
The Power of Preemption
on Unrelated Machines and Applications to

Scheduling Orders!

José R. Correa1, Martin Skutella2, and José Verschae2

1 Departamento de Ingenieŕıa Industrial, Universidad de Chile, Santiago, Chile
joser.correa@gmail.com

2 Institute of Mathematics, TU Berlin, Germany
{skutella,verschae}@math.tu-berlin.de

Abstract. Scheduling jobs on unrelated parallel machines so as to min-
imize the makespan is one of the basic, well-studied problems in the area
of machine scheduling. In the first part of the paper we prove that the
power of preemption, i.e., the ratio between the makespan of an opti-
mal nonpreemptive and an optimal preemptive schedule, is exactly 4.
This result is a definite answer to an important basic open problem in
scheduling. The proof of the lower bound is based on a clever iterative
construction while the rounding technique we use to prove the upper
bound is an adaptation of Shmoys and Tardos’ rounding for the gen-
eralized assignment problem. In the second part of the paper we apply
this adaptation to the more general setting in which orders, consisting
of several jobs, have to be processed on unrelated parallel machines so
as to minimize the sum of weighted completion times of the orders. We
obtain the first constant factor approximation algorithms for the preemp-
tive and nonpreemptive case, improving and extending a recent result by
Leung et. al.

1 Introduction

Problem description and basic results. Consider the classical scheduling problem
of minimizing the makespan on unrelated parallel machines. In this problem we
are given a set of jobs J = {1, . . . , n} and a set of machines M = {1, . . . , m} to
process the jobs. Each job j ∈ J has associated processing times pij , denoting
the amount of time that it takes to process job j on machine i. Every job has
to be scheduled on exactly one machine without interruption and each machine
can schedule at most one job at a time. The objective is to find a schedule min-
imizing the point in time at which the last job is completed, i.e., minimizing

! This work was partially supported by Berlin Mathematical School, by DFG research
center Matheon in Berlin, by CONICYT, through grants FONDECYT 1060035 and
Anillo en Redes ACT08. The authors thank Nikhil Bansal for stimulating discussions
on the material in Section 2.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 84–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Power of Preemption on Unrelated Machines and Applications 85

Cmax := maxj∈J Cj , where Cj is the completion time of job j. In the stan-
dard three-field scheduling notation (see, e.g., Lawler et al. [14]) this problem is
denoted by R||Cmax.

In a seminal work, Lenstra, Shmoys and Tardos [16] give a 2-approximation
algorithm for R||Cmax, and show that the problem is NP-hard to approximate
within a factor better than 3/2. On the other hand, Lawler and Labetoulle [13]
show that the preemptive version of this problem, denoted R|pmtn|Cmax, where
jobs can be interrupted and resumed later on the same or a different machine,
can be formulated as a linear program and thus be solved in polynomial time.

Power of preemption. The power of preemption is the worst-case ratio between
the makespan of an optimal preemptive and an optimal nonpreemptive solution.
This ratio has been studied in the literature for various scheduling problems
[4,21,22]. One contribution of this work is to prove that this ratio is exactly 4
for the considered problem on unrelated machines. The proof consists of two
steps — proving an upper and a lower bound of 4. For the upper bound, we
consider an optimal solution to the linear programming formulation of Lawler
and Labetoulle [13] for R|pmtn|Cmax, and round it to obtain an assignment of
jobs to machines in which the makespan is increased at most by a factor of 4. The
rounding consists in setting to zero all variables whose corresponding processing
time is too large compared to the makespan, and then amplifying the remaining
values so that a feasible fractional assignment is maintained. Then, the technique
of Shmoys and Tardos [23] is applied to obtain a nonpreemptive solution. The
proof of the lower bound is based on a clever recursive construction, where in
each iteration the gap of the instance is increased.

Scheduling orders of jobs. In the second part of the paper, we apply the rounding
technique used for the previous result to a more general setting. Consider the
natural scheduling problem where clients place orders, consisting of several prod-
ucts, to a manufacturer owning m unrelated parallel machines. Each product has
a machine dependent processing requirement. The manufacturer has to find an
assignment of products to machines (and a schedule within each machine) so as
to give the best possible service to his clients.

More precisely, we are given a set of machines M = {1, . . . , m}, a set of jobs
J = {1, . . . , n} (as before) and a set of orders O ⊆ 2J , such that

⋃
L∈O L = J .

Each job j ∈ J takes pij units of time to be processed in machine i ∈ M , and
each order L has a weight factor wL depending on how important it is for the
manufacturer and the client. Also, job j is associated with a release date rij , so
it can only start being processed on machine i by time rij . An order L ∈ O is
completed once all its jobs have been processed. Therefore, if Cj denotes the time
at which job j is completed, CL = max{Cj : j ∈ L} denotes the completion time
of order L. The goal of the manufacturer is to find a nonpreemptive schedule on
the m available machines so as to minimize the sum of weighted completion times
of orders, i.e., min

∑
L∈O wLCL. Let us remark that in this general framework

we are not restricted to the case where the orders are disjoint, and therefore one
job may contribute to the completion time of more than one order.

86 J.R. Correa, M. Skutella, and J. Verschae

We adopt the standard three-field scheduling notation by denoting this prob-
lem R|rij |

∑
wLCL, or R||

∑
wLCL in case all release dates are zero. When the

processing times pij do not depend on the machine, we replace “R” with “P”.
Also, when we impose the additional constraint that orders are disjoint subsets
of jobs we will add part in the second field of the notation.

Relation to other scheduling problems. It is easy to see that this setting gener-
alizes several classical machine scheduling problems. In particular our problem
becomes R||Cmax when the total number of orders is one. Thus, it follows from
[16] that R||

∑
wLCL cannot be approximated within a factor better than 3/2,

unless P = NP . On the other hand, if orders are singletons our problem becomes
R||

∑
wjCj . In this setting each job j ∈ J is associated with a processing time pij

and a weight wj , and the goal is to find a schedule of the jobs so as to minimize
the sum of weighted completion times. In other words, if Cj denotes the comple-
tion time of job j in a given schedule, the goal is to minimize

∑n
j=1 wjCj . As in

the makespan case, this problem was shown to be APX-hard [12] and therefore
there is no PTAS, unless P = NP . Using randomized rounding techniques based
on a linear relaxation, Schulz and Skutella [22] proposed an approximation algo-
rithm for this problem with performance guarantee 3/2 + ε in the case without
release dates, and 2 + ε in the more general case. Later, Skutella [25] slightly
improved this result by using randomized rounding over a convex cuadratic re-
laxation, obtaining approximation algorithms with performance guarantee 3/2
and 2, respectively.

However, for the more general setting R|rij |
∑

wLCL, there is no constant
factor approximation known. The best known result, due to Leung, Li, Pinedo,
and Zhang [18], is an approximation algorithm for the special case of related
machines without release dates, denoted Q||

∑
wLCL, where pij = pi/si and si

is the speed of machine i. The performance ratio of their algorithm is 1 + ρ(m−
1)/(ρ + m − 1), where ρ is the ratio of the speed of the fastest machine to that
of the slowest machine. In general this guarantee is not constant and can be as
bad as m/2.

Identical parallel machines. For the special case of identical parallel machines,
our problem P ||

∑
wLCL also generalizes P ||Cmax and P ||

∑
wjCj . These two

problems are well known to be NP-hard, even for the case of only two machines,
since the well-known PARTITION problem can be reduced to them. For the
makespan objective, Graham [9] showed that a simple list scheduling algorithm
yields a 2-approximation algorithm. Furthermore, Hochbaum and Shmoys [11]
present a PTAS for the problem. On the other hand, for the sum of weighted
completion times objective, a sequence of approximations algorithms had been
proposed until Skutella and Woeginger [24] found a PTAS (see also [1]).

On the even more restricted setting of a single machine, the two previously
mentioned problems 1||Cmax and 1||

∑
wjCj can be easily solved, the first one by

any feasible solution with no idle time, and the second one by applying Smith’s
rule [26]. However, our problem 1||

∑
wLCL is NP-hard, as it is equivalent to

1|prec|
∑

wjCj . In the latter problem, there is a partial order $ over the jobs,
meaning that job j must be processed before job k if j $ k.

The Power of Preemption on Unrelated Machines and Applications 87

Lemma 1. The approximability thresholds of 1|prec|
∑

wjCj and 1||
∑

wLCL

coincide.

Due to space restrictions, the proof of the lemma is omitted. The scheduling
problem 1|prec|

∑
wjCj has attracted much attention since the sixties. Lenstra

and Rinnooy Kan [15] showed that this problem is strongly NP-hard even with
unit weights. On the other hand, several 2-approximation algorithms have been
proposed [10,6,5,20]. Furthermore, the results in [2,7] imply that 1|prec|

∑
wjCj

is a special case of vertex cover. However, hardness of approximation results were
unknown until recently Ambühl, Mastrolilli and Svensson [3] proved that there
is no PTAS unless NP-hard problems can be solved in randomized subexpo-
nential time. In particular, the same result holds for P ||

∑
wLCL. Nonetheless,

the reduction used in the previous lemma does not work on the more restrictive
case where orders are disjoint, P |part|

∑
wLCL, and thus the question whether

there is a PTAS for this latter problem remains open. However, we were able to
develope a PTAS for the special cases in which either the orders are of constant
size, or there is a constant number of orders, or there is a constant number of
machines. Due to space restrictions this result is left for the full version of the
paper (see [27] for details).

Our Contribution. Our tight result on the power of preemption for unrelated
parallel machine scheduling with makespan objective have already been outlined
above. In addition to the result stated in Lemma 1, we present the first constant
factor approximation algorithm for the general problem R|rij |

∑
wLCL and its

preemptive variant R|rij , pmtn|
∑

wLCL. This is achieved by considering the
interval indexed linear programs proposed by Dyer and Wolsey [8] and Hall et
al. [10], and then applying essentially the same rounding technique that is used
to prove the upper bound on the power of preemption. This approximation result
improves upon the previously mentioned result of Leung, Li, Pinedo, and Zhang
[18] for the special case Q||

∑
wLCL.

2 A Simple Rounding Technique

We start by showing that the power of preemption for R||Cmax is at most 4.
As shown by Lawler and Labetoulle [13], we can obtain the optimal value of
the preemptive version of this problem by solving the following linear program,
whose variables xij denote the fraction of job j that is processed on machine i,
and C the makespan of the solution: [LL] minimize C such that

∑
i∈M xij = 1

for all j ∈ J ,
∑

j∈J pijxij ≤ C for all i ∈ M ,
∑

i∈M pijxij ≤ C for all j ∈ J and
xij ≥ 0 for all i, j.

Let xij and C be any feasible solution to [LL]. To round this fractional so-
lution we proceed in two steps: First, we eliminate fractional variables whose
corresponding processing time is too large; Then, we use the rounding technique
developed by Shmoys and Tardos [23] for the general assignment problem. In the
general assignment problem, we are given m machines and n jobs with machine
dependant processing times pij . We also consider a cost of assigning job j to

88 J.R. Correa, M. Skutella, and J. Verschae

machine i, denoted by cij . Given a total budget B and makespan C, the ques-
tion is to decide whether there exists a schedule with total cost at most B and
makespan at most C. The main result of [23] is subsumed in the next theorem.

Theorem 1 (Shmoys and Tardos [23]). Given a nonnegative fractional so-
lution to the following system of equations:

∑

j∈J

∑

i∈M

cijxij ≤ B, (1)

∑

i∈M

xij = 1, for all j ∈ J, (2)

there exists an integral solution x̂ij ∈ {0, 1} satisfying (1),(2), and also,

xij = 0 =⇒ x̂ij = 0 for all i ∈ M, j ∈ J, (3)
∑

j∈J

pij x̂ij ≤
∑

j∈J

pijxij + max{pij : xij > 0} for all i ∈ M. (4)

Furthermore, such integral solution can be found in polynomial time.

To proceed with our rounding, let β > 1 be a fixed parameter that we will specify
later. We first define a modified solution x′

ij as follows:

x′
ij =

{
0 if pij > βC,
xij

Xj
else,

where Xj =
∑

i:pij≤βC

xij for all j ∈ J.

Note that,
1 − Xj =

∑

i:pij>βC

xij <
∑

i:pij>βC

xij
pij

βC
≤ 1/β,

where the last inequality follows from [LL]. Therefore, x′
ij satisfies that x′

ij ≤
xijβ/(β − 1) for all j ∈ J and i ∈ M , and thus

∑
j∈J x′

ijpij ≤ Cβ/(β − 1)
for all i ∈ M . Also, note that by construction

∑
i∈M x′

ij = 1 for all j ∈ J , and
x′

ij = 0 if pij > βC. Then, we can apply Theorem 1 to x′
ij (for cij = 0), to obtain

a feasible integral solution x̂ij to [LL], and thus a feasible solution to R||Cmax,
such that for all i ∈ M ,

∑

j∈J

x̂ijpij ≤
∑

j∈J

x′
ijpij + max{pij : xij > 0} ≤ β

β − 1
C + βC =

β2

β − 1
C.

Therefore, by optimally choosing β = 2, the makespan of the rounded solution is
at most β2/(β−1) = 4 times larger than the makespan of the fractional solution.

Power of Preemption for R||Cmax

We now give a family of instances showing that the integrality gap of [LL] is ar-
bitrarily close to 4. Surprisingly, this implies that the rounding technique showed

The Power of Preemption on Unrelated Machines and Applications 89

in the last section is best possible. Note that this is equivalent to saying that
the optimal nonpreemptive schedule is within a factor of 4, and no better than
4, of the optimal preemptive schedule.

Let us fix β ∈ [2, 4), and ε > 0 such that 1/ε ∈ N. We now construct an
instance I = I(β, ε) such that its optimal nonpreemptive makespan is at most
(1 + ε)C, and that any nonpreemptive solution of I has makespan at least βC.
The construction is done iteratively, maintaining at each iteration a preemptive
schedule of makespan (1 + ε)C , and where the makespan of any nonpreemptive
solution is increased at each step. Due to the equivalence between [LL] and
R|pmtn|Cmax we can use assignment variables to denote preemptive schedules.

Base Case. We begin by constructing an instance I0, which will later be our first
iteration. To this end consider a set of 1/ε jobs J0 ={j(0; 1), j(0; 2), . . . , j(0; 1/ε)}
and a set of 1/ε+1 machines M0 = {i(1), i(0; 1), . . . , i(0; 1/ε)}. Every job j(0; $)
can only be processed in machine i(0; $), where it takes βC units of time to
process, and in machine i(1), where it takes a very short time. More precisely,
for all $ = 1, . . . , 1/ε we define,

pi(0;")j(0;") := βC and pi(1)j(0;") := εC
β

β − 1
.

The rest of the processing times are defined as infinity. Note that a feasible
fractional assignment is given by setting xi(0;")j(0;") = 1/β, xi(1)j(0;") := f0 :=
(β−1)/β and setting to zero all other variables. The makespan of this fractional
solution is exactly (1 + ε)C. Indeed, the load of each machine i ∈ M0 is exactly
C, and the load associated to each job in J0 equals C + εC. Furthermore, any
nonpreemptive solution with makespan less than βC must process all jobs j(0; $)
in i(1). This yields a makespan of C/f0 = βC/(β−1). Therefore, the makespan of
any nonpreemptive solution is min{βC, C/f0}. If β is chosen as 2, the makespan
of any nonpreemptive solution must be at least 2C, and therefore the gap of the
instance tends to 2 when ε tend to zero.

Iterative Procedure. To increase the integrality gap we proceed iteratively as
follows. Starting from instance I0, which will be the base case, we show how to
construct instance I1. An analogous procedure can be used to construct instance
In+1 from instance In.

Begin by making 1/ε copies of instance I0, I"
0 for $ = 1, . . . , 1/ε, and denote

the set of jobs and machines of I"
0 as J"

0 and M "
0 respectively. We impose that

jobs in J"
0 can only be processed on machines in M "

0 by setting pij = ∞, for all
j ∈ J"

0 and i ∈ Mk
0 such that k)= $. Also, denote as i(1; $) the copy of machine

i(1) belonging to M l
0. Consider a new job j(1) for which pi(1;")j(1) = Cβ −C/f0

for all $ = 1, . . . , 1/ε (and ∞ otherwise), and define xi(1;")j(1) = εC/pi(1;")j(1).
This way, the load of each machine i(1; $) in the fractional solution is (1 + ε)C,
and the load corresponding to job j(1) is exactly C. Nevertheless, depending on
the value of β, job j(1) may not be completely assigned. A simple calculation
shows that for β = (3 +

√
5)/2, job j(1) is completely assigned in the fractional

90 J.R. Correa, M. Skutella, and J. Verschae

In+1
T 1

n+1

I1,1
n I1,1/ε

n

j(n + 1; 1)

xij = fn+1xij = fn+1

i(n + 2)

T 1/ε
n+1

I1/ε,1
n I1/ε,1/ε

n

j(n + 1; 1/ε)

C εC

.

| {z } | {z }

Fig. 1. Construction of instance In+1(β)

assignment. Furthermore, as justified before, in any nonpreemptive schedule of
makespan less than βC, all jobs in J l

0 must be processed in machine i(1; $). Since
also job j(1) must be processed in some machine i(1; $), the load of that machine
must be

∑
j∈J!

0
pi(1;")j + pi(1;")j(1) = C/f0 + C(β − 1/f0) = βC. Then, the gap

of the instance already constructed converges to β = (3 +
√

5)/2 ≈ 2.618 when
ε tend to 0, thus improving the gap of 2 shown before.

On the other hand, for β > (3 +
√

5)/2 (as we would like) there will be some
fraction of job j(1), f1 := 1 −

∑1/ε
"=1 xi(1;")j(1) = ((β − 1)f0 − 1)/(βf0 − 1)

that must be processed elsewhere. To overcome this, we do as follows. Let
us denote the instance consisting of jobs

⋃1/ε
"=1 J l

0 and machines
⋃1/ε

"=1 M "
0 as

T1, and construct 1/ε copies of instance T1, T k
1 for k = 1, . . . , 1/ε. Define

the processing times of jobs in T "
1 to infinity in all machines of T k

1 , for all
k)= $, so that jobs of T "

1 can only be processed in machines of T "
1 . Also, con-

sider 1/ε copies of job j(1), and denote them by j(1; k) for k = 1, . . . , 1/ε.
As shown before, we can assign a fraction 1 − f1 of each job j(1; k) to ma-
chines of T k

1 . To assign the remaining fraction f1, we add an extra machine
i(2), with pi(2)j(1;") := εC/f1 (and ∞ for all other jobs), so that the frac-
tion f1 of each job j(1; $) takes exactly εC to process in i(2). Then, defining
xi(2)j(1;") = f1, the total load of each job j(1; $) equals (1+ε)C, while the load of
machine i(2) is exactly C. Let us denote the instance we have constructed so far
as I1.

Following an analogous procedure to the one just described, we can construct
a sequence of instances and fractional assignments (see Figure 1). Each instance
In satisfies the following properties:

The Power of Preemption on Unrelated Machines and Applications 91

(i) The fraction of each job j(n; 1), . . . , j(n, 1/ε) assigned to machine i(n + 1)
is given by fn = ((β − 1)fn−1 − 1)/(βfn−1 − 1).

(ii) Job j(n+1) (or any of its copies) has processing time equal to C(β−1/fn)
on each machine i(n; $).

(iii) In any nonpreemptive solution of makespan less than βC, every job j(n +
1; $) must be processed in machine i(n+2). Therefore the makespan of any
nonpreemptive solution is at least min{βC, C/fn+1}.

(iv) The makespan of the fractional solution constructed is (1+ε)C. In particular
the load of machine i(n + 2) is C, and therefore a fraction of a job which
takes less than εC can still be processed in this machine without increasing
the makespan.

To finish the construction procedure, notice that if there is some n∗ such
that f(n∗−1) ≤ 1/(β − 1), then there is no need to construct the whole instance
In∗ , but rather instance Tn∗ suffices. Indeed, if this is the case job j(n∗) can
be totally assigned to machines i(n∗; $) on the fractional solution, by defining
xi(n∗;")j(n∗) = ε for all $ = 1, . . . , 1/ε. This yields a valid assignment since
∑1/ε

"=1 pi(n∗;")j(n∗)xi(n∗;")j(n∗) = C(β−1/fn∗−1) ≤ C. Also, by Property (iii), any
nonpreemtpive solution of makespan less than βC assigns a load of C/fn∗−1 to
any machine i(n∗; $). Furthermore, job j(n∗) must be processed in some machine
i(n∗; $), which will have a makespan of C/fn∗−1 + (βC −C/fn∗−1) = βC. With
this we have sketched the proof of the following lemma.

Lemma 2. If the procedure finishes, then it returns an instance with a gap of
at least β/(1 + ε).

Then, we just need to show that the construction terminates, i.e., that fn∗−1 ≤
1/(β − 1) for some n∗. For that, notice the following.

Lemma 3. For each β ∈ [2, 4), if fn > 1/β, then fn+1 ≤ fn.

Lemma 4. The procedure finishes.

Proof. If the procedure does not finish, then fn > 1/(β−1) > 1/β for all n ∈ N.
Then Lemma (3) implies that {fn}n∈N is a decreasing sequence. Therefore fn

must converge to some real number L ≥ 1/(β − 1). Thus, Property (i) implies
that L = ((β − 1)L − 1)/(βL − 1), and therefore L is a real root of equation
−βx2 + βx − 1 which is a contradiction if β ∈ [2, 4). ,-

Theorem 2. The integrality gap of relaxation [LL] is 4.

3 A (4 + ε)-Approximation for R|rij, pmtn|
∑

wLCL

In this section we adapt the rounding technique discussed in the previous chap-
ter to derive a (4 + ε)-approximation algorithm for the preemptive version of
R|rij |

∑
wLCL. Our algorithm is based on a time-indexed linear program, whose

variables correspond to the fraction of each job processed at each time in each

92 J.R. Correa, M. Skutella, and J. Verschae

machine. This kind of linear relaxation was originally introduced by Dyer and
Wolsey [8] for 1|rj |

∑
wjCj , and was extended by Schulz and Skutella [22], who

used it to obtain a (3/2 + ε)-approximation and a (2 + ε)-approximation for
R||

∑
wjCj and R|rj |

∑
wjCj respectively.

Let us consider a time horizon T , large enough so it upper bounds the greatest
completion time of any reasonable schedule, for instance T = maxi∈M,k∈J{rik +∑

j∈J pij}. We divide the time horizon into exponentially-growing time intervals,
so that there is only polynomially many of them. For that, let ε be a fixed
parameter, and let q be the first integer such as (1 + ε)q−1 ≥ T . Then, we
consider the intervals [0, 1], (1, (1+ε)], ((1+ε), (1+ε)2], . . . , ((1+ε)q−2, (1+ε)q−1].
To simplify the notation, let us define τ0 = 0, and τ" = (1 + ε)"−1, for each
$ = 1 . . . q. With this, the $-th interval corresponds to (τ"−1, τ"]. In what follows
we will assume, without loss of generality, that all processing times are positive
integers.

Given any preemptive schedule, let yij" the fraction of job j that is processed
in machine i in the $-th interval. Then, pijyij" is the amount of time that job j
is processed in machine i in the $-th interval. With this interpretation is easy to
see that the following linear program is a relaxation of R|rij , pmtn|

∑
wLCL:

[DW] min
∑

L∈O

wLCL

∑

i∈M

q∑

"=1

yij" = 1 for all j ∈ J, (5)

∑

j∈J

pijyij" ≤ τ" − τ"−1 for all $ = 1, . . . , q and i ∈ M, (6)

∑

i∈M

pijyij" ≤ τ" − τ"−1 for all $ = 1, . . . , q and j ∈ J, (7)

∑

i∈M

(
yij1 +

q∑

"=2

τ"−1yij"

)
≤ CL for all L ∈ O and j ∈ L, (8)

yij" = 0 for all j, i, $: rij > τ", (9)
yij" ≥ 0 for all i, j, $. (10)

Let y∗
ij" and C∗

L be the optimal solution of [DW]. Using the same ideas as in
Section 2, we round this solution by taking to zero all variables y∗

ij" having a co-
efficient that is too large in (8), and then rescale to obtain a feasible assignment.
Then, we use the result in [13], to construct a feasible preemptive schedule inside
each interval. More precisely, let j ∈ J , and L = argmin{C∗

L′ |j ∈ L′ ∈ O}. For
each parameter β > 1, we define:

y′
ij" =

{
0 if τ"−1 > βC∗

L,
y∗

ij!

Yj
else,

where Yj =
∑

i∈M

∑

": τ!−1≤β·C∗
L

y∗
ij". (11)

The Power of Preemption on Unrelated Machines and Applications 93

Lemma 5. The modified solution y′ obtained by applying Equation (11) to y∗,
satisfies Equation (5). Furthermore, y′

ij" = 0 if τ"−1 > βC∗
L, for all L ∈ O and

j ∈ L, and y′ satisfies equations (6) and (7) when their righthand sides are
amplified by a factor of β/(β − 1).

The proof of the lemma follows the ideas of the rounding in Section 2. Note
that since y′ only satisfy equations (6) and (7) when their righthand side are
amplified, the amount of load assign to each interval may not fit in the avail-
able space. Thus, we will have to increase the size of every interval in a factor
β/(β−1). Furthermore, the variables y′

ij" only assign jobs to intervals that start
before βC∗

L in case j ∈ L, allowing us to easily bound the cost of the solution.
With the latter observations, we are ready to describe the algorithm.

Algorithm: Greedy Preemptive LP

1. Solve [DW] to optimality and call the solution y∗ and (C∗
L)L∈O.

2. Define y′
ij" using Equation (11).

3. Construct a preemptive schedule S as follows.
(a) For each $ = 1, . . . , q, define xij = y′

ij" and C" = (τ" − τ"−1)β/(β − 1),
and apply the algorithm by Lawler and Labetoulle [13] to this fractional
solution, to obtain a preemptive schedule (i.e., no job is processed in
parallel by two machines) of makespan C". Call the preemptive schedule
obtained S".

(b) For each job j ∈ J that is processed by schedule S" at time t ∈ [0, C"]
in machine i ∈ M , make schedule S process j in machine i at time
τ"−1β/(β − 1) + t.

Theorem 3. Algorithm: Greedy Preemptive LP yields a feasible schedule
where the completion time of each order L ∈ O is less than C∗

L(1+ ε)β2/(β−1).
Moreover, for β = 2, the algorithm is a (4+ε)-approximation for the preemptive
version of R|rij |

∑
wLCL.

4 A Constant Factor Approximation for R|rij|
∑

wLCL

In this section we propose the first constant factor approximation algorithm
for the nonpreemptive version of the problem just described, R|rij |

∑
wLCL,

improving the results in [18]. Our algorithm consists on applying the rounding
shown in Section 2 to an adaptation of the interval-index linear programming
relaxation developed by Hall, Schulz, Shmoys and Wein [10].

Let us consider a large enough time horizon T as in last section. We divide
the time horizon into exponentially-growing time intervals, so that there is only
polynomially many. For that, let α > 1 be a parameter which will determine
later and let q be the first integer such as αq−1 ≥ T . With this, consider the
intervals [1, 1], (1, α], (α, α2], . . . , (αq−2, αq−1].

To simplify the notation, let us define τ0 = 1 and τ" = α"−1 for each $ =
1, . . . , q. With this, the $-th interval corresponds to (τ"−1, τ"]. Note that, for

94 J.R. Correa, M. Skutella, and J. Verschae

technical reasons, these definitions slightly differ from the ones on the previous
section.

To model the scheduling problem we consider the variables yij", indicating
whether job j is finished in the machine i and in the $-th interval. These variables
allow us to write the following linear program based on that in [10], which is
a relaxation of the scheduling problem even when integrality constraints are
imposed,

[HSSW] min
∑

L∈O

wLCL

∑

i∈M

q∑

"=1

yij" = 1 for all j ∈ J, (12)

"∑

s=1

∑

j∈J

pijyijs ≤ τ" for all i ∈ M and $ = 1, . . . , q, (13)

∑

i∈M

q∑

"=1

τ"−1yij" ≤ CL for all L ∈ O and j ∈ L, (14)

yij" = 0 for all i, $, j : pij + rij > τ", (15)
yij" ≥ 0 for all i, j, $. (16)

It is clear that [HSSW] is a relaxation of our problem. Indeed, (12) guarantees
that each job finishes in some time interval. The left hand side of (13) corresponds
to the total load processed on machine i and interval [0, τ"], and therefore the
inequality is valid. The sum in inequality (14) corresponds exactly to τ"−1, where
$ is the interval where job j finishes, so that is at most Cj , and therefore it is
upper bounded by CL if j ∈ L. Also, it is clear that (15) must hold since no job
j can finish processing on machine i before pij + rij .

Let (y∗
ij")ij" and (C∗

L)L be an optimal solution to [HSSW]. To obtain a feasible
schedule we need to round such solution into an integral one. To this end, Hall
et. al. [10] used Shmoys and Tardos’ result given in Theorem 1. If in [HSSW]
all orders are singleton (as in Hall et al’s situation), (14) becomes an equality
so that one can use Theorem 1 to round a fractional solution to an integral
solution of smaller total cost and such that the righthand side of equation (13)
is increased to τ" + max{pij : yij" > 0} ≤ 2τ", where the last inequality follows
from (15). This can be used to derive a constant factor approximation algorithm
for the problem. In our setting however, it is not possible to apply Theorem
1 directly, due to the nonlinearity of the objective function. To overcome this
difficulty, consider j ∈ J and L = argmin{C∗

L′ |j ∈ L′ ∈ O}, and apply (11) to
y∗, thus obtaining a new fractional assignment y′. With this we obtain a solution
in which job j is never assigned to an interval starting after βC∗

L. Moreover, the
following lemma holds.

The Power of Preemption on Unrelated Machines and Applications 95

Lemma 6. The modified solution y′
ij" ≥ 0 satisfies (12), (15), and:

"∑

s=1

∑

j∈J

pijy
′
ijs ≤ β

β − 1
τ" for all i ∈ M, (17)

y′
ij" = 0 if τ"−1 > βC∗

L, for all i, j, $, L : j ∈ L. (18)

With the previous lemma on hand we are in position to apply Theorem 1 by
interpreting a machine-interval pair (i, $) on [HSSW] as a virtual machine on the
theorem. We thus obtain a rounded solution ŷij" ∈ {0, 1} satisfying (12), (15),
(18) and

∑

j∈J

pij ŷij" ≤
∑

j∈J

pijy
′
ij" + max

j∈J
{pij : y′

ij" > 0} ≤
∑

j∈J

pijy
′
ij" + τ", (19)

where the first inequality follows from (4) and the second follows since y′ satisfies
(15).

To obtain a feasible schedule we do as follows. Define Ji" = {j ∈ J : ŷij" = 1},
and greedily schedule in each machine i all jobs in

⋃q
"=1 Ji", starting from those

in Ji1 until we reach Jiq (with an arbitrary order inside each set Ji"), respecting
the release dates. Let us call the algorithm just described Greedy-LP.

For simplicity, we only show that Greedy-LP is a constant factor approxi-
mation algorithm for the case in which all release dates are zero. The case with
nontrivial release dates follows from a similar argument.

Theorem 4. Procedure Greedy-LP is a (27/2)-approximation algorithm for
R||

∑
wLCL.

Proof. Let us fix a machine i and take a job j ∈ L such that ŷij" = 1, so that
j ∈ Ji". Clearly, Cj , the completion time of job j in algorithm Greedy-LP, is
at most the total processing time of jobs in

⋃"
k=1 Jik. Then,

Cj ≤
"∑

s=1

∑

k∈J

pikŷiks ≤
"∑

s=1

(
∑

k∈J

piky′
iks + τs

)
≤ β

β − 1
τ" +

"∑

s=1

τs

≤
(

βα

β − 1
+

α2

α− 1

)
τ"−1 ≤ βα

(
β

β − 1
+

α

α− 1

)
C∗

L.

The second inequality follows from (19), the third from (17), and the fourth
follows from the definition of τk. The last inequality follows since, by condition
(3), ŷij" = 1 implies y′

ij" > 0, so that by (18) we have τ"−1 ≤ βC∗
L. Optimizing

over the approximation factor, the best possible guarantee given by this method
is attained at α = β = 3/2, and thus we conclude that Cj ≤ 27/2 · C∗

L for all
L ∈ O and j ∈ L. ,-

Theorem 5. Greedy-LP is a (27/2)-approximation for R|rij |
∑

wLCL.

96 J.R. Correa, M. Skutella, and J. Verschae

5 Further Results

Beyond the results shown in this paper, we have also considered the problem
P |part|

∑
wLCL, where no job can simultaneously belong to more than one

order. Following Afrati et al. [1], we were able to develope a PTAS for some
restricted versions of this problem, namely, when the number of jobs in each
order is constant, the number of machines is constant, or the number of orders
is constant. Thus, our algorithm generalizes the known PTAS’s in [1,11,24].
The main extra difficulty compared to the case in [1], is that we might have
orders that are processed through a long period of time, and their costs are only
realized when they are completed. To overcome this issue, and thus be able to
apply the dynamic programming ideas of Afrati et al., we simplify the instance
and prove that there is a near-optimal solution in which every order is fully
processed in a restricted time span. This requires some careful enumeration plus
the introduction of artificial release dates. Due to space restrictions this result
is left for the full version of this paper (see [27] for details).

References

1. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I.,
Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for
minimizing average weighted completion time with release dates. In: Proceedings of
the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 32–43 (1999)

2. Ambühl, C., Mastrolilli, M.: Single Machine Precedence Constrained Scheduling
is a Vertex Cover Problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 28–39. Springer, Heidelberg (2006)

3. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability Results for Sparsest
Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling. In:
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 329–337 (2007)

4. Canetti, R., Irani, S.: Bounding the Power of Preemption in Randomized Schedul-
ing. SIAM J. Computing 27, 993–1015 (1998)

5. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum of
weighted completion times on a single machine. Discrete Applied Mathematics 98,
29–38 (1999)

6. Chudak, F., Hochbaum, D.S.: A half-integral linear programming relaxation for
scheduling precedence-constrained jobs on a single machine. Oper. Res. Let. 25,
199–204 (1999)

7. Correa, J.R., Schulz, A.S.: Single Machine Scheduling with Precedence Constraints.
Math. Oper. Res. 30, 1005–1021 (2005)

8. Dyer, M.E., Wolsey, L.A.: Formulating the single machine sequencing problem
with release dates as a mixed integer program. Discrete Applied Mathematics 26,
255–270 (1999)

9. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Systems Tech-
nical Journal 45, 1563–1581 (1966)

10. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize aver-
age completion time: off-line and on-line approximation algorithms. Math. Oper.
Res. 22, 513–544 (1997)

The Power of Preemption on Unrelated Machines and Applications 97

11. Hochbaum, D., Shmoys, D.: Using dual approximation algorithm for scheduling
problems: Theoretical and practical results. J. ACM 34, 144–162 (1987)

12. Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for
scheduling problems with minsum criteria. INFORMS J. Computing 13, 157–168
(2001)

13. Lawler, E.L., Labetoulle, J.: On Preemptive Scheduling of Unrelated Parallel Pro-
cessors by Linear Programming. J. ACM 25, 612–619 (1978)

14. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and
scheduling: Algorithms and complexity. In: Graves, S.C., Rinnooy Kan, A.H.G.,
Zipkin, P.H. (eds.) Logistics of Production and Inventory, Handbooks in Oper.
Res. and Management Science, vol. 4, pp. 445–522. North-Holland, Amsterdam
(1993)

15. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of scheduling under precedence
constrains. Operations Research 26, 22–35 (1978)

16. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)

17. Leung, J., Li, H., Pinedo, M.: Approximation algorithm for minimizing total
weighted completion time of orders on identical parallel machines. Naval Research
Logistics 53, 243–260 (2006)

18. Leung, J., Li, H., Pinedo, M., Zhang, J.: Minimizing Total Weighted Completion
Time when Scheduling Orders in a Flexible Environment with Uniform Machines.
Information Processing Letters 103, 119–129 (2007)

19. Leung, J., Li, H., Pinedo, M.: Scheduling orders for multiple product types to
minimize total weighted completion time. Discrete Applied Mathematics 155, 945–
970 (2007)

20. Margot, F., Queyranne, M., Wang, Y.: Decompositions, network flows, and a prece-
dence constrained single machine scheduling problem. Operations Research 51,
981–992 (2003)

21. Shachnai, H., Tamir, T.: Multiprocessor Scheduling with Machine Allotment and
Parallelism Constraints. Algorithmica 32, 651–678 (2002)

22. Schulz, A., Skutella, M.: Scheduling unrelated machines by randomized rounding.
SIAM J. Discrete Math. 15, 450–469 (2002)

23. Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assign-
ment problem. Mathematical Programming 62, 561–574 (1993)

24. Skutella, M., Woeginger, G.J.: Minimizing the total weighted completion time on
identical parallel machines. Math. Oper. Res. 25, 63–75 (2000)

25. Skutella, M.: Convex quadratic and semidefinite programming relaxations in
scheduling. J. ACM 48, 206–242 (2001)

26. Smith, W.E.: Various optimizers for single-stage production. Naval Research Logics
Quarterly 3, 59–66 (1956)

27. Verschae, J.: Approximation algorithms for scheduling orders on parallel machines.
Mathematical engineering thesis. Universidad de Chile, Santiago, Chile (2008)

	The Power of Preemption on Unrelated Machines and Applications to Scheduling Orders
	Introduction
	A Simple Rounding Technique
	A $(4+\e)$-Approximation for $R|r_{ij},pmtn|\sum w_L
C_L$
	A Constant Factor Approximation for $R|r_{ij}|\sum w_L
C_L$
	Further Results

