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Abstract

Given a complete graph on n nodes with metric edge costs, the minimum-cost k-hop spanning tree (kHMST) problem asks
for a spanning tree of minimum total cost such that the longest root-leaf-path in the tree has at most k edges. We present an
algorithm that computes such a tree of total expected cost O(log n) times that of a minimum-cost k-hop spanning-tree.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We are given an undirected complete graph G on a
set of n vertices V , a non-negative metric cost function
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c on the edges, an integer k ¿ 0, and a root node r ∈V .
We say that a rooted tree T is a k-hop spanning tree
of G if the number of edges on any root-leaf-path is at
most k. In this paper we consider the kHMST problem
where the goal is to compute a minimum-cost k-hop
spanning tree that is rooted at node r.
Minimum-cost spanning trees are pervasive in many

practical applications. To name just one example, con-
sider the multicast-routing problem arising in com-
puter networks (see, e.g., [6,7]) where a number of
clients and a server are connected by a common com-
munication network. The server wishes to transmit
identical information to all client nodes. Most solu-
tions to the multicast problem involve computing a
tree spanning the server and the client nodes. The
server then transmits the data to its immediate chil-
dren in the tree and intermediate nodes forward in-
coming data to their respective descendants in the
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tree. Tree-routing schemes allow for fast data delivery
while keeping the total network load low.
Kompella et al. [12] consider the problem of

computing multicast-trees that minimize the overall
network cost as well as the maximum transmission
delay on any path in the tree connecting the server to
a client node. Assuming that all links in the network
have roughly the same transmission delay (which is
a reasonable assumption in local area networks), it is
not hard to see that this problem can be cast in the
kHMST framework.

1.1. Related work

A related problem is the so-called bounded-diameter
minimum spanning tree problem where the goal is to
compute a spanning tree of minimum cost such that
the number of edges on any path in the tree is bounded
by some given number. We note that an approximation
algorithm for the kHMST problem implies a solution to
the 2k- and (2k +1)-bounded-diameter spanning tree
problem of same approximation ratio by applying the
kHMST-algorithm a polynomial number of times.
Marathe et al. [15] consider the following

generalization of the bounded-diameter minimum
spanning tree problem. In the bounded-diameter
minimum-cost Steiner tree problem (BDST) we are
given an undirected graph G = (V; E), a subset of
vertices V ⊆ V , non-negative costs ce (not necessar-
ily metric) and non-negative lengths ‘e for all edges
e∈E, and a parameter D¿ 0. A feasible solution
consists of a tree spanning V whose longest path has
length at most D. The authors give an algorithm that
computes a tree T of total cost O(log n) times that
of a minimum-cost feasible solution to BDST. They
also prove that the length of any path in T is at most
O(D log n). For the case that all ‘e = 1, Kortsarz and
Peleg [13] show how to obtain a solution of cost
O(|V|�) times the optimum solution for an arbitrary
Ixed parameter �∈ (0; 1). The resulting Steiner tree
has diameter at most D. For constant D, Kortsarz and
Peleg obtain an O(log n)-approximation.
For the bounded-diameter minimum spanning

tree (also under non-metric cost function) Bar-Ilan
et al. [3] achieve an O(log n)-approximation algo-
rithm for the special case of this problem where
D∈ {4; 5}. The authors also show that there is no
o(log n)-approximation algorithm for this problem,

unless P = NP. Alfandari and Paschos [2] present a
5
4 -approximation for the 2-hop case where all edge
costs are within {1; 2}.
Hassin and Levin [11] introduce the following

more general hop-constrained spanning tree problem:
Given an undirected graph G = (V; E), costs ce for
all edges e∈E, and a symmetric requirement matrix
(uij)∈Nn×n; the goal is to Ind a spanning tree T in
G such that for all i; j∈V , the unique i-j-path in T
has at most uij edges. The authors consider the spe-
cial case of this problem where uij ∈ {1; 2;∞}, for all
i; j∈V , and present a constant factor approximation
algorithm for this case.
The problem of computing diameter-constrained

trees has also been studied empirically. We point the
reader to a recent paper by Gouveia and Magnanti [9]
and the references therein.
Closely related is the metric facility location prob-

lem (MFL): We are given a bipartite graph G = (F ∪
C; E) with metric edge costs cij, for all i∈F , j∈C,
and opening costs fi for all facilities i∈F . The goal
is to open certain facilities F ′ ⊂ F such that the
sum of the costs of the facilities in F ′ plus the sum
of the costs of assigning each client to its closest
facility in F ′ is minimized. Guha and Khuller [10]
prove that no approximation algorithm with perfor-
mance guarantee better than 1:463 can exist, unless
NP ⊆ DTIME(nO(log log n)). On the other hand, Mahdian
et al. [14] give a 1:52-approximation for this problem.
It can be seen that MFL is a generalization of 2HMST,
nevertheless the hardness results from [10] also apply
to the 2HMST problem.
In the k-level metric facility location problem we

have a set D of demand points where clients are
located. Moreover, we have pairwise disjoint sets
F1; : : : ; Fk of potential locations for facilities at levels
1; : : : ; k. Each demand point needs to be assigned to
one path visiting open facilities at levels 1; : : : ; k in
this order. The service cost for this demand point
is the length of the chosen path in a given metric.
There is a cost for opening a facility depending on
the location. The objective is to minimize the total
opening cost plus the sum of service costs. Aardal et
al. [1] present a 3-approximation algorithm for that
problem. In a very recent paper Zhang [16] presented
a 1:77-approximation for the case k = 2.
There is an optimum solution to the k-level metric

facility location problem which is a forest of k-hop
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trees rooted at level-k facilities. Notice, however, that
the contribution of an edge to the cost of a solution
depends on the number of demand points using that
edge.
Zhang [16] also gives a 1:77-approximation algo-

rithm for the 2-level concentrator location problem
which is a generalization of the 3HMST problem. Here,
in contrast to the 2-level facility location problem, the
cost of an edge has to be paid only once even if more
than one customer wants to use that edge. The result
of Zhang thus implies a 1:77-approximation for the
3HMST problem.

1.2. Our contributions

Our main theorem can be stated as follows:

Theorem 1. Given an undirected complete graph G
on vertex set V , a metric cost function c, and an in-
teger parameter k ¿ 0; there is a randomized algo-
rithm that computes a feasible k-hop spanning tree
T of G whose expected cost is O(log n)optk where
optk denotes the minimum-cost of any k-hop span-
ning tree of G. The running time of this algorithm is
O(n5k).

Our algorithm Irst uses a recent result by
Fakcharoenphol et al. [8] who show that any met-
ric space can be probabilistically approximated by a
family of tree metrics. Their result is based on the
notion of hierarchically well-separated trees which
is due to Bartal [4,5].

De�nition 1. Let H be a tree that is rooted at r and
let cH be a cost function on the edges of H . Then H
is said to be an ‘-hierarchically well-separated tree
(‘-HST) for a parameter ‘¿ 1 if there exists C¿ 0
such that the cost of all edges e of level h is equal to
cHe = C=‘h, for all h¿ 0.

For any two leaves u; v of H , we denote by PHuv the
unique u-v-path in H and by cHuv = c(P

H
uv) the sum of

the edge costs of the path. Fakcharoenphol et al. prove
the following statement:

Theorem 2. Given a metric (V; c), there is a distri-
bution H over metrics induced by 2-HSTs with the

following properties: For any two nodes u; v∈V ,

(i) cuv6 cHuv for any metric (H; c
H )∈H, and

(ii) EH[cHuv] = O(log n)cuv.

The elements (H; cH )∈H have the additional prop-
erty that the nodes of the original metric space (V; c)
are the leaves of H and every leaf of H has the same
level. Finally there is an eBcient algorithm to sample
fromH.

In the bulk of this paper we develop an exact al-
gorithm for the kHMST problem in the special case of
cost-functions c that are induced by a 2-HST. An ap-
plication of Theorem 2 then yields Theorem 1.

2. Computing minimum-cost k-hop trees in HSTs

We assume throughout the rest of the paper that we
are given a complete graph G with vertex set V =
{1; 2; : : : ; n} and a cost function c= cH that is induced
by a metric space (H; cH ) where H is a 2-HST, i.e.,
cuv=cHuv=c(P

H
uv), for all u; v∈V . Moreover, we assume

a Ixed embedding ofH such that the leaves are labeled
1; 2; : : : ; n from left to right. For 16 i6 j6 n, let
[i; j] := {i; : : : ; j}.

Observation 1. For 16 h¡ i¡j6 n, it holds that
chj¿max{chi; cij}.

Proof. By deInition of the cost function c and Def-
inition 1, the cost coeMcient chj only depends on the
level of the lowest common ancestor of the leaves h; j
in the 2-HST H . Since the lowest common ancestor
of h; j is also an ancestor of i (it is either the lowest
common ancestor of h; i or the lowest common ances-
tor of i; j, or both), the result follows.

Our goal is to compute a minimum-cost k-hop span-
ning tree in G rooted at r. In fact, the procedure de-
scribed below works for an arbitrary cost function c
for which Observation 1 is true.
The following lemma states that it is possible to

limit the search for an optimum solution to those k-hop
trees where each subtree consists of consecutive ver-
tices in the ordering 1; : : : ; n. This insight is essential
for the dynamic programming formulation presented
below.
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Fig. 1. The Igure explains the structural result described in part
(i) of Lemma 1. An optimum k-hop tree splits the set of vertices
{i; : : : ; j} into two subsets {i; : : : ; b} and {b + 1; : : : ; j}.

Lemma 1. For 16 i6 s6 j6 n and k ¿ 0, there
exists a minimum-cost k-hop spanning tree T with
root s covering all vertices in [i; j] which satisCes the
following conditions:

(i) If s¡ j and s′¿s is the largest (rightmost) child
of s in T , then there exists a vertex b∈ [s; s′ −1]
such that the subtree of T rooted at s′ spans the
interval [b+ 1; j].

(ii) If s¿ i and s′¡s is the smallest (leftmost) child
of s in T , then there exists a vertex b∈ [s′; s−1]
such that the subtree of T rooted at s′ spans the
interval [i; b].

Fig. 1 depicts the situation discussed in part (i) of
the lemma.

Proof. To simplify notation, we assume in the fol-
lowing that all edges in a rooted tree are directed away
from the root. Among all minimum-cost k-hop span-
ning trees T with root s covering the vertices in [i; j],
choose one minimizing the second objective function∑

(u;v)∈T |u − v|. We show that this optimum k-hop
tree T fulIlls requirement (i). Using symmetric ar-
guments, one can analogously show that it fulIlls re-
quirement (ii). For a vertex v in T , let d(v) be the
number of edges on the unique s-v-path in T . We as-
sume that s¡ j; otherwise, we are done. Let s′¿s be
the rightmost child of s and denote the subtree of T
rooted at s′ by T ′.
We Irst argue that the subtree T ′ contains all ver-

tices in [s′; j]. By contradiction, assume that there is a
vertex in [s′; j] which is not contained in T ′. Among
all such vertices v, choose one of minimum depth d(v).
Then, there exists an edge (u; v) in T with u¡s′¡v.
Since s′ is the rightmost child of s, we get u 
= s
and thus d(u)¿d(s′). We can therefore replace edge

(u; v) with edge (s′; v) without increasing cost (by Ob-
servation 1) and without increasing the depth of any
vertex in T . Notice, however, that this replacement
decreases the second objective function and therefore
leads to a contradiction.
Similarly, we argue that the subtree T ′ does not

contain a vertex from [i; s]. By contradiction, choose a
vertex v violating this condition with minimum d(v).
Then there exists an edge (u; v) in T ′ with v¡ s¡u
which can be replaced with edge (s; v). By Observation
1, this leads to a contradiction.
It remains to consider the vertices between s and s′.

Assume by contradiction that there exist two vertices
v; v′ with s¡v¡v′¡s′ such that v but not v′ is con-
tained in the subtree T ′. Among all such pairs v; v′,
choose one minimizing d(v)+d(v′). Then there exist
two edges (u; v) and (u′; v′) with u′¡v¡v′¡u.
We distinguish three cases (see also Fig. 2): (i) If
d(u) = d(u′), we replace edges (u; v) and (u′; v′)
with (u; v′) and (u′; v). (ii) If d(u)¡d(u′), then
d(v)6d(u′) and we can replace (u′; v′) with (v; v′).
(iii) If d(u)¿d(u′), then d(u)¿d(v′) and we can
replace (u; v) with (v′; v). By Observation 1, all three
cases yield a contradiction.

For 16 i6 s6 j6 n, let C[s; i; j; k] denote the
cost of a minimum k-hop spanning tree rooted at s
covering all vertices in [i; j]. By deInition,

C[s; i; j; k] =

{
0 if s= i = j;

∞ if k = 0 and i¡ j:

By Lemma 1, C[s; 1; n; k] can be computed recursively
using the following dynamic programming formula-
tion. For i¡ j and k ¿ 0,

C[s; i; j; k]

= min
s �=s′∈[i; j]




minb∈[s; s′−1] C[s; i; b; k] + css′ if s¡ s′;

+C[s′; b + 1; j; k − 1]

minb∈[s′ ; s−1] C[s′; i; b; k − 1] + css′ if s′¡s:

+C[s; b + 1; j; k]

In order to gain some intuition for this expression,
assume that the minimum on the right-hand side is as-
sumed for s′¿s. In this case, the inner minimum can
be thought of as deciding on the rightmost child s′ of s
and the split position b such that the elements in [i; b]
end up in the remaining subtree of s and the elements
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Fig. 2. An illustration of the three cases occurring in the proof of Lemma 1.

in [b + 1; j] in the subtree of s′; the latter must have
depth k − 1, though; see also Fig. 1.
The correctness of our dynamic programming

formulation follows from Lemma 1. Furthermore,
observe that we can partially order the entries of the
dynamic programming table according to the tuple
(k; |i− j|) and determining the content of a cell of this
table only requires the knowledge of smaller cells
with respect to that order. We conclude with a proof
of Theorem 1.

Proof of Theorem 1. Consider a minimum-cost k-
hop spanning tree T ∗. Due to linearity of expecta-
tion, its expected cost under the tree metric (H; cH )
is O(log n)optk and we actually compute an optimal
spanning tree under (H; cH ). For the running time,
observe that for the dynamic program we have to Ill
a table of size n3k and determining the content of a
cell takes time O(n2). Constructing the tree metric
(H; cH ) only takes O(n2) time.

3. Conclusion and open problems

A number of unresolved issues remain: It follows
from [10] that the kHMST problem is likely not approx-
imable within arbitrarily small constants. Is there a
constant factor approximation for the kHMST problem
with metric cost functions? Moreover, the negative
result in [13] shows that no approximation algorithm
for the kHMST problem with arbitrary cost-functions is
likely to have a performance ratio of o(log n). How-
ever, all hardness proofs rely on strict bounds on the
number of hops of the output tree. In the spirit of [15]
we can ask : Is there an algorithm for the kHMST prob-

lem with arbitrary non-negative cost-functions that
computes O(k)-hop trees with cost O(optk)?
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