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Abstract. Store-and-forward packet routing belongs to the most funda-
mental tasks in network optimization. Limited bandwidth requires that
some packets cannot move to their destination directly but need to wait
at intermediate nodes on their path or take detours. In particular, for
time critical applications, it is desirable to find schedules that ensure
fast delivery of the packets. It is thus a natural objective to minimize
the makespan, i.e., the time at which the last packet arrives at its des-
tination. In this paper we present several new ideas and techniques that
lead to novel algorithms and hardness results.

1 Introduction

In this paper we study the packet routing problem. Given a set of packets in
a network originating at possibly different start vertices, we want to transfer
them to their respective destination vertices. The goal is to minimize the overall
makespan, that is the time when the last packet arrives at its destination. We
consider the offline version of the problem in which all information about the
network and the packets, in particular the start- and destination vertices, are
given in advance. In our routing model, we assume store-and-forward routing.
This means that every node can store arbitrarily many packets but each link
(a directed or undirected edge) can be used by only one packet at a time. We
study the case where the paths of the packets are fixed in advance as well as the
case where their computation is part of the problem. Moreover, we distinguish
between different types of underlying graphs, e.g., directed graphs, undirected
graphs, planar graphs or trees.

This problem has important applications in all settings where packets need
to be transferred through a network. The priority of the packets in the schedule
is not immediately clear and inappropriate routing rules can lead to inefficient
schedules. Delay due to packet latency is not desirable. In particular, in time-
critical applications, packets need to be delivered within a certain time frame in
order to work accurately. Therefore, we are interested in schedules that guarantee
the packets to arrive at their respective destinations as early as possible. Finding
such efficient schedules in distributed systems is a challenging task.
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1.1 Packet Routing Problem

The packet routing problem is defined as follows: Let G = (V, E) be a directed
or undirected graph. A packet Mi = (si, ti) is a tuple consisting of a start vertex
si ∈ V and a destination vertex ti ∈ V . Let M =

{
M1, M2, M3, ..., M|M|

}
be a

set of packets.
Then (G,M) is an instance of the packet routing problem with variable paths.

The problem has two parts: First, for each packet Mi we need to find a path
Pi = (si = v0, v1, . . . , v!−1, v! = ti) from si to ti such that {vi, vi+1} ∈ E if G
is undirected and (vi, vi+1) ∈ E if G is directed for all i with 0 ≤ i ≤ ! − 1.
Assuming that it takes one timestep to send a packet along an edge we need to
find a routing schedule for the packets such that

– each message Mi follows its path Pi from si to ti and
– each edge is used by at most one packet at a time

We assume that time is discrete and that all packets take their steps simultane-
ously. The objective is to minimize the makespan, i.e., the time when the last
packet has reached its destination vertex. For each packet Mi we define Di to be
the length of the shortest path from si to ti, assuming that all edges have unit
length. Moreover, the dilation D is defined by D := maxi Di. It holds that D is
a lower bound on the length of an optimal schedule.

Since there are algorithms known to determine paths for routing the packets
(see [28,18] or simply take shortest paths) we will also consider the packet routing
problem with fixed paths. An instance of this problem is a tripel (G,M,P) such
that G is a (directed or undirected) graph, M is a set of packets and P is a set of
predefined paths. Because the paths of the packets are given in advance they do
not need to be computed here. The aim is to find a schedule with the properties
described above such that the makespan is minimized. For each packet Mi we
define Di to be the length of the path Pi, again assuming that all edges have
unit length. Like above we define the dilation D by D := maxi Di. For each
edge e we define Ce to be the number of packets that are routed along edge e.
The congestion C is then defined by C := maxe Ce. It holds that C and D are
lower bounds on the length of an optimal schedule.

Throughout the paper we will use the notation |S| for the length of a sched-
ule S. We call a schedule direct if each packet is delayed only in its start vertex.
For a packet routing instance I with fixed or variable paths let OPT (I) denote
a schedule with minimum makespan. For an algorithm A for the packet routing
problem denote by A(I) the schedule computed by A for the instance I. The al-
gorithm A is an α-approximation algorithm if it runs in polynomial time and for
all instances I it holds that |A(I)| ≤ α · |OPT (I)|. We call α the approximation
ratio or performance ratio of A.

1.2 Related Work

Packet routing and related problems have been widely studied in the literature.
Di Ianni [7] shows that the so-called delay routing problem is NP -hard. The proof
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implies that the packet routing problem is NP -hard as well. Leung et al. [21,
chapter 37] study packet routing on different graph classes, including in- and
out-trees. In particular, they show that for those trees the farthest-destination-
first (FDF)-algorithm works optimally. Busch et al. [5] study the direct routing
problem, i.e., the problem of finding the shortest direct schedule. They give
complexity results and algorithms for finding direct schedules.

Mansour and Patt-Shamir [22] study greedy scheduling algorithms (algo-
rithms that always forward a packet if they can) in the setting where the paths
of all packets are shortest paths. They prove that in this setting every packet Mi

reaches its destination after at most Di + |M| − 1 steps where Di is the length
of the path of Mi and |M| is the number of packets in the network. Thus, giving
priority to the packets according to the lengths of their paths yields an optimal
algorithm if we assume that the path-lengths are pairwise distinct.

Leighton et al. [19] show that there is always a routing schedule that finishes
within O(C + D) steps. In [20] Leighton et al. present an algorithm that finds
such a schedule in polynomial time. However, this algorithm is not suitable for
practical applications since the hidden constants are very large. There are also
some local algorithms for this problem (algorithms in which each node must
take the scheduling decisions for its packets without knowing the packets in the
rest of the network) needing O (C)+(log∗ |M|)O(log∗ |M|) D + poly (log |M|) [26]
and O

(
C + D + log1+ε |M|

)
[24] steps with high probability. For the case that

all paths are shortest paths, Meyer auf der Heide et al. [2] present a random-
ized online routing protocol which needs only O(C + D + log |M|) steps with
high probability. Busch, Magdon-Ismail, and Mavronicolas [4] present a buffer-
less routing algorithm whose length is bounded by O

(
(C + D) · log3 (n + |M|)

)

where n denotes the size of the network. Using the algorithm by Leighton et. al as
a subroutine, Srinivasan and Teo [28] present an algorithm that solves the packet
routing problem with variable paths with a constant approximation factor. This
algorithm was recently improved by Koch et al. [18] for the more general message
routing problem (where each message consists of several packets).

The packet routing problem is closely related to the multi-commodity flow over
time problem [10,15,16]. In particular, Hall et al. [15] show that this problem is
NP -hard, even in the very restricted case of series-parallel networks. We obtain
the packet routing problem with variable paths if we additionally require unit
edge capacities, unit transit times, and integral flow values. If there is only one
start and one destination vertex then the packet routing problem is equivalent to
the quickest flow problem. It can be solved optimally in polynomial time, e.g.,
using the Ford-Fulkerson algorithm for the maximum flow over time problem
[11,12] together with a binary search framework. Using Megiddo’s method of
parametric search [23], Burkard, Dlaska, and Klinz [3] present a faster algorithm
which solves the quickest flow problem in strongly polynomial time. Adler et
al. [1] study the problem of scheduling as many packets as possible through a
given network in a certain time frame. They give approximation algorithms and
NP -hardness results.



220 B. Peis, M. Skutella, and A. Wiese

For our algorithm on directed trees we need to find a path coloring for the
paths of the packets. The path coloring problem is widely studied in the lit-
erature. For instance, Raghavan et al. [27] present a (3/2)-approximation al-
gorithm for the path coloring problem on undirected trees. Erlebach et al. [9]
give NP -hardness results and algorithms for the problem. In particular, they
improve the algorithm by Raghavan et al. mentioned above and present a (4/3)-
approximation. For coloring directed paths on bidirected trees (i.e., trees in which
each edge represents two links, one in each direction) there are algorithms known
which need at most 5

3L colors where L denotes the maximum load on a directed
link [8]. This is tight since there are instances which actually need 5

3L colors
[17]. Gargano et al. [14] investigate the problem of coloring all directed paths in
a bidirected tree.

1.3 Our Contributions

We present three individual algorithms and several complexity results for the
packet routing problem. If the underlying graph is a directed tree, we first show
how to solve the path coloring problem optimally. This is based on ideas pre-
sented in [9,14]. Having computed such a coloring, we present a new technique
which constructs a direct schedule whose length is bounded by C + D − 1. In
comparison, the best known algorithm for computing direct schedules for packet
routing on general trees guarantees a schedule of length 2C + D − 2 [5]. (Note
that the authors of [5] assume that the edges can be used in opposite directions
at the same time.)

The new idea and method we employ is likely to be useful as a subroutine for
packet routing on other topologies as well. Note that makespan C + D − 1 is a
2-approximation since C and D are both lower bounds on the optimum, but it
guarantees a much better ratio if C $ D or C % D. Moreover, we show that C+
D−1 is the best ratio we can possibly guarantee in terms of C and D since there
are instances which actually need this many steps. We show that even for the
very simple case of directed trees the natural farthest-destination-first-algorithm
(FDF) can yield arbitrarily large approximation factors. However, we show how
to use it as a subroutine to obtain a 2-approximation algorithm for undirected
trees. This guarantees a better performance ratio than the algorithm by Busch
et al. [5] since 2C + D − 2 can asymptotically as bad as a 3-approximation.

Then we present a very general condition which guarantees a direct schedule
of a given time horizon T in directed graphs. Also, we present an algorithm which
computes this schedule. This result is particularly substantial in the case where
T = D since then we can guarantee an optimal schedule. As an application, we
show that if the paths of all packets are shortest paths and their lengths are
pairwise different, we can compute an optimal direct schedule of length D. This
improves [22] where it was shown that under this condition there exists a (not
necessarily directed) schedule of this length. We would like to emphasize that in
our understanding of directed graphs, each edge can be used only in the direction
of the edge. For all our algorithms we show that the analysis of the respective
approximation ratios is tight. The algorithms are presented in Section 2.
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Then, in Section 3, we study the complexity of the packet routing problem:
We show that it is NP -hard to approximate within a factor of (6/5− ε), for any
ε > 0. This implies, in particular, that there is no polynomial time approximation
scheme (PTAS), unless P = NP . We show that this still holds if we restrict
the graph topology to directed trees or chain graphs with fixed paths. Then we
investigate whether there can be an algorithm with an absolute error. We answer
the question in the negative. We show that it is NP -hard to approximate the
packet routing problem with fixed paths with an absolute error of k for any fixed
k ≥ 0. This holds even on planar graphs.

Due to space restrictions, some proofs are shortened or moved to the appendix.
For full details we refer to our technical report [25].

2 Algorithms

In this section we study approximation algorithms for packet routing. For di-
rected trees we show that the path coloring problem can be solved optimally in
O(n log C) time, where n denotes the number of vertices in the graph and C the
congestion of the packet routing instance. Based on this, we present an algorithm
which computes a schedule whose length is bounded by C + D − 1 (D denotes
the dilation). For undirected trees, we present a 2-approximation algorithm. It
uses the farthest-destination-first-algorithm (FDF) as a subroutine. Even though
the latter performs optimally on in- and out-trees [21], we show that on general
directed trees it might compute arbitrarily bad schedules. Then we give a con-
dition for the existence of a direct schedule with a given time horizon T and an
algorithm which computes this schedule. In particular, if the lengths of the paths
of the packets are pairwise different, all paths are shortest paths, and the graph
is directed this yields an optimal direct schedule of length D. This improves [22]
where for this setting the existence of a not necessarily direct schedule of that
length was proven.

2.1 Approximation for Directed Trees

For directed trees we show how to construct a direct schedule of length at most
C + D − 1 in polynomial time. The algorithm works as follows: First we find
a coloring for the paths of the packets such that two paths that share an edge
have different colors. We will show that the number of colors needed is exactly C.
We assign to each packet the color of its path. Then we assign to each edge a
time-dependent color. The idea behind this is that we transfer a packet P with
color cP along an edge e = (u, v) only when e has the color cP . We define the
coloring such that for two consecutive edges e = (u, v) and e′ = (v, w) it holds
that at time t the edge e′ has always the color that e had at time t − 1. This
ensures that once a packet starts moving, it will never stop until it reaches its
destination. In the sequel we describe the algorithm in detail.

Path Coloring. First we want to find a coloring for the paths such that two
paths with the same color do not share an edge. Our algorithm works in two
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phases: in the first phase we consider each vertex v together with its adjacent
vertices (this subgraph forms a star). For each of these subgraphs (together with
the paths of the packets in this subgraph) we solve the path coloring problem
optimally (here we use the fact that our tree is directed). Then we combine all
these part-solutions and obtain a solution for the global path-coloring problem.

Phase one: Let v be a vertex and denote by Tv the subgraph induced by v
and its adjacent vertices. We want to find a coloring for the paths which use
edges in Tv. We reduce this problem to the edge-coloring problem on bipartite
multigraphs (note that it is crucial that the edges in Tv are directed). This
construction was already mentioned in [14].

Let U be the set of vertices which have outgoing edges to v, i.e., U =
{u| (u, v) ∈ E}. Similarly, let W be the set of vertices having ingoing edges from
v, i.e., W = {w| (v, w) ∈ E}. We construct an undirected graph Bv as follows:
the set U ∪W forms the set of vertices in Bv. For each path P that goes from a
vertex u ∈ U through v to a vertex w ∈ W we introduce an edge eP := {u, w}
in Bv. For all paths P that start in a vertex u ∈ U and end in v we introduce
a new vertex wP ∈ W and an edge eP := {u, wP } in Bv. Similarly, for paths P
that start in v and end in a vertex w ∈ W we add a vertex vP and introduce an
edge eP := {vP , w} in Bv. Thus, for the maximum degree ∆ (Bv) of a node in
Bv it holds that ∆ (Bv) ≤ C. Also, it holds that two edges eP and eP ′ share an
end-vertex if and only if their corresponding paths P and P ′ share an edge in
Tv. Thus, a valid edge-coloring for Bv implies a valid path coloring for Tv and
vice versa. Moreover, from the construction it follows that Bv is bipartite. We
compute a minimum edge coloring for Bv (e.g., see [6]). The number of colors
needed equals the maximum node degree ∆ (Bv) [6].

Phase two: Now we combine the found solutions for the graphs Tv one by
one to obtain a global solution (a similar construction is described in [9, Lemma
2]). We start with an arbitrary vertex v and the path coloring of Tv. Now let
v′ be a vertex adjacent to v and consider the graph Tv′ . We permute the colors
of the paths in Tv′ such that the paths which use the edge (v, v′) (or (v′, v),
respectively) have the same colors in Tv and Tv′ . We iterate over the vertices
by always adding a vertex that is adjacent to one of the vertices that have been
considered already. Eventually, for each edge e = (u, v) all paths that use e have
the same color in Tu and Tv. Since T is a tree in each iteration we can find a valid
permutation of the colors of the paths by using a simple greedy strategy. Since
for each graph Tv we find path colorings with at most C colors, the resulting
path coloring for T has C colors as well.

Time-Dependent Edge Coloring. Now we construct a time-dependent col-
oring c : E × N → {1, 2, ..., C} for the edges of T . It has the consecutive
property: for two consecutive edges e = (u, v) and e′ = (v, w) it holds that
c (e, i) = c (e′, i + 1). Since our graph is a directed tree such a coloring can be
found with a greedy method: Start with an arbitrary edge e and define its col-
oring c (e, i) := i mod C for all i ∈ N. Then inductively assign the colors to the
remaining edges such that the consecutive property holds.
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Routing Schedule. Finally, we describe the scheduling algorithm. First, we
assign to each packet the color of its path. Now let M be a packet which is
located on a vertex u at time t and which needs to use the edge e = (u, v) next.
Let cP be the color of M . We move M along e in the first timestep t′ with t′ ≥ t
and c (e, t′) = cP . Due to the consecutive property of the time-dependent edge
coloring a packet is never delayed once it has left its start vertex. Denote by
DTREE (I) the resulting schedule for an instance I.

Theorem 1. Let T be a directed tree and let I = (T,M) be a packet routing
instance. It holds that |DTREE (I)| ≤ C + D − 1. A packet is never delayed
once it has left its start vertex (direct routing). Moreover, DTREE (I) can be
computed in O (n · |M| · log C).

Proof. Since no two packets with the same color share an edge there can be
at most one packet that uses an edge e at a time t. Each packet M waits in
its origin vertex for at most C − 1 timesteps. Due to the consecutive property
once it left its start vertex it moves to its destination without being delayed any
further. Thus, the length of the overall makespan is bounded by C − 1 + D.

The edge coloring problem on bipartite multigraphs can be solved optimally
in O (m log∆) where m denotes the number of edges in the graph and ∆ the
maximum node degree, see [6]. Thus, computing the optimal path coloring for one
graph Tv can be done in O (|M| · log C) and for all graphs Tv in O (n·|M| · log C).

Then we need to combine the colorings for the graphs Tv to a global path
coloring. We say a path P touches a vertex v if P goes through v, starts in v
or ends in v. We pick an arbitrary vertex v and color all paths which touch v
in the colors that they have in Tv. After this initialization we iterate by taking
vertices v′ which are adjacent to already considered vertices. When we iterate
we need to find a color permutation for Tv′ which is consistent with the coloring
for Tv. This permutation is partly already defined by the color assignment for
Tv. The remainder can be found in O(C) ⊆ O(|M|) steps. Since the order of the
vertices can be obtained by a depth-first-search the second phase can be done
in O (n · |M|). This gives a total runtime of O (n · |M| · log C). +,

Note that the bound C + D − 1 is the best bound we can give in terms of C
and D since there are packet routing instances which need this many steps. E.g.,
consider a path of length D with vertices v0, ..., vD and C packets all with start
vertex v0 and destination vertex vD.

2.2 Algorithm for Undirected Trees

It is not clear how the technique described in Section 2.1 could be applied to
undirected trees. In particular, the path coloring problem on undirected trees is
significantly harder than on directed trees. Also, it is not clear how the consec-
utive edge-coloring technique could be applied to undirected trees. However, we
present a 2-approximation for the packet routing problem on undirected trees.

The algorithm works as follows: Let T = (V, E) be a tree and let I = (T,M)
be a packet routing instance. Let vr be an arbitrary vertex. We define vr to
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be the root of the tree. We observe that the path of each packet can be split
into two subparts: in the first part Mi moves towards vr. In the second part Mi

moves away from vr. Let vi be the vertex which divides these two parts. We split
the routing problem into two subproblems: First we move each packet Mi from
si to vi. In the second part we move each packet Mi from vi to ti. We observe
that the first part is a packet routing problem on an in-tree (a tree in which all
vertices have an out-degree of at most one) and can therefore easily be solved
optimally in polynomial time (FDF-algorithm, see [21]). Similarly, the second
part is a packet routing instance on an out-tree (a tree in which all vertices have
an in-degree of at most one) which can also be solved optimally in polynomial
time (FDF-algorithm, see [21]). In the overall schedule for I, we run the optimal
schedule for the first part. Then we run the optimal schedule for the second part.
Denote by TREE (I) the resulting schedule for the instance I.

Theorem 2. For the schedule TREE (I) it holds that |TREE(I)|≤ 2·|OPT (I)|.

Proof. Since the length of an optimal schedule for each of the two subproblem
forms a lower bound on the size of an optimal schedule for the original problem,
we achieve an approximation ratio of two. +,

It can be shown that the time needed to compute TREE (I) is bounded by
O

(
n2

)
where n = max {|M| , |V |}. For details see [25].

When implementing the algorithm one would not let a packet Mi wait in
vi until all other packets have finished the first part of the schedule. We would
rather always move a packet when the next edge on its path is free (and prioritize
the packets such that at each timestep each packet is at least as far on its path
as in the original schedule described above). But even then there are instances
which show that our analysis is asymptotically tight [25].

2.3 Directed Graphs and Shortest Paths

We give a condition which allows the existence of a direct schedule within a
given time horizon T . As a corollary we obtain that if the lengths of the paths
are pairwise different there is an optimal direct schedule of length D.

Let G = (V, A) be a directed graph, let T ≥ 0 be a time horizon and let
I = (G,M,P) be a packet routing instance. We demand that for the lengths of
the paths of the packets the following conditions hold:

– All paths are shortest paths.
– For each packet Mi denote by Mi the set of packets Mj such that Pj shares

an edge with Pi and Dj ≥ Di. We demand that |Mi| ≤ T − Di + 1.

For two packets Mi and Mj such that Pi and Pj share an edge we define a
value d (Mi, Mj). Let vij be the first vertex on Pi and Pj which is used by
both paths. Denote by d (si, vij) and d (sj, vij) the number of edges on Pi and
Pj between si and vij and between sj and vij , respectively. Then we define
d (Mi, Mj) := d (si, vij) − d (sj , vij). Note that d (Mi, Mj) = −d (Mj , Mi).
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Assuming that Mi is delayed for k timesteps in the beginning, Mi collides with
Mj if and only if Pi and Pj share an edge and Mj is delayed for d (Mi, Mj) + k
steps (here we use the fact that G is a directed graph and all paths are shortest
paths). We order the packets in decreasing order of the lengths of their paths.
W.l.o.g. we assume that M0, ..., Mk is such an order. Now we iterate over the
packets. In the i-th iteration, we consider the packet Mi. Denote by wj with
0 ≤ j ≤ i − 1 the waiting time which was computed in a previous iteration for
the packet Mj . (This implies that in our schedule the packet Mj waits for wj

steps and then moves to its destination without any further delay.) We say a
packet Mj blocks a certain waiting time m for Mi if Pi and Pj share an edge and
m = d (Mi, Mj) + wj . Note that each packet whose path shares an edge with Pi

blocks exactly one waiting time for Pi.
Let m be the smallest unblocked waiting time for Mi. We define wi := m.

In our schedule the packet Mi then waits for wi steps and then moves to its
destination without any further delay. We denote by Di the length of Pi. We
will prove in Theorem 3 that Di + wi ≤ T and thus Mi needs at most T steps
to reach its destination. We denote by SPATHS(I) the resulting schedule.

Theorem 3. Let G be a directed graph, let I = (G,M,P) be a packet routing
instance, and let T ≥ 0 be a time horizon with the above conditions. Then for the
schedule SPATHS(I) it holds that |SPATHS(I)| ≤ T . Moreover, SPATHS(I)
is a direct schedule.

Proof. It remains to prove that Di + wi ≤ T for each packet Mi. Since we
considered the packets in decreasing order of their path lengths, only packets in
Mi can possibly block a certain waiting time for Mi. Since |Mi| ≤ T − Di + 1
and Mi ∈ Mi we conclude that at most T −Di waiting times for Mi are blocked
by packets Mj with j < i. This proves that wi ≤ T − Di which implies that
Di + wi ≤ Di + (T − Di) = T . +,

Note that the bound for the length of SPATH(I) is tight. E.g., let C and D be
arbitrary positive integers and consider a packet routing instance as follows: Let
the graph be a directed path with vertices v0, v1, ..., vD and consider C packets all
with start vertex v0 and destination vertex vD. We define T := C +D− 1. Then
the above conditions are satisfied (since for all packets Mi we have that |Mi| =
|M| = C = T − Di + 1) and the length of the optimal schedule is exactly T .
Moreover, if we weaken our condition and require only that |Mi| ≤ T − Di + 2
we cannot guarantee the existence of a schedule of length T anymore. E.g., take
the above example with C + 1 packets from v0 to vD and T := C + D− 1. Then
each schedule needs at least C + D > T steps.

We obtain the following two corollaries:

Corollary 1. Let G be a directed graph, let I = (G,M,P) be a packet routing
instance, and let T ≥ 0 be a time horizon with the following conditions:

– All paths are shortest paths.
– Let Mi denote the set of packets whose path has at least D − i edges. For

each i ≥ 0 we have that |Mi| ≤ i + 1.
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Then the schedule SPATHS(I) is optimal with |SPATHS(I)| = D.

Corollary 2. Let G be a directed graph and let I = (G,M,P) be a packet
routing instance such that all paths are shortest paths and the lengths of all
paths are pairwise different. Then the schedule SPATHS(I) is optimal with
|SPATHS(I)| = D.

Compare that in [22] it was shown that under the condition of Corollary 2 there
is a (not necessarily direct) schedule whose length is bounded by D. We proved
that in this case there is even a direct schedule with this makespan.

2.4 Farthest-Destination-First-Algorithm on Directed Trees

The farthest-destination-first-algorithm prioritizes the packets according to the
length of their remaining path. That is, packets whose remaining path is longer
have a higher priority than packets whose remaining path is shorter. Ties are
broken arbitrarily. It was shown by Leung [21] that on in-trees and on out-trees
the FDF-algorithm works optimally. However, we show that on general directed
trees the FDF-algorithm can perform arbitrarily bad in terms of the achieved
performance ratio. For an instance I of the packet routing problem, denote by
FDF (I) a longest schedule that the FDF-algorithm could possibly compute.

Theorem 4. For every k ≥ 1 there is a a directed tree Tk and a packet routing
instance Ik = (Tk,Mk) such that

|FDF (Ik)| ≥ k · |OPT (Ik)|

Due to space constraints we refer to our technical report [25] for the construction.

3 Complexity Results

In this section we study the complexity of the packet routing problem. Due to
space constraints we refer to our technical report [25] for detailed descriptions
of the reductions.

Theorem 5. For all ε > 0, there is no (6/5 − ε)-approximation algorithm for
the packet routing problem with fixed paths, unless P = NP .

Proof (sketch). In the reduction we employ a technique which was used in [29] for
showing that the general acyclic job shop problem is NP -hard to approximate
within an approximation factor of 5/4− ε. We reduce from 3-BOUNDED-3-SAT
[13]. In this variant of 3-SAT in the given formula each variable occurs at most
three times (positive and negative). +,

We can modify the reduction to show that the packet routing problem is also
NP -hard to approximate on planar graphs and even on directed trees. Note here
that in the latter case it does not make a difference whether the paths of the



Packet Routing: Complexity and Algorithms 227

packets are given in advance or not. As a corollary we obtain the same result for
directed chain graphs with given paths.

All these reductions rely on creating a gap of one time unit between yes-
and no-instances of 3-BOUNDED-3-SAT. This raises the question whether it is
NP -hard to approximate the packet routing problem with an absolute error in
polynomial time.

Theorem 6. For all k > 0, there is no approximation algorithm for the packet
routing problem with fixed paths which guarantees an absolute error of at most k,
unless P = NP .
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