaij

Pr@ j, k ° i# z pikD
where ‘j, k ° i’ (‘j ° i’) denotes the event that both jobs j and k (job j) are
assigned to machine i .

PROOF. Under the assumption that job j is assigned to the fixed machine i the
conditional expectation of j’s completion time is
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Ej°i@Cj# 5 pij 1 O
kaij

Prj°i@k ° i# z pik ,

where Prj°i[k ° i] denotes the conditional probability that job k is being
assigned to machine i. Unconditioning yields

E@Cj# 5 O
i51

m

Pr@ j ° i# z Ej°i@Cj#

5 O
i51

m SPr@ j ° i# z pij 1 O
kaij

Pr@ j, k ° i# z pikD,

which completes the proof. e

PROOF OF THEOREM 2.1. Since for each machine i and each pair of jobs j Þ
k the random variables aij and aik are drawn independently from each other in
Algorithm RANDOMIZED ROUNDING, we get

Pr@ j, k ° i# 5 Pr@ j ° i# z Pr@k ° i# 5 a# ij z a# ik .

Lemma 2.2 yields the result by constraints (2) and linearity of expectations. e

Algorithm RANDOMIZED ROUNDING can easily be derandomized, for example,
by the method of conditional probabilities. (We refer the reader to Motwani and
Raghavan [1995] for a description and an introduction to this method.) The
derandomized version of the algorithm is called DERANDOMIZED ROUNDING. If
Algorithm RANDOMIZED ROUNDING starts with an optimal solution to (QP), it
computes an integral solution the expected value of which is equal to the optimal
value Z*QP by Theorem 2.1. Thus there must exist at least one random choice that
yields a schedule whose value is bounded from above by Z*QP. On the other hand,
we know that each feasible solution to (IQP) is by definition also feasible for
(QP). This yields the following corollary.

COROLLARY 2.3. The optimal values of (IQP) and (QP) are equal. Moreover,
given an optimal solution a# to (QP) one can construct an optimal solution to (IQP)
by assigning each job j to an arbitrary machine i with a# ij . 0.

Bertsimas et al. [1996] used similar techniques to establish the integrality of
several polyhedra.

It follows from Corollary 2.3 that it is still NP-hard to find an optimal solution
to the quadratic program (QP). In the next section, we consider a relaxation of
(IQP) that can be solved in polynomial time. The idea is to convexify the
objective function of (QP) in order to get a convex quadratic program. In
Section 5, we study an alternative semidefinite programming relaxation of (IQP)
for the special case of two machines and extend the ideas developed in Goemans
and Williamson [1995] and Feige and Goemans [1995] for MAX2SAT and
MAXDICUT.
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2.2. A CONVEX QUADRATIC PROGRAMMING RELAXATION. Plugging con-
straints (2) into the objective function, the quadratic program (QP) can be
rewritten as

minimize cTa 1 1
2 aTDa (4)

subject to O
i51

m

aij 5 1 for j [ J (5)

a > 0 (6)

where a [ Rmn denotes the vector consisting of all variables aij lexicographically
ordered with respect to the natural order 1, 2, . . . , m of the machines and then,
for each machine i, the jobs ordered according to a i. The vector c [ Rmn is
given by cij 5 wjpij and D 5 (d(ij)(hk)) is a symmetric mn 3 mn-matrix given
through

d (ij)(hk) 5 5 0 if i Þ h or j 5 k,
wjpik if i 5 h and k a i j,
wkpij if i 5 h and j a i k.

Because of the lexicographic order of the indices the matrix D is decomposed
into m diagonal blocks Di, i 5 1, . . . , m, corresponding to the m machines. If
we assume that the jobs are indexed according to a i and if we denote pij simply
by pj, the ith block Di has the following form

Di 5 1
0 w2p1 w3p1 · · · wnp1

w2p1 0 w3p2 · · · wnp2

w3p1 w3p2 0 wnp3
···

···
· · ·

···
wnp1 wnp2 wnp3 · · · 0

2 . (7)

As an example, consider an instance consisting of 2 jobs where all weights and
processing times on the ith machine are equal to one. In this case, we get

Di 5 S 0 1
1 0 D . (8)

In particular, det Di 5 21 and D is not positive semidefinite. It is well known
that the objective function (4) is convex if and only if the matrix D is positive
semidefinite. Moreover, a convex quadratic program of the form min cTx 1
1
2 xTDx subject to Ax 5 b, x Ä 0, can be solved in polynomial time (see, e.g.,
Kozlov et al. [1979] and Chung and Murty [1981]). Thus, we get a polynomially
solvable relaxation of (QP) if we manage to convexify its objective function. The
rough idea is to raise the diagonal entries of D above 0 until D is positive
semidefinite.

For binary vectors a [ {0, 1}mn, we can rewrite the linear term cTa in (4) as
aTdiag(c)a, where diag(c) denotes the diagonal matrix whose diagonal entries
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coincide with the entries of the vector c. We try to convexify the objective
function of (QP) by adding a positive fraction 2g z diag(c), 0 , g ¶ 1, to D such
that D 1 2g z diag(c) is positive semidefinite. This leads to the following
modified objective function:

min ~1 2 g! z cTa 1 1
2 aT~D 1 2g z diag~c!!a. (9)

Since c Ä 0, the value of the linear function cTa is greater than or equal to the
value of the quadratic function aTdiag(c)a for arbitrary a [ [0, 1]mn; equality
holds for a [ {0, 1}mn. Therefore, the modified objective function (9) underes-
timates (4). Since we want to keep the gap as small as possible and since (9) is
nonincreasing in g for each fixed vector a [ [0, 1]mn, we are looking for the
smallest possible value of g such that D 1 2g z diag(c) is positive semidefinite.

LEMMA 2.4. The function

a ° ~1 2 g! z cTa 1 1
2 aT~D 1 2g z diag~c!!a

is convex for arbitrary instances of Ri( wjCj if and only if g Ä 1/2.

PROOF. In order to show that the positive semidefiniteness of D 1 2g z
diag(c) for all instances implies g Ä 1/2, we consider the example given in (8).
Here, the diagonal entries of the ith block of D 1 2g z diag(c) are equal to 2g
such that this block is positive semidefinite if and only if g Ä 1/2. Thus, we
consider the case g 5 1/2 and show that D 1 diag(c) is always positive
semidefinite. Using the same notation as in (7), the ith block of D 1 diag(c) has
the form:

A 5 1
w1p1 w2p1 w3p1 · · · wnp1

w2p1 w2p2 w3p2 · · · wnp2

w3p1 w3p2 w3p3 · · · wnp3
···

···
···

· · ·
···

wnp1 wnp2 wnp3 · · · wnpn

2 . (10)

We prove that the matrix A is positive semidefinite by showing that the
determinants of all its principal submatrices are nonnegative. Note that each
principal submatrix corresponds to a subset of jobs J9 # J and is of the same
form as A for the smaller instance induced by the set of jobs J9. Therefore, it
suffices to show that the determinant of A is nonnegative for all instances.

For j 5 1, . . . , n, we multiply the jth row and column of A by 1/pj . 0.
Then, for j 5 1, . . . , n 2 1, we iteratively subtract column j 1 1 from column
j. The resulting matrix is upper-triangular. The jth diagonal entry is equal to
wj/pj 2 wj11/pj11 Ä 0, for j 5 1, . . . , n 2 1, and the nth diagonal entry is
wn/pn Ä 0.

Since for g . 1/2 the matrix D 1 2g z diag(c) is the sum of the two positive
semidefinite matrices D 1 diag(c) and (2g 2 1) z diag(c), the result follows. e

Lemma 2.4 and the remarks above motivate the consideration of the following
convex quadratic programming relaxation (CQP):

minimize 1
2 cTa 1 1

2 aT~D 1 diag~c!!a subject to (5) and (6).
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An equivalent formulation of (CQP) using completion time variables Cj as in
Section 2.1 is: minimize ( j wjCj subject to (5), (6), and

Cj 5 O
i51

m

aij z S 1 1 aij

2
pij 1 O

ka ij

a ik z pikD for all j. (11)

As mentioned above, (CQP) can be solved in polynomial time. If we consider
the special case of identical parallel machines Pi( wjCj, we can directly give an
optimal solution to (CQP).

LEMMA 2.5. For instances of Pi( wjCj the vector a# , defined by a# ij :5 1/m for all
i, j, is an optimal solution to (CQP). This optimal solution is unique if all ratios
wj/pj, j 5 1, . . . , n, are different and positive.

An easy calculation shows that a# is a Karush–Kuhn–Tucker point and there-
fore an optimum solution to (CQP). The following more elegant proof of
Lemma 2.5 has been proposed by Michel Goemans (personal communication,
May 1998).

PROOF. Let a Þ a# a feasible solution to (CQP). Since (CQP) is symmetric
with respect to the m identical machines, we get m 2 1 additional solutions of
the same value as a by cyclically permuting the machines m 2 1 times. The
convex combination with coefficients 1/m of a and these new solutions is
precisely a# . Since the objective function of (CQP) is convex, the value of a# is less
than or equal to the value of a. It follows from the proof of Lemma 2.4 that the
objective function is strictly convex if all ratios wj/pj, j 5 1, . . . , n, are different
and positive. In this case, the value of a# is strictly less than the value of a and a#
is the unique optimal solution to (CQP). e

2.3. SIMPLE APPROXIMATION ALGORITHMS. Given an optimal solution a# to
(CQP) one can use Algorithm RANDOMIZED ROUNDING to construct a feasible
schedule. However, due to the underestimation of the objective function, the
expected value ZQP(a# ) of the randomly constructed schedule is in general not
equal to the optimal value ZCQP(a# ) 5 Z*CQP of the relaxation (CQP).

THEOREM 2.6

(a) Computing an optimal solution a# to (CQP) and using RANDOMIZED ROUND-
ING to construct a feasible schedule is a randomized 2-approximation algorithm
for the problem Ri( wjCj.

(b) Assigning each job independently and uniformly at random to one of the m
machines is a ((3/ 2) 2 (1/ 2m))-approximation algorithm for the problem
Pi( wjCj.

PROOF. Notice that the algorithm described in part (b) coincides with the
algorithm of part (a) for the optimal solution a# to (CQP) given in Lemma 2.5.
Theorem 2.1 yields

EFO
j

wjCjG 5 ZQP~a# ! 5 ZCQP~a# ! 1 1
2~c

Ta# 2 a# Tdiag~c!a# ! < 2 z ZCQP~a# !.
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The inequality follows from ZCQP(a# ) Ä (1/ 2)cTa# and a# Tdiag(c)a# Ä 0. Since a#
can be computed in polynomial time and ZCQP(a# ) 5 Z*CQP is a lower bound on
Z*, we have found a 2-approximation algorithm.

To prove part (b) we use a second lower bound on Z*. For the case of
identical parallel machines, constraints (5) imply cTa 5 ( j wjpj ¶ Z* for every
feasible solution a to (CQP). Since a# Tdiag(c)a# 5 (1/m)cTa# , the same argu-
ments as above yield E[( j wjCj] ¶ ((3/ 2) 2 (1/ 2m)) z Z*. e

The second part of the theorem can also be proved based on an LP relaxation
in time indexed variables, see Schulz and Skutella [2001b].

In Theorem 2.6, we have proved a bound on the value of the computed
schedule. At the same time, however, we have also derived a bound on the value
of an optimal solution to the relaxation (CQP) in terms of an optimal solution to
the scheduling problem.

COROLLARY 2.7. For instances of Ri( wjCj, the value of an optimal schedule is
within a factor 2 of the optimal solution to the relaxation (CQP). This bound is tight
even for the case of identical parallel machines Pi( wjCj.

PROOF. The positive result follows from the proof of Theorem 2.6. To prove
the tightness of this result, consider an instance with one job of size and weight
one and m identical parallel machines. The value Z* of an optimal schedule is
equal to one; by Lemma 2.5 we get Z*CQP 5 (m 1 1)/(2m). Thus, if m goes to
infinity the ratio Z*/Z*CQP converges to 2. e

2.4. IMPROVING THE RELAXATION AND APPROXIMATION. Unfortunately, we
cannot directly carry over the 3/2-approximation from Theorem 2.6(b) to the
setting of unrelated parallel machines. The reason is that cTa is not necessarily a
lower bound on Z* for every feasible solution a to (CQP). However, the value
of each binary solution a is bounded from below by cTa. The idea for an
improved approximation result is to add this lower bound as a constraint to
(CQP). It leads to the following strengthened relaxation (CQP9):

minimize ZCQP9

subject to O
i51

m

aij 5 1 for all j

ZCQP9 > 1
2 cTa 1 1

2 aT~D 1 diag~c!!a (12)

ZCQP9 > cTa (13)

a > 0

Unfortunately, it is not clear whether (CQP9) can be solved to optimality in
polynomial time. Consider a simple example consisting of three jobs with weights
w1 5 w2 5 w3 5 1 and two machines such that p11 5 p22 5 1, p12 5 p21 5 `,
and p13 5 p23 5 6. Job 1 can only be processed on the first machine and job 2
only on the second machine. Therefore, we get a11 5 a22 5 1 and a12 5 a21 5
0 for every feasible solution with finite value and (CQP9) can be rewritten as
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minimize Z subject to Z Ä 6a13
2 2 6a13 1 9, Z Ä 8, and a13 Ä 0. The optimal

value of this program is 8, but the only optimal solutions are a13 5 1/ 2(1 1
1/=3) and a13 5 1/ 2(1 2 1/=3), which are both irrational.

On the other hand, (CQP9) is a convex program and can be solved within an
additive error of e in polynomial time, for example, through the ellipsoid
algorithm, see Grötschel et al. [1988].

LEMMA 2.8. Given an arbitrary feasible solution a# to (CQP9), Algorithm RAN-
DOMIZED ROUNDING computes a schedule whose expected value is bounded from
above by 3/2 z ZCQP9(a#).

PROOF. The same arguments as in the proof of Theorem 2.6 together with
(13) yield

EFO
j

wjCjG < ZCQP9~a# ! 1 1
2~c

Ta# 2 a# Tdiag~c!a# ! < 3
2 z ZCQP9~a# !

since a# Tdiag(c)a# Ä 0. e

COROLLARY 2.9. For instances of Ri( wjCj, the value of an optimal schedule is
within a factor 3/2 of the optimal solution to the relaxation (CQP9).

We get a randomized approximation algorithm with expected performance
ratio (3/2) 1 e if we apply Algorithm RANDOMIZED ROUNDING to an almost
optimal solution to (CQP9) which can be computed in polynomial time. We can
prove a slightly better bound for the derandomized version.

THEOREM 2.10. Computing a near optimal solution to the relaxation (CQP9)
and using Algorithm DERANDOMIZED ROUNDING to get a feasible schedule is a
(3/2)-approximation algorithm for Ri( wjCj.

PROOF. We compute a feasible solution a# to (CQP9) satisfying ZCQP9(a# ) ,
Z*CQP9 1 1/3. By Lemma 2.8, Algorithm DERANDOMIZED ROUNDING converts
this solution into a feasible schedule whose value is bounded by

3
2 z ZCQP9~a# ! , 3

2 z Z*CQP9 1 1
2 < 3

2 z Z* 1 1
2.

Since all weights and processing times are integral, the same holds for Z*. The
value of our schedule can therefore be bounded by 3/ 2 z Z*. e

Notice that the performance ratios given in Lemma 2.8 and Theorem 2.10 are
only tight if (13) is tight for the solution a# to (CQP9). In general, if ZCQP9(a# ) is
much larger than cTa# , we get a better performance guarantee (see Figure 1).

COROLLARY 2.11. For any feasible solution a# to (CQP9) Algorithm RANDOM-
IZED ROUNDING computes a feasible schedule whose expected value is bounded from
above by (1 1 (cTa#)/(2ZCQP9(a#))) z ZCQP9(a#).

We will make use of this observation in Section 5 in order to prove better
bounds for the special case of two machines.
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3. Scheduling Unrelated Machines Subject to Release Dates

Our approach in the last section was led by the insight that in the absence of
nontrivial release dates it suffices to find a reasonable assignment of jobs to
machines; afterwards, the problem of finding an optimal sequence for the jobs on
the machines is easy. Unfortunately, for the general network scheduling problem
including release dates the situation is more complicated; for a given assignment
of jobs to machines, the sequencing problem on each machine is still strongly
NP-hard, see Lenstra et al. [1977].

3.1. SCHEDULING IN TIME SLOTS. Notice, however, that in an optimal sched-
ule a ‘violation’ of Smith’s ratio rule can only occur after a new job has been
released; in other words, whenever two successive jobs on machine i can be
exchanged without violating release dates, the job with higher ratio wj/pij is
processed first in an optimal schedule. Therefore, the sequencing of jobs that are
being started between two successive release dates can be done optimally by
Smith’s ratio rule. We make use of this insight by partitioning the processing on
each machine i into n time slots, which are essentially defined by the n release
dates rij, j [ J. Each job is being processed on one machine in one of its time
slots and we make sure that job j can only be processed in a slot that starts after
its release date. This reduces the problem to finding a good assignment of jobs to
time slots and we can apply ideas similar to those in Section 2.

Let r i1
¶ r i2

¶ . . . ¶ r in
be an ordering of the release dates rij, j [ J, on

machine i; moreover, we set r in11
:5 `. For a given feasible schedule, we say

that ik, the kth time slot on machine i, contains all jobs j that are started within
the interval [r ik

, r ik11
) on machine i; we denote this by j [ ik. We may assume

that there is no idle time between the processing of jobs in one time slot, that is,
all jobs in a slot are processed one after another without interruption. Moreover,
as a consequence of Smith’s ratio rule we can without loss of generality restrict to
schedules where the jobs in time slot ik are sequenced according to a i.

LEMMA 3.1. In an optimal solution to the scheduling problem under consider-
ation, the jobs in each time slot ik are scheduled without interruption in order of
nonincreasing ratios wj/pij. Furthermore, there exists an optimal solution where the
jobs are sequenced according to ai in each time slot ik.

FIG. 1. The performance of RANDOMIZED ROUNDING depends on (cTa# )/(ZCQP9(a# )).
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Notice that there may be several empty time slots ik. This happens in particular if
rik

5 rik11
. Therefore, it would be sufficient to introduce only qi time slots for

machine i where qi is the number of different values rij, j [ J. For example, if there
are no nontrivial release dates (i.e., rij 5 0 for all i and j), we only need to introduce
one time slot [0, `) on each machine. For this special case, our approach coincides
with the one given in the last section.

Up to now, we have described how a feasible schedule can be interpreted as a
feasible assignment of jobs to time slots. We call an assignment feasible if each
job j is being assigned to a time slot ik with r ik

Ä rij. On the other hand, for a
given feasible assignment of the jobs in J to time slots we can easily construct a
corresponding feasible schedule: Sequence the jobs in time slot ik according to
a i and start it as early as possible after the jobs in the previous slot on machine
i are finished but not before r ik

. In other words, the starting time sik
of time slot

ik is given by si1
:5 r i1

and sik11
:5 max{r ik11

, sik
1 ( j[ik

pij}, for k 5 1, . . . ,
n 2 1.

LEMMA 3.2. Given its assignment of jobs to time slots, we can reconstruct an
optimal schedule meeting the properties described in Lemma 3.1.

PROOF. Given the feasible assignment of jobs to time slots, we construct a
new feasible schedule as described above. We show that the new schedule coincides
with the optimal schedule defining the assignment. By definition of the assignment
and by construction of the new schedule, the sequence of jobs coincides for the two
schedules on each machine. Thus, it suffices to show that the completion time of
each job in the new schedule is less than or equal to its completion time in the
optimal schedule; the other direction then follows from optimality.

By contradiction, assume that there exists a job j on machine i whose
completion time has been increased in the new schedule. Moreover, let j be the
first job on machine i with this property. By construction, j must be the first job
in its time slot ik since otherwise its predecessor in this slot would have also been
delayed. Moreover, j must have been started strictly later than r ik

since its
starting time in the optimal schedule is at least r ik

. Thus, the start of time slot ik

has been delayed by slot ik21 and job j has been started immediately after the
completion of the last job j9 in slot ik21. This, however, implies that j9 must have
been finished later than in the optimal schedule, which is a contradiction to the
choice of j. e

Notice that a job that is being assigned to time slot ik is not necessarily started
within the interval [rik

, rik11
). In particular, several feasible assignments of jobs to

time slots may lead to the same feasible schedule. Consider, for example, an instance
consisting of three jobs of unit length and unit weight that have to be scheduled on a
single machine; jobs 1 and 2 are released at time 0, while job 3 becomes available at
time 1. We get an optimal schedule by processing the jobs without interruption in
order of increasing numbers. This schedule corresponds to five different feasible
assignments of jobs to time slots. We can assign job 1 to one of the first two slots, job
2 to the same or a later slot, and finally job 3 to slot 3.

3.2. QUADRATIC PROGRAMMING FORMULATIONS AND RELAXATIONS. In the
previous section, we have reduced the scheduling problem under consideration to
finding an optimal assignment of jobs to time slots. Generalizing the approach
described in Section 2, we give a formulation of Ruriju( wjCj in assignment

221Convex Quadratic and Semidefinite Relaxations in Scheduling



variables. However, it will turn out that the subject of convexification is slightly
more complicated in this general setting.

For each job j and each time slot ik, we introduce a variable aikj [ {0, 1}
where aikj 5 1 if job j is being assigned to time slot ik, and aikj 5 0, otherwise.
This leads to the following integer quadratic program:

minimize O
j

wjCj

subject to O
i,k

aikj 5 1 for all j (14)

si1
5 r i1

for all i (15)

sik11
5 maxHrik11

, sik 1 O
j

aikjpijJ for all i, k, (16)

Cj 5 O
i, k

aikjS sik
1 pij 1 O

j9a ij

a ikj9pij9D for all j (17)

aikj 5 0 if rik , rij (18)

aikj [ $0, 1% for all i, k, j

Constraints (14) ensure that each job is being assigned to exactly one time slot.
In constraints (15) and (16), we set the starting times of the time slots as
described in Section 3.1. If job j is being assigned to time slot ik, its completion
time is the sum of the starting time sik

of this slot, its own processing time pij,
and the processing times of other jobs j9 a i j that are also scheduled in this time
slot. The right-hand side of (17) is the sum of these expressions over all time
slots ik weighted by aikj; it is thus equal to the completion time of j. Finally,
constraints (18) ensure that no job is being processed before its release date.

It follows from our considerations in Section 3.1 that we could replace (18) by
the stronger constraints

aikj 5 0 if rik , rij or rik 5 rik11
,

which reduces the number of available time slots on each machine. For the
special case Ri( wjCj, this leads exactly to the integer quadratic program (IQP)
that has been introduced in Section 2. Thus, as a consequence of Corollary 2.3, it
is still NP-hard to solve the continuous relaxation of our integer quadratic
program.

In Section 2, we convexified the objective function of the continuous relaxation
(QP) by replacing constraints (2) with the new constraints (11). This motivates
the study of the following quadratic programming relaxation for the general
problem including release dates: minimize ( j wjCj subject to (14), (15), (16),
(18), and the following two constraints:
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Cj 5 O
i, k

aikjS sik
1

1 1 aikj

2
pij 1 O

j9a ij

a ikj9pij9D for all j (19)

aikj > 0 for all i, k, j (20)

Notice that a solution to this program is uniquely determined by giving the values
of the assignment variables aikj. In contrast to the case without nontrivial release
dates, we cannot directly prove that this quadratic program is convex. Neverthe-
less, in the remaining part of this section, we will show that it can be solved in
polynomial time. The main idea is to show that one can restrict to solutions
satisfying sik

5 r ik
for all i and k. Adding these constraints and thus getting rid of

the variables sik
then leads to a convex quadratic program.

LEMMA 3.3. For all instances of Ruriju( wjCj, there exists an optimal solution to
the quadratic programming relaxation satisfying sik

5 rik
for all i and k.

PROOF. We show how an arbitrary optimal solution to the quadratic program
can be iteratively turned into one satisfying sik

5 r ik
for all i and k. Consider the

machines one after another. For a given machine i determine the smallest k
satisfying sik

. r ik
; if such a k does not exist, we proceed to the next machine

until we are finished. Consider the job ĵ with aik21 ĵ . 0 that is maximal with
respect to a i. Let d :5 min{(sik

2 r ik
)/r i j

, aik21 ĵ} . 0 and move a d-fraction of
job ĵ from slot ik21 to slot ik, that is, modify the current solution as follows:

aik21 ĵ :5 aik21ĵ 2 d, aikĵ :5 aikĵ 1 d.

All other assignment variables remain unchanged. Observe that this defines a
new feasible solution to the quadratic program where sik

has been decreased to
sik

2 dpiĵ and all other si9k9
have remained unchanged. Thus, a short computation

shows that the ‘completion time’ of job ĵ given in (19) has changed by

d O
j9a i ĵ

a ikj9pij9 .

Moreover, it can be seen that the only other jobs j9 whose ‘completion time’ (19)
could have been changed are those which satisfy j9 a i ĵ. Again, a short
computation shows that this change is given by

2aikj9dpiĵ .

Thus, the total change of the objective value is given by

d O
j9a i ĵ

a ikj9~wĵpij9 2 wj9piĵ! .

Since, by definition of ai, all terms in this sum are nonpositive, the new solution is
optimal as well. Notice that in the new solution sik

5 rik
or aik21ĵ 5 0 by the choice of

d. Therefore, after at most n iterations of the described procedure, we arrive at a
solution satisfying sik

5 rik
and we can proceed to the next time slot or the next

machine. e
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As a consequence of Lemma 3.3, we can replace the variables sik
by the

constants r ik
if we change constraints (16) to:

O
j

a ikjpij < r ik11
2 r ik

for all i, k. (21)

Furthermore, if we remove constraints (19) and replace Cj in the objective
function by the right-hand side of (19), we get the following convex quadratic
programming relaxation, which we denote by (CQP) since it generalizes the
convex quadratic program developed in Section 2:

minimize bTa 1 1
2 cTa 1 1

2 aT~D 1 diag~c!!a (22)

subject to (14), (21), (18), and (20). Here, a [ Rmn2

denotes the vector consisting of
all variables aikj lexicographically ordered with respect to the natural order 11, 12,
. . . , mn of the time slots and then, for each slot ik, the jobs ordered according to ai.
The vectors b, c [ Rmn2

are given by bikj 5 wjrik
, cikj 5 wjpij, and D 5 (d(ikj)(i9k9j9)) is

a symmetric mn2 3 mn2-matrix given through

d (ikj)(i9k9j9) 5 5 0 if ik Þ i9k9 or j 5 j9,
wj9pij if ik 5 i9k9 and j ai j9,
wjpij9 if ik 5 i9k9 and j9 ai j.

Because of the lexicographic order of the indices the matrix D 1 diag(c) is again
decomposed into mn diagonal blocks corresponding to the mn time slots. If we
assume that the jobs are indexed according to a i and if we denote pij simply by
pj, each block corresponding to a time slot on machine i has the form of the
matrix A given in (10). In particular, D 1 diag(c) is positive semidefinite, the
objective function (22) is convex, and (CQP) can be solved in polynomial time.

The convex quadratic programming relaxation (CQP) is in some sense similar
to the linear programming relaxation in time-indexed variables that has been
introduced in Schulz and Skutella [2001b]. Without going into the details, we
give a rough idea of the common underlying intuition of both relaxations (a more
detailed discussion of this matter can be found in Skutella [1998, Sect. 3.3.4]): a
job may be split into several parts (corresponding to fractional values aikj in
(CQP)) who can be scattered over the machines and over time. The completion
time of a job in such a ‘fractional schedule’ is somehow related to its mean busy
time; the mean busy time of a job is the average point in time at which its
fractions are being processed (see (19) where Cj is set to the average over the
terms in brackets on the right-hand side weighted by aikj). However, in contrast
to the time-indexed LP relaxation, the construction of the convex quadratic
program (CQP) contains more insights into the structure of an optimal schedule.
As a result, (CQP) is of strongly polynomial size while the LP relaxation
contains an exponential number of time-indexed variables and constraints.

3.3. A SIMPLE 2-APPROXIMATION ALGORITHM. A natural generalization of
Algorithm RANDOMIZED ROUNDING to problems including release dates is the
following: Given a feasible solution a to (CQP), we compute an integral solution a#
by setting for each job j exactly one of the variables a# ikj to 1 with probabilities given
through aikj. Although the integral solution a# does not necessarily fulfill constraints

224 MARTIN SKUTELLA



(21), it represents a feasible assignment of jobs to time slots and thus a feasible
schedule. For our analysis, we require again that the random choices are performed
pairwise independently for the jobs. We prove the following result:

THEOREM 3.4. Computing an optimal solution to (CQP) and using randomized
rounding to turn it into a feasible schedule is a 2-approximation algorithm for the
problem Ruriju( wjCj.

Theorem 3.4 follows from the next lemma that gives a slightly stronger result
including job-by-job bounds.

LEMMA 3.5. Using randomized rounding in order to turn an arbitrary feasible
solution to (CQP) into a feasible assignment of jobs to time slots yields a schedule
such that the expected completion time of each job is bounded by twice the
corresponding value (19) in the given solution to (CQP).

PROOF. The computed random assignment of jobs to machines is denoted by
a# such that Pr[a# ikj 5 1] 5 aikj by definition. The starting time sik

of time slot ik

in the schedule corresponding to a# is given by (15) and (16). The completion
time Cj of job j is given by (17).

We consider a fixed job j. First, we also consider a fixed assignment of j to
time slot ik. Since the random choices are performed pairwise independently for
the jobs, the conditional probability for job j9 Þ j to be assigned to an arbitrary
time slot i9k9 is given by Prj°ik

[a# i9k9j9 5 1] 5 ai9k9j9.
We start by showing that the conditional expectation of the starting time of

time slot ik is bounded from above by 2r ik
. Notice that by definition there is no

idle time in the time interval between r ik
and the starting time of time slot ik; in

other words, this interval is completely covered by the processing of jobs j9 Þ j
that have been assigned to earlier time slots i1, . . . , ik21. Therefore, the
conditional expectation of the starting time of slot ik can be bounded by

Ej°ik@sik# < rik 1 O
k951

k21

O
j9Þj

Prj°ik@a# i 9k j9 5 1#pij9

5 rik 1 O
k951

k21

O
j9Þj

aik9j9pij9 < 2rik ;

the last inequality follows from constraints (21). We now turn to the expected
completion time of job j. Using (17), the formula of total expectation yields

E@Cj# 5 EFO
i,k

a# ikj~sik 1 pij 1 O
j9aij

a# ikj9pij9!G
5 O

i,k

Pr@ j ° ik#SEj°ik@sik# 1 pij 1 O
j9aij

Ej°ik@a# ikj9#pij9D
< 2 O

i,k

aikjSrik 1
1 1 aikj

2
pij 1 O

j9aij

aikj9pij9D.
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This completes the proof. e

Since the value of an optimal solution to (CQP) is a lower bound on the value
of an optimal schedule, Theorem 3.4 follows from Lemma 3.5 and linearity of
expectations. As a result of our considerations, we can state the following
generalization of Corollary 2.7.

COROLLARY 3.6. For instances of Ruriju( wjCj, the value of an optimal schedule
is within a factor 2 of the optimum solution to the relaxation (CQP). This bound is
tight even for the case of identical parallel machines without release dates Pi( wjCj.

4. Extensions to Scheduling with Preemptions

In this section, we discuss the preemptive problem Rurij, pmtnu( wjCj and
generalizations to network scheduling. In contrast to the nonpreemptive setting,
a job may now repeatedly be interrupted and continued later on another (or the
same) machine. In the context of network scheduling, it is reasonable to assume
that after a job has been interrupted on one machine it cannot be continued on
another machine until a certain communication delay is elapsed that allows the
job to travel through the network to its new machine.

The ideas and techniques presented in the last sections can be generalized to
this setting. However, since we have to use a somewhat weaker relaxation in
order to capture the possibility of preemptions, we only get a 3-approximation
algorithm. This result can be improved to performance guarantee 2 in the
absence of nontrivial release dates Rupmtnu( wjCj but with arbitrary communica-
tion delays.

Although the convex quadratic programming relaxation (CQP) allows to break
a job into fractions and thus to ‘preempt’ it by choosing fractional values aikj, it is
not necessarily a relaxation of Rurij, pmtnu( wjCj. The following example shows
that this is even true for the case without nontrivial release dates.

EXAMPLE 4.1. We are given two jobs and two machines with p1,1 5 2, p2,1 5 `,
w1 5 2, p1,2 5 2, p2,2 5 4, and w2 5 1. An optimal preemptive schedule processes
the first job on the first machine for two time units starting at time 0. Meanwhile, the
second job is processed on the second machine, preempted at time 2, and then
scheduled on the first machine for one time unit. The value of this preemptive
schedule is 7. It is an easy observation that this fractional assignment to machines
also defines an optimal solution to (CQP) (a1,1 5 1, a2,1 5 0, a1,2 5 a2,2 5 1

2).
However, the corresponding expression (11) for the completion time of the second
job is 13/4 instead of 3 and the value of the solution is equal to 7.25.

For instances of Rurij, pmtnu( wjCj and for a given preemptive schedule, we
can always associate a feasible solution a of (CQP): let aikj the fraction of job j
that is being processed on machine i within the interval [r ik

, r ik11
). The following

technical lemma is the key to a convex quadratic programming relaxation for the
preemptive variants of the scheduling problems under consideration.

LEMMA 4.2. Consider an arbitrary preemptive schedule and let a denote the
corresponding feasible solution to (CQP) as defined above. Then,
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O
j

wjCj > O
j

wj O
i, k

aikjS r ik
1

aikj

2
pij 1 O

j9a ij

a ikj9pij9D (23)

and

O
j

wjCj > O
j

wj O
i, k

aikjpij . (24)

PROOF. The second bound is obvious since the expression on the right-hand
side is the weighted sum of processing times in the given preemptive schedule.
Proving the first bound is more complicated.

Let ( J, a) denote a total order of the set of jobs according to nondecreasing
completion times in the given preemptive schedule. For the following consider-
ations, we slightly relax the scheduling problem by allowing a job to be
simultaneously processed on more than one machine. We show that the first
bound is even true for feasible solutions to this relaxed problem.

We first show that for each time interval [r ik
, r ik11

) on machine i and for each
job j we can assume that the fraction of job j of size aikjpij is being processed
without interruption within this time interval: Modify the given schedule by
processing in each time slot the corresponding fractions of jobs one after another
according to the order given by a; notice that the completion times of jobs and
thus the value of the schedule cannot increase during this process. (It might
however happen that a job is processed on more than one machine at a time after
this modification.)

Before proving the bound (23), we prove the following modified version where
we have replaced a i by a on the right-hand side:

O
j

wjCj > O
j

wj O
i, k

aikjS r ik
1

aikj

2
pij 1 O

j9aj

a ikj9pij9D . (25)

Notice that for each time slot ik and each job j with aikj . 0, the term in brackets
on the right-hand side is a lower bound on Cj since the fractions of jobs are
scheduled according to a in each time slot. The contribution of job j to the
right-hand side is wj times a convex combination of the terms in brackets and is
thus bounded by wjCj, which proves the bound.

It remains to show that the right-hand side of (25) is an upper bound on the
right-hand side of (23). Consider a time slot ik and its contribution to the
right-hand sides. It suffices to show that

O
j

a ikjwjS r ik
1

aikj

2
pij 1 O

j9a ij

a ikj9pij9D < O
j

a ikjwjS r ik
1

aikj

2
pij 1 O

j9aj

a ikj9pij9D
for each slot ik. This is equivalent to

O
j

a ikjwj O
j9a ij

a ikj9pij9 < O
j

a ikjwj O
j9aj

a ikj9pij9
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which follows by a simple exchange argument—in fact, this is exactly Smith’s
ratio rule applied to the fractions aikjpij of jobs of weight aikjwj. e

As a result of Lemma 4.2, the following convex quadratic program, which we
denote by (CQP9p), is a relaxation of the preemptive problem Rurij, pmtnu( wjCj:

minimize Z

subject to O
i,k

aikj 5 1 for all j

O
j

a ikjpij < r ik11
2 r ik

for all i, k.

Z > bTa 1 1
2 aT~D 1 diag~c!!a (26)

Z > cTa (27)

a > 0

The vectors b, c and the matrix D are defined as above. Notice that the
right-hand sides of constraints (26) and (27) are equal to the right-hand sides of
(23) and (24), respectively.

In order to turn a solution to this relaxation into a feasible schedule, we apply
exactly the same randomized rounding heuristic as in the nonpreemptive case. In
particular, we do not make use of the possibility to preempt jobs but compute a
nonpreemptive schedule. Therefore, our results hold for the case of arbitrary
communication delays.

LEMMA 4.3. Given a feasible solution a# to (CQP9p), Algorithm RANDOMIZED

ROUNDING computes a nonpreemptive schedule whose expected value is bounded
from above by 3 z ZCQP9p

(a#). In the absence of nontrivial release dates this bound can
be improved to 2 z ZCQP9p

(a#).

PROOF. Notice that the objective function (22) of the program (CQP) is
equal to the right-hand side of (26) plus half of the right-hand side of (27). This
yields 2 z ZCQP(a# ) ¶ 3 z ZCQP9p

(a# ) and the first bound follows from the proof of
Theorem 3.4.

To get the improved bound in the absence of release dates, notice that the
objective function (4) of the quadratic program (QP) is equal to the sum of the
right-hand sides of (26) and (27). This yields ZQP(a# ) ¶ 2 z ZCQP9p

(a# ) and the
result follows from Theorem 2.1. e

COROLLARY 4.4. For instances of Rurij, pmtnu( wjCj, the value of an optimal
solution to the relaxation (CQP9p) is within a factor 3 of the value of an optimal
schedule. For instances of Rupmtnu( wjCj, this bound can be improved to 2.

As a result of Lemma 4.3, we get randomized approximation algorithms with
expected performance guarantee 3 1 e and 2 1 e if we apply Algorithm
RANDOMIZED ROUNDING to an almost optimal solution to (CQP9p), which can be
computed in polynomial time. Using the same idea as in the proof of Theorem
2.10, we can prove slightly better bounds for the derandomized version.
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THEOREM 4.5. Computing a near optimal solution to the relaxation (CQP9p) and
using Algorithm DERANDOMIZED ROUNDING to get a feasible schedule is a 3-ap-
proximation algorithm for the problem Rurij, pmtnu( wjCj and a 2-approximation
algorithm for Rupmtnu( wjCj.

Our considerations also yield bounds on the power of preemption. Since we
can compute a nonpreemptive schedule whose value is bounded by 3 (respective-
ly, 2) times the value of an optimal preemptive schedule, we have derived upper
bounds on the ratios of optimal nonpreemptive to optimal preemptive schedules.

COROLLARY 4.6. For instances of the problem Ruriju( wjCj, the value of an
optimal nonpreemptive schedule is at most a factor 3 above the value of an optimal
preemptive schedule. In the absence of nontrivial release dates, this bound can be
improved to 2.

5. A Semidefinite Relaxation for Two Machines

In this section, we consider the problem of scheduling two unrelated parallel
machines in the absence of nontrivial release dates. We introduce a semidefinite
programming relaxation for this problem and apply the random hyperplane
technique in order to compute provably good feasible schedules. In contrast to
the MAXCUT result of Goemans and Williamson [1995], however, the analysis
turns out to be much more complicated in our case since we are considering a
minimization problem; while the very elegant analysis of Goemans and William-
son [1995] is based on simple lower bounds on certain probabilities related to the
random hyperplane, we have to prove upper bounds that requires both a stronger
semidefinite programming relaxation and a more sophisticated rounding tech-
nique.

We start with a reformulation of the integer quadratic program (IQP) from
Section 2 in variables xj [ {1, 21}, for j [ J. To keep the notation as simple as
possible, we assume that the two machines are numbered 0 and 21 and introduce
corresponding variables x0, x21 [ {1, 21} with x21 5 2x0. The new variables
have the following meaning: Job j is being assigned to machine 0 if xj 5 x0 and to
machine 21, otherwise. Notice that we have introduced the variable x21 only to
keep notation simple; it could as well be replaced by 2x0. Observe that the
assignment variables aij in (IQP) can be replaced by (1 1 xixj)/ 2 and the
quadratic terms aijaik by ( xjxk 1 xixj 1 xixk 1 1)/4.

We get a relaxation of (IQP) to a vector program (VP) if we replace the
one-dimensional variables xj with absolute value 1 by vectors vj [ Rn11 of unit
length:

minimize Z

subject to Z > O
j

wj O
i521

0 S1 1 vivj

2
z pij 1 O

kaij

vjvk 1 vivj 1 vivk 1 1

4
z pikD

v21v0 5 21
vjvj 5 1 for j [ J ø $0, 21%

(28)

229Convex Quadratic and Semidefinite Relaxations in Scheduling



Here vjvk denotes the scalar product of the vectors vj and vk. It is well known
that such a program is equivalent to a semidefinite program in variables
corresponding to the scalar products (see, e.g., Goemans and Williamson [1995]).
This program can be strengthened by adding the constraints

vjvk 1 vivj 1 vivk 1 1 > 0 for i [ $0, 2 1% and j, k [ J. (29)

Observe that those constraints are always fulfilled for {1, 21}-variables. Con-
straints of the same form have been used by Feige and Goemans [1995] to
improve some of the approximation results of Goemans and Williamson [1995].

It is one of the key insights of this section that the vector program can be
further strengthened with the quadratic cut (12) from the convex quadratic
program (CQP9) in Section 2. For a feasible solution v to (VP), we denote by
a 5 a(v) the corresponding solution to (CQP), that is,

aij 5
1 1 vivj

2
for i [ $0, 21% and j [ J, (30)

and add the constraint

Z > 1
2 cTa 1 1

2 aT~D 1 diag~c!!a (31)

5 O
j

wj O
i521

0

aij z S 1 1 aij

2
pij 1 O

ka ij

a ik z pikD (32)

to the vector program (VP). The resulting program with the additional con-
straints (29), (30), and (31) is denoted by (SDP). Since the right-hand side of
constraint (31) is convex quadratic, (SDP) can be interpreted as a semidefinite
program in variables corresponding to the scalar products vjvk. For a feasible
solution to (SDP), we consider the random hyperplane rounding that was
introduced by Goemans and Williamson [1995]:
Algorithm RANDOM HYPERPLANE

(1) Draw a random vector r uniformly distributed from the unit-sphere of Rn11.
(2) For each job j , assign j to the machine i with sgn(vjr) 5 sgn(vir).

In the second step, ties can be broken arbitrarily; they occur with probability
zero. The random vector r can be interpreted as the normal vector of a random
hyperplane through the origin which partitions the set of vectors vj, j [ J, and
therefore the jobs into two subsets. In contrast to Algorithm RANDOMIZED

ROUNDING, jobs are no longer assigned independently to the machines, but the
hyperplane induces a correlation between the random decisions for different
jobs.

To analyze (SDP) and the schedule computed by Algorithm RANDOM HYPER-
PLANE, we need the following lemma which is a restatement of Goemans and
Williamson [1995, Lemma 3.2 and Lemma 7.3.1]. For given vectors vj, vk, j, k [
J ø {0, 21}, we denote the enclosed angle by a jk.
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LEMMA 5.1. For j, k [ J, i [ {0, 21}, and for given unit vectors vi, vj, vk,
Algorithm RANDOM HYPERPLANE yields the following probabilities:

(a) Pr[ j ° i] 5 1 2 (a ij/p).
(b) Pr[ j, k ° i] 5 1 2 (a jk 1 a ij 1 a ik)/ 2p.

As a result of Lemma 2.2 and Lemma 5.1, the expected value of the
completion time of job j in the schedule computed by Algorithm RANDOM

HYPERPLANE is given by

E@Cj# 5 O
i521

0 SS1 2
aij

p D z pij 1 O
kaij

S1 2
ajk 1 aij 1 aik

2p D z pikD. (33)

We want to bound the expected value of the schedule computed by Algorithm
RANDOM HYPERPLANE in terms of the feasible solution to (SDP) we started with.
In view of (33) and the lower bounds on ZSDP(v) given in (28) and (32), we try to
bound the probabilities given in Lemma 5.1 in terms of the corresponding
coefficients in (28) and (32).

LEMMA 5.2. Let v and a 5 a(v) be a feasible solution to (SDP) with value Z
and consider a random assignment of jobs to machines satisfying

Pr@ j ° i# <
r1

2 S1 1 vivj

2
1

1 1 aij

2
z aijD (34)

and

Pr@ j, k ° i# <
r2

2 Svjvk 1 vivj 1 vivk 1 1

4
1 aijaikD (35)

for i [ {0, 21}, j, k [ J, and for certain parameters 1 ¶ r1 ¶ r2. Then the
expected value of the computed schedule is bounded from above by

EF O
j

wjCjG < r1 z
3cTa~v!

4
1 r2 z SZ 2

3cTa~v!

4 D < r2 z Z .

PROOF. To simplify notation, we denote the vector a(v) by a and its entries
by aij. The main idea of the proof is to bound the expected value of the schedule
by a new lower bound that is the average of the two bounds on Z given in (28)
and (32). Using linearity of expectations, we can bound the expected value of the
schedule by

EFO
j

wjCjG 5 O
j

wj O
i521

0 SPr~ j ° i! z pij 1 O
kaij

Pr~ j, k ° i! z pikD
by Lemma 2.2,
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< O
j

wj O
i521

0 S r1

2
z

1 1 vivj

2
z pij 1 O

ka ij

r2

2
z

vjvk 1 vivj 1 vivk 1 1

4
z pikD

1 O
j

wj O
i521

0 S r1

2
z

1 1 aij

2
z aij z pij 1 O

ka ij

r2

2
z aij z aik z pikD

by (34) and (35). Plugging in (28) and (31) and making use of r1 ¶ r2 we can
bound the last expression by

<
r1

2
z cTa 1

r2

2
z ~Z 2 cTa! 1

r1

2
z

cTa

2
1

r2

2
z SZ 2

cTa

2 D
< r1 z

3cTa

4
1 r2 z SZ 2

3cTa

4 D .

The second bound in the lemma follows from r1 ¶ r2. e

Inspired by the work of Feige and Goemans [1995] we give a rounding scheme
that fulfills the conditions described in Lemma 5.2 for r1 5 1.1847 and r2 5
1.3388. We apply Algorithm RANDOM HYPERPLANE to a set of modified vectors
uj, j [ J, which are constructed from the vectors vj by taking advantage of the
special role of v0 and v21. For each job j [ J, the vectors v0, vj, and uj are
linearly dependent, that is, uj is coplanar with v0 and vj. Moreover, uj lies on the
same side of the hyperplane orthogonal to v0 as vj and its distance to this
hyperplane is increased compared to vj. In other words, uj is attained by moving
vj towards the nearer of the two points v0 and v21 (see Figure 2).

We describe this mapping of vj to uj by a function f: [0, p] 3 [0, p] where
f(a ij) equals the angle formed by uj and vi for i [ {0, 21}. In particular, f has
the property that f(p 2 u ) 5 p 2 f(u ) such that both machines are treated in
the same manner. In order to compute the probability Pr[ j, k ° i] for
Algorithm RANDOM HYPERPLANE based on the modified vectors uj and uk, we
need to know the angle between uj and uk for two jobs j, k [ J. This angle is
implicitly given by the cosine rule for spherical triangles. We denote the angle
between the two planes defined by (v0, vj) and (v0, vk) by w jk (see Figure 2):

cos~ajk! 5 cos~a0j!cos~a0k! 1 cos~wjk!sin~a0j!sin~a0k!

ujuk 5 cos~ f~a0j!!cos~ f~a0k!! 1 cos~wjk!sin~ f~a0j!!sin~ f~a0k!!.

The last expression is equal to the cosine of the angle between uj and uk; the first
expression can be used to determine w jk for given vectors v0, vj, vk.

If we use the function f1(u ) :5 p/ 2(1 2 cos(u)) proposed by Feige and
Goemans [1995] (see Figure 3), we get

Pr@ j ° i# 5
1 1 cos~aij!

2
5

1 1 vivj

2
5 aij
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for each job j. In other words, the probability that a job is assigned to a machine
is equal to the corresponding coefficient in (28). On the other hand, the function
f1 does not yield a possibility to bound the probabilities Pr[ j, k ° i] for j, k [
J in terms of the corresponding coefficients in (28) and (31). Consider the
constellation of vectors given by w jk 5 p/ 2 and a0j 5 a0k. If a0j and a0k

simultaneously go to p, then Pr[ j, k ° i] as well as the right-hand side of (35)
go to zero; however, the order of convergence is higher for the right-hand side.

Therefore, we use a different function f2 defined by f2(u ) 5 f1(j(u )) where
j(u) is given by j(u) 5 min{p, max{0, p/2 1 1.3662 z (u 2 (p/2))}} (see Figure
3). We have tested numerically that the conditions in Lemma 5.2 are fulfilled for
r1 5 1.1847 and r2 5 1.3388 in this case. As proposed by Feige and Goemans
[1995], this was done by discretizing the set of all possible angles between three

FIG. 2. Modification according to the function f.

FIG. 3. Description of the functions f1 and f2.
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vectors and testing for each triple the validity of the bounds for the given
parameters r1 and r2. The parameter r1 is nearly tight for the angle a0j 5
0.3864 z p, the same holds for r2 and the angles a0j 5 a0k 5 0.751 z p and
w jk 5 0.554 z p.

CONJECTURE 5.3. The rounding scheme induced by the function f2 fulfills the
conditions in Lemma 5.2 for r1 5 1.1847 and r2 5 1.3388.

We should mention that both constraints (29) and (31) are crucial for our
analysis. In the absence of one of these constraints, one can construct constella-
tions of vectors such that no constant worst case bounds r1 and r2 exist for our
analysis.

We strongly believe that there exists a function similar to f2 which yields an
improved bound of r2 5 4/3. On the other hand, we can show that this value is
best possible for our kind of analysis. Consider the constellation a0j 5 a0k 5
p/ 2 and a jk 5 0. The symmetry of f yields f(p/ 2) 5 p/ 2 such that uj 5 uk 5
vj 5 vk. Therefore, Pr[ j, k ° 0] 5 1/ 2 and the right-hand side of the
corresponding inequality in Lemma 5.2 is equal to (3/8)r2. We have also tried to
bound the probabilities by a different convex combination of the corresponding
coefficients in (28) and (31) rather than using their average as in Lemma 5.2; but
this did not lead to any improvement.

Unfortunately, it is far from being obvious how to give a reasonably simple
proof for Conjecture 5.3. Similar problems have also been encountered by others
who used variants of the random hyperplane technique that are based on a
modification of the original vector solution (see, e.g., Feige and Goemans [1995],
and Zwick [1999]). Of course, one could give a proof by partitioning the space of
possible configurations of the three vectors vi, vj, vk into small areas and prove
the conjecture analytically for each area. However, we think that it is not worth
to spend too much effort on this task. On the one hand, the question about the
approximability of the scheduling problem under consideration has recently been
settled (there is a PTAS even for the more general problem Rm urju( wjCj (see
Afrati et al. [1999])); on the other hand, our computational ‘proof’ seems to give
sufficient indication of the quality of the underlying semidefinite programming
relaxation (SDP).

THEOREM 5.4. If Conjecture 5.3 is valid, computing an almost optimal solution
to (SDP), modifying it according to f2, and using Algorithm RANDOM HYPERPLANE

to construct a feasible schedule yields a randomized approximation algorithm with
expected performance guarantee 1.3388.

It is shown in Mahajan and Ramesh [1999] that Algorithm RANDOM HYPER-
PLANE can be derandomized. We get a deterministic version of our approxima-
tion algorithm if we make use of the derandomized version of Algorithm
RANDOM HYPERPLANE.

We can also apply Algorithm RANDOMIZED ROUNDING to turn a feasible
solution a 5 a(v) to (SDP) into a provably good schedule. Although the
worst-case ratio of this algorithm is worse than the performance ratio of the
rounding scheme based on Algorithm RANDOM HYPERPLANE, a combination of
the two rounding techniques leads to a further improvement in the performance
guarantee.
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THEOREM 5.5. Under the assumption of Conjecture 5.3, for an almost optimal
solution a(v) to (SDP), either Algorithm RANDOMIZED ROUNDING or Algorithm
RANDOM HYPERPLANE (together with f2) produces a schedule whose expected value
is bounded by 1.2752 z Z*.

PROOF. It follows from Corollary 2.11 that the expected value of the schedule
computed by RANDOMIZED ROUNDING is within a factor 1 1 ( x/ 2) of the value
of the solution a(v), where x denotes the ratio of cTa(v) to the value of the
solution a(v).

On the other hand, by Lemma 5.2 and Conjecture 5.3, the value of the
schedule computed by RANDOM HYPERPLANE is within a factor

1.1847 z 3
4 z x 1 1.3388 z ~1 2 3

4 x!

of the value of the solution a(v).
Thus, the result follows since the maximum of the function

x ° min$1 1 x
2, 1.1847 z

3
4 z x 1 1.3388 z ~1 2 3

4 x!%

over the interval [0, 1] is strictly less than 1.2752 (see Figure 4). e

Observations of this type have already been used in other contexts to get
improved approximation results. Theorem 5.5 also implies that (SDP) is a
1.2752-relaxation for R2i( wjCj.

Up to now, the combination of semidefinite relaxations like the one we are
discussing here and the rounding technique of Algorithm RANDOM HYPERPLANE

has only proved useful for approximations in the context of maximization
problems, (see, e.g., Goemans and Williamson [1995], Feige and Goemans
[1995], and Frieze and Jerrum [1997]). In contrast to our considerations, in the
analysis of these results one needs a good lower bound on the probabilities for
the assignments in Algorithm RANDOM HYPERPLANE. However, it seems to be
much harder to attain good upper bounds. Our main contribution to this
problem is the additional quadratic cut (31). We hope that this approach will also
prove useful for other problems in combinatorial optimization.

FIG. 4. Comparison of RANDOMIZED ROUNDING and RANDOM HYPERPLANE.
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6. MAXCUT Algorithms for Identical Parallel Machines

In this section, we provide an approximation preserving reduction from the
identical parallel machine scheduling problem Pmi( wjCj to the graph partition-
ing problem MAXkCUT for k 5 m. In particular, we show how any constant
factor approximation algorithm for MAXkCUT translates into an approximation
algorithm for Pmi( wjCj with constant performance guarantee. This sheds new
light on the random hyperplane algorithm from the last section for the special
case of two identical parallel machines.

We associate with each instance of Pi( wjCj a complete undirected graph GJ

on the set of vertices J together with weights on the set of edges EJ given by
c( jk) 5 wjpk for j, k [ J, k a j. Each partition of the set of vertices J of GJ

into m subsets J1, . . . , Jm can be interpreted as a machine assignment and
corresponds to a feasible schedule. Moreover, the value of a schedule can be
interpreted as the weight of the set Esch formed by those edges in EJ with both
endpoints in the same subset plus the constant term ( j wjpj. The remaining
edges in Ecut :5 EJ\Esch are contained in the induced m-cut. In particular we get

c~EJ! 5 O
j

wjCj 2 O
j

wjpj 1 c~Ecut!, (36)

where Cj denotes the completion time of job j in the schedule corresponding to
the partition of J. Since ( j wjpj and c(EJ) are constant, minimizing the average
weighted completion time ( j wjCj of the schedule is equivalent to maximizing
the value c(Ecut) of the induced m-cut. This reduction of Pmi( wjCj to
MAXmCUT is approximation preserving:

THEOREM 6.1. For any r ¶ 1, a r-approximation algorithm for MAXmCUT

translates into an approximation algorithm for Pmi( wjCj with performance guaran-
tee r 1 m z (1 2 r).

PROOF. We use the lower bound Z*CQP on the value of an optimal schedule to
get an upper bound on the weight Z*cut of a maximum m-cut. Lemma 2.5 yields

Z* > Z*CQP 5
1

m
z c~EJ! 1 S 1

2
1

1

2mD O
j

wjpj , (37)

such that

Z*cut <
m 2 1

m
z c~EJ! 1 S1

2
2

1

2mDO
j

wjpj (38)

by (36) and (37). Any m-cut in GJ whose weight is at least r z Z*cut therefore
yields a schedule whose value can be bounded as follows:

O
j

wjCj < Z* 1 ~1 2 r! z Z*cut by ~36!

< Z* 1 ~1 2 r! z ~m 2 1! z Z* by ~38!, ~37!

5 ~r 1 m z ~1 2 r!! z Z*.
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This completes the proof. e

While the problem Pi( wjCj has a polynomial time approximation scheme (see
Skutella and Woeginger [2000], even a fully polynomial time approximation
scheme when the number of machines is constant [Sahni 1976]), it is shown in
Kann et al. [1997] that MAXmCUT cannot be approximated within r , 1 1
(1/(34m)), unless P 5 NP. The best currently known approximation algorithms
for MAXmCUT have performance ratio 1 2 (1/m) 1 o(1/m) which yields (2 2
(1/m))-approximation algorithms for Pi( j wjCj by Theorem 6.1. It is interesting
to mention and easy to see that assigning each vertex randomly to one of the m
subsets is an approximation algorithm with performance guarantee 1 2 (1/m)
for MAXmCUT. Moreover, this algorithm coincides with Algorithm RANDOMIZED

ROUNDING based on the optimal solution to (CQP) given in Lemma 2.5 and
therefore achieves performance ratio (3/ 2) 2 (1/(2m)) for Pi( j wjCj by
Theorem 2.6(b).

If we consider the problem for the case m 5 2, we get performance guarantee
1.122 if we use the 0.878-approximation algorithm for MAXCUT by Goemans and
Williamson [1995]. This result beats both the 5/4-approximation in Theorem 2.6
and the 1.2752-approximation in Theorem 5.5. Notice that for the case of two
identical parallel machines, (SDP) is a strengthened version of the semidefinite
programming relaxation for the corresponding MAXCUT problem considered in
Goemans and Williamson [1995]. This leads to the following result:

COROLLARY 6.2. Computing an almost optimal solution to (SDP) and applying
Algorithm RANDOM HYPERPLANE to get a feasible schedule is a 1.122-approxima-
tion for P2i( wjCj.

This result has been further improved by Goemans (personal communication,
September 1998) to performance guarantee 1.073 through a more sophisticated
rounding technique based on the standard MAXCUT relaxation. Before choosing
the random hyperplane, he modified the given solution to the vector program in
the following way: Consider the positive semidefinite matrix consisting of all
scalar products of vectors and take a convex combination with the identity
matrix. The resulting matrix is still positive semidefinite and defines again a set
of vectors. Notice that the identity matrix corresponds to a set of pairwise
orthogonal vectors which are partitioned uniformly at random and independently
by a random hyperplane. This algorithm coincides with the algorithms discussed
in Theorem 2.6(b). The algorithm proposed by Goemans can therefore be
interpreted as a combination of the original random hyperplane algorithm and
this random assignment algorithm.

This approach recently also proved useful in other contexts. Zwick [1999] used
the same idea to give a slightly improved variant of the MAXCUT algorithm of
Goemans and Williamson [1995]; Ye [1999] applied this technique to improve
the result of Frieze and Jerrum [1997] for the MAXBISECTION problem.

7. Nonapproximability Results

It has been shown by Hoogeveen et al. [1998] that the problems Ri( wjCj and
Rurju( Cj are MAXSNP-hard and therefore do not have a polynomial time
approximation scheme, unless P 5 NP. Hoogeveen et al. [1998] construct an
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approximation preserving reduction from a MAXSNP-hard variant of a 3-dimen-
sional matching problem to these scheduling problems. We provide an alterna-
tive and slightly simpler proof in this section by constructing reductions from the
variant of MAX3SAT where each variable occurs at most three times in the
clauses. This variant is usually denoted by 3-OCCURRENCE MAX3SAT and is
known to be MAXSNP-hard (see, e.g., Ausiello et al. [1999, Corollary 8.15]).

We first present an approximation preserving reduction from this satisfiability
problem to Rurju( Cj. Given an instance I of 3-OCCURRENCE MAX3SAT with n
variables and m clauses, we construct a corresponding scheduling instance R(I)
with n 1 m jobs and 2n machines in the following way. For each variable, we
introduce one v-job (where ‘v’ stands for ‘variable’) and two machines corre-
sponding to the variable—a ‘true machine’ and a ‘false machine’; the v-job is
released at time 0, its processing time is 4 on its two machines and infinity on the
machines of other variables. Therefore, each feasible schedule S corresponds to
an assignment SAT(S) of the values true and false to the variables of the given
satisfiability instance: a variable is set to true if and only if the corresponding
v-job is being processed on its ‘true machine’ in the schedule S.

Moreover, we introduce one c-job for each clause (‘c’ stands for ‘clause’). The
release date of a c-job is 3 and its processing time is 0, but it can only be
processed on machines corresponding to variables of its clause: if a variable
occurs in the nonnegated form in the clause, the c-job can be processed on the
corresponding ‘false machine’; if the variable occurs in the negated form in the
clause, the c-job can be processed on the ‘true machine’. The underlying intuition
of this reduction is that for a given machine assignment of the v-jobs (i.e., a given
truth assignment to the variables), a c-job can be started at time 3 without getting
in conflict with a v-job if and only if the clause is satisfied. This intuition leads to
the following lemma:

LEMMA 7.1. Let I be an instance of 3-OCCURRENCE MAX3SAT and R(I) the
corresponding instance of the scheduling problem constructed above.

(a) Given a schedule S with value VAL(S) for R(I), the number of clauses satisfied
by the corresponding truth assignment SAT(S) of I is #(SAT(S)) Ä 4n 1
4m 2 VAL(S).

(b) OPTSCH(R(I)) 5 4n 1 4m 2 OPTSAT(I), where OPTSCH(R(I)) and OPTSAT(I)
denote the values of optimal solutions to R(I) and I, respectively.

PROOF. In order to prove part (a), we modify the given schedule S as follows:
We start each v-job at time 0 on the machine it has been assigned to in S,
possibly delaying some c-jobs until time 4. Since each variable occurs in at most 3
clauses, there are at most 3 c-jobs on each machine; thus, we did not increase the
value of the schedule. Now we start each c-job as early as possible, that is, at time
3 if the corresponding clause is satisfied by the truth assignment SAT(S), and at
time 4, otherwise. We denote the resulting schedule by S9 and get

VAL~S! > VAL~S9! 5 4n 1 4m 2 #~SAT~S!!

which yields (a).
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On the other hand, using the same ideas as above, an optimal truth assignment
for I leads to a schedule of value 4n 1 4m 2 OPTSAT(I). Together with (a) this
completes the proof of (b). e

We can now give a new proof for the following theorem of Hoogeveen et al.:

THEOREM 7.2 ([HOOGEVEEN ET AL. 1998]). The parallel machine scheduling
problem Rurju( Cj is MAXSNP-hard.

PROOF. We show that the reduction given above is an L-reduction; for the
definition of L-reductions we refer the reader to Papadimitriou and Yannakakis
[1991] and Papadimitriou [1994]. Notice that the transformation R that maps an
instance I of 3-OCCURRENCE MAX3SAT to an instance R(I) of Rurju( Cj can be
implemented to run in polynomial time. The same holds for the transformation
SAT that maps a given schedule S to a truth assignment SAT(S).

Since the number of satisfied clauses in an optimal truth assignment is at least
m/ 2 and since n ¶ 3m, Lemma 7.1(b) yields

OPTSCH~R~I!! < 12m 1 4m < 32OPTSAT~I!

and the first condition for an L-reduction is thus fulfilled. The second condition
follows directly from Lemma 7.1 since for any schedule S we get

OPTSAT~I! 2 #~SAT~S!! < VAL~S! 2 OPTSCH~R~I!!.

This completes the proof. e

For the problem Ri( wjCj, we use a similar reduction. Each v-job has
processing time and weight 1 and can again only be scheduled on its ‘true’ and
‘false machine’. A c-job can be processed on the same machines as described
above; its processing time and weight is set to a small positive constant e. Thus,
by Smith’s ratio rule, any sequence of jobs is optimal on a machine. A similar
proof as above shows that this reduction is in fact an L-reduction.

8. Conclusion

We have presented convex quadratic programming relaxations of strongly poly-
nomial size that lead to simple and easy-to-analyze approximation algorithms for
preemptive and nonpreemptive network scheduling. Although our approach and
the presented results might be at first sight of mainly theoretical interest, we
hope that nonlinear relaxations like the ones we discuss in this paper will also
prove useful in solving real world scheduling problems in the near future. With
the development of better algorithms that solve convex quadratic programs more
efficiently in practice, the results obtained by using such relaxations might
become comparable or even better than those based on linear programming
relaxations with a huge number of time-indexed variables and constraints.

Precedence constraints between jobs play a particularly important role in most
real world scheduling problems. Therefore, it would be both of theoretical and of
practical interest to incorporate those constraints into our convex quadratic
programming relaxations.

As mentioned in the last section, the problems Rurju( Cj and Ri( wjCj cannot
be approximated in polynomial time within arbitrarily good precision, unless P 5
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NP. It is an interesting open problem to close the gap between this lower bound
and the approximation results presented in this paper. For example, one
approach is trying to obtain improved performance ratios by strengthening the
convex quadratic relaxations discussed in this paper. Notice, however, that for
the problem Ri( wjCj the convex hull of all assignments of jobs to machines is
exactly given by constraints (5) and (6). Thus, in contrast to most integer linear
programming problems, the task is not to find additional cuts bounding the
convex hull of feasible solutions; to get improved relaxations based on the
techniques described in this paper, we need to strengthen the convex objective
function by adding constraints like (13). On the other hand, new ideas and
techniques are needed in order to prove stronger lower bounds; since the
approximability of many classical machine scheduling problems with min-sum
objective has recently been settled (see, e.g., Afrati et al. [1999]), this is one of
the main challenges remaining for the scheduling problems under consideration.

For further open problems in the area of machine scheduling, we refer to the
very interesting recent paper [Schuurman and Woeginger 1999].
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