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(ITI) of the Ministry of Education of the Czech Republic. M. Skutella is supported by DFG Research
Center MATHEON in Berlin.
Authors’ addresses: G. Baier, Siemens AG, Corporate Technology, Otto-Hahn-Ring 6,
81739 Munich, Germany, e-mail: georg.baier@gmail.com; T. Erlebach, Department of
computer Science, University of Leicester, University Road, Leicester LE1 7RH, U.K.,
e-mail: t.erlebach@mcs.le.ac.uk; A. Hall, Google Switzerland GmbH, Brandschenkestrasse
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Abstract. For a given number L , an L-length-bounded edge-cut (node-cut, respectively) in a graph G
with source s and sink t is a set C of edges (nodes, respectively) such that no s-t-path of length at most
L remains in the graph after removing the edges (nodes, respectively) in C . An L-length-bounded flow
is a flow that can be decomposed into flow paths of length at most L . In contrast to classical flow theory,
we describe instances for which the minimum L-length-bounded edge-cut (node-cut, respectively) is
!(n2/3)-times (!(

√
n)-times, respectively) larger than the maximum L-length-bounded flow, where n

denotes the number of nodes; this is the worst case. We show that the minimum length-bounded cut
problem is NP-hard to approximate within a factor of 1.1377 for L ≥ 5 in the case of node-cuts
and for L ≥ 4 in the case of edge-cuts. We also describe algorithms with approximation ratio
O(min{L , n/L}) ⊆ O(

√
n) in the node case and O(min{L , n2/L2,

√
m}) ⊆ O(n2/3) in the edge

case, where m denotes the number of edges. Concerning L-length-bounded flows, we show that in
graphs with unit-capacities and general edge lengths it is NP-complete to decide whether there is a
fractional length-bounded flow of a given value. We analyze the structure of optimal solutions and
present further complexity results.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Graph algo-
rithms; network problems; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems—Routing and layout; G.2.1 [Discrete Mathematics]: Combinatorics—
Combinatorial algorithms

General Terms: Algorithms, Theory
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1. Introduction

In a classical article Menger [1927] showed a strong relation between cuts and
systems of disjoint paths (Menger’s Theorem): given a graph G and two nodes s, t
in G, the maximum number of edge- and node-disjoint s-t-paths equals the min-
imum size of an s-t-edge- and node-cut, respectively (cf. Dantzig and Fulkerson
[1956]; Kotzig [1956]). Ford and Fulkerson [1956] and Elias et al. [1956] gen-
eralized the theorem of Menger to flows in graphs with capacities on the edges
and provided algorithms to find an s-t-flow and an s-t-cut of the same value. (All
results mentioned in this introduction hold both for directed and undirected graphs,
unless stated otherwise.)

As far as we know, the problem of length-bounded flows was first considered
by Adámek and Koubek [1971], who observed that a natural generalization of
the max-flow min-cut theorem does not hold for length-bounded flows and gave
some estimations on the value of a maximum length-bounded flow. Independently,
Lovász et al. [1978] studied the maximum length-bounded node-disjoint s-t-paths
problem. For length-bounds 2, 3, and 4, a relation holds that is analogous to
Menger’s theorem but with a new cut definition. For length-bounds greater than 4,
they gave upper and lower bounds for the gap between the maximum number
of length-bounded node-disjoint paths and the cardinality of a minimum cut.
Furthermore, they provided examples showing that some of the bounds are tight.
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The results were extended independently to edge-disjoint paths by Exoo [1983] and
Niepel and Safarı́ková [1983]. Pyber and Tuza [1993] proved the following theo-
rem, improving an earlier result of Lovász et al. [1978]: if the size of a minimum
L-length bounded s-t-node-cut is k, then the number of node-disjoint s-t-paths of
length at most ( k+L−2

L−2 ) + ( k+L−3
L−2 ) is at least k.

According to Bondy and Murty [1976], Lovász conjectured that there is a con-
stant γ such that the size of a minimum L-length-bounded s-t-node-cut is at most a
factor of γ ·

√
L larger than the cardinality of a maximum system of node-disjoint

s-t-paths of length at most L . Boyles and Exoo [1982] disproved this conjecture.
They constructed, for each length-bound L > 0, a graph and a node pair s, t such
that the minimum L-length-bounded s-t-node-cut has size greater than γ · L times
the maximum number of node-disjoint s-t-paths of length at most L , where the
constant γ is roughly 1/4. The ratio between the maximum number of node-disjoint
s-t-paths and the size of a minimum length-bounded s-t-cut was also studied by
Ben-Ameur [2000].

Itai et al. [1982] gave efficient algorithms to find the maximum number of node-
and edge-disjoint s-t-paths with at most two or three edges; the node-disjoint case
was also solved for length-bound 4. On the complexity side they showed that the
maximum node- and edge-disjoint length-bounded s-t-paths problem is NP-hard
for length-bounds greater than 4. Van der Holst and de Pina [2002] proved that
the problem is NP-hard in planar graphs. Guruswami et al. [2003] showed that
the edge-disjoint 6-length-bounded s-t-paths problem is MAX SNP-hard, and
for any length-bound they gave an O(

√
m)-approximation algorithm, where m

denotes the number of edges. Bley [2003] proved that both the node- and the edge-
disjoint maximum 5-length-bounded s-t-paths problem are APX -complete. For
directed networks, Guruswami et al. [2003] showed that the problem is NP-hard
to approximate within a factor of n

1
2 −ε for any ε > 0, where n denotes the number

of nodes.
For maximum fractional length-bounded multicommodity flows in unit-length

graphs with general capacities, Baier [2003] proved that the maximum fractional
length-bounded multicommodity flow can be computed exactly in polynomial time
using linear programming methods. Independently, another polynomial-time ex-
act algorithm for the same setting was given by Kolman and Scheideler [2006];
again, the algorithm exploits linear programming methods. For maximum frac-
tional length-bounded multicommodity flows in graphs with general edge lengths
and general capacities, Baier [2003] gave a fully polynomial time approximation
scheme (FPTAS).

Mahjoub and McCormick [2003] presented a polynomial algorithm for the 3-
length-bounded edge-cut in undirected graphs. Furthermore, they showed that the
fractional versions of the length-bounded flow- and cut problem are polynomial
even if L is part of the input but that the integral versions are strongly NP-hard
even if L is fixed.

Length-bounded paths problems arise naturally in a variety of real-world op-
timization problems and therefore many heuristics for finding large systems of
length-bounded paths have been developed [Perl and Ronen 1984; 1996 Brandes
et al.1996; Wagner and Weihe 1995; Hsu 1994].

1.1. OUR CONTRIBUTION. In contrast to the classical flow theory, we describe
instances for which the minimum L-length-bounded edge-cut is !(n2/3)-times
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4:4 G. BAIER ET AL.

TABLE I. KNOWN AND NEW (BOLD TYPE) COMPLEXITY AND (IN)APPROXIMABILITY RESULTS

L Node cut Edge cut
1 — poly.
2 poly. poly.
3 poly. poly. (undirected)

[Mahjoub and McCormick 2003]
4 poly. (undirected) inapprox. within 1.1377

[Lovász et al. 1978]
5 · · · &n1−ε' inapprox. within 1.1377 inapprox. within 1.1377
arbitrary O(min{L, n/L})-approx. O(min{L, n2/L2,

√
m})-approx.

O(
√

n)-approx. O(n2/3)-approx.
2 · F(1 + 1/ε) · · · n (1 + ε)-approx. (1 + ε)-approx.
n − c poly.

ε ∈ R>0 and c ∈ N are constants, ε can be arbitrarily small. F is the flow number of a graph.
All results hold for the directed and undirected cases, unless stated otherwise.

larger than the maximum L-length-bounded flow, and instances for which the
minimum L-length-bounded node cut is !(

√
n)-times larger than the maximum

L-length-bounded flow. In both cases we prove that this is the worst case, and we
explain how this corresponds to the integrality gap of a natural linear program-
ming formulation of the L-length-bounded cut problem. Further, we show that the
minimum length-bounded cut problem is NP-hard to approximate within a factor
of 1.1377 for L ≥ 5 in the case of node cuts and for L ≥ 4 in the case of edge
cuts; Table I provides an overview of known and new complexity results. We also
give approximation algorithms of ratio O(min{L , n/L}) ⊆ O(

√
n) in the node

case and O(min{L , n2/L2,
√

m}) ⊆ O(n2/3) in the edge case. For instances with
the length bound L larger than 2 · F(1 + 1/ε) where F is the flow number of the
graph [Kolman and Scheideler 2006] and ε is any constant larger than zero, we
give (1 + ε)-approximation algorithms for both the node cuts and edge cuts (e.g.,
for hypercubes and L ≥ 3F = O(log n) this yields a constant approximation). For
length bounds L = n − c, where c ∈ N is a constant, we provide a polynomial time
algorithm for the minimum L-length-bounded node-cut problem.

Concerning L-length-bounded flows, we show that in graphs with unit capacities
and general edge lengths it is NP-complete to decide whether there is a fractional
length-bounded flow of a given flow value. Even worse, the edge representation
and the path representation of an L-length-bounded (fractional) flow are not poly-
nomially equivalent. In particular, for graphs with general edge lengths we prove
that there is no polynomial algorithm which transforms an edge representation of
an L-length-bounded flow into a path representation, unless P = NP . We analyze
the structure of optimal solutions and give instances where each maximum flow
ships a large percentage of the flow along paths with an arbitrarily small flow
value. We also provide a lower bound of %(

√
n) on the integrality gap of the linear

programming formulation of the maximum L-length-bounded flow (we remark
that for some instances the size of the linear program is exponential in the size of
the graph). The integrality gap applies even for planar graphs.

2. Preliminaries

2.1. GRAPHS. We consider both directed and undirected graphs; the number of
nodes of a graph is denoted by n and the number of edges is denoted by m. There
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are two independent functions associated with each graph G, an edge-capacity
function u : E → Q>0 and an edge-length function d : E → Q≥0. We denote the
capacity and length of an edge e ∈ E by ue and de, respectively. Unless stated
otherwise, the length of each edge is 1 (unit lengths) and the capacity of each edge
is 1 (unit capacities). The length of a path is the sum of the lengths of the edges on
the path. The distance between two nodes u and v , denoted dist(u, v), is the length
of a shortest path from u to v .

A multigraph is a graph that may contain several edges between two vertices;
such edges are called multi-edges or parallel edges. Occasionally, we use the
term simple graph to stress that we are dealing with a graph that does not have
multiedges. Unless stated otherwise, our results apply to simple graphs.

2.2. LENGTH-BOUNDED CUTS. Let s, t ∈ V be two distinct nodes in a graph
G = (V, E). We call a subset of edges C ⊆ E of G an s-t-edge-cut, if no path
remains from s to t in the graph (V, E\C). The value of C is the sum of the
capacities of the edges in C , that is,

∑
e∈C ue. In the case of unit capacities, the

value of a cut is also called its size. Similarly, a node set C ⊆ V of G that separates
s and t (and contains neither s nor t) is an s-t-node-cut; its value (or size) is the
number of nodes in C .

Let Ps,t (L) denote the set of all s-t-paths of length at most L . We call a subset
of edges C ⊆ E of G an L-length-bounded s-t-edge-cut if the nodes s and t
have a distance greater than L in the graph (V, E\C). This means that C must
hit every path in Ps,t (L). Similarly, a subset C of the node set of G is called an
L-length-bounded s-t-node-cut if it hits all paths in Ps,t (L). All of our cuts are
s-t-cuts (for some nodes s, t) and therefore we will often omit the s-t-prefix when
talking about cuts. The value of a length-bounded cut is defined in the same way
as in the standard cut case. In the minimum length-bounded cut problem we are
looking for an L-length-bounded cut of minimum value.

In a linear programming relaxation of the minimum length-bounded edge-cut
problem, one has to assign to each edge e ∈ E a nonnegative value &e, called its
dual length, such that the dual length of every path from Ps,t (L) is at least one (the
linear programming relaxation for node-cuts is analogous):

min
∑

e∈E

ue&e (1)

∑

e∈P

&e ≥ 1 ∀P ∈ Ps,t (L)

&e ≥ 0 ∀e ∈ E

An integral solution to this linear program corresponds to a length-bounded s-t-cut,
and vice versa. In particular, the minimum length-bounded s-t-cut value and the
value of a minimum integral solution are equal. We will refer to feasible solutions
of (1) as fractional edge-cuts; fractional node-cuts are defined similarly as feasible
solutions of the analogous linear programming relaxation of the length-bounded
node-cut problem.

2.3. LENGTH-BOUNDED FLOWS. An s-t-flow in a directed graph G = (V, E)
is a function f : E → Q≥0 satisfying for each vertex v ∈ V \{s, t} the flow
conservation constraint

∑
(u,v)∈E f (u, v) =

∑
(v,u)∈E f (v, u) [Ahuja et al. 1993];

we call the function f an edge representation of the flow. A classical theorem by
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Ford and Fulkerson [1962] states that every flow can be represented as a nonnegative
linear combination of unit flows along cycles and s-t-paths in G; we call such a
linear combination a path representation of the flow. The flow f is feasible, if all
capacity constraints are satisfied, that is, f (e) ≤ ue for each edge e ∈ E . The
value (or size) of the flow f is the quantity

∑
(u,t)∈E f (u, t) −

∑
(t,u)∈E f (t, u). For

undirected graphs, the definitions are analogous. If f (e) is integral for every e ∈ E ,
the flow f is said to be integral with respect to the edge representation. If f can be
decomposed into integral flows along cycles and s-t-paths, it is said to be integral
with respect to the path representation.

Length-bounded flows are flows that can be decomposed into flows along paths
of bounded length. More precisely, an L-length-bounded s-t-flow is an s-t-flow f
such that there exists a decomposition of f into flows along s-t-paths of length at
most L; such a decomposition is called an L-length-bounded path representation
of the flow.

A natural optimization problem is to find a feasible length-bounded s-t-flow of
maximum value. We can formulate this problem as a linear program:

max
∑

P∈Ps,t (L)

fP (2)

∑

P:e∈P

fP ≤ ue ∀e ∈ E

fP ≥ 0 ∀P ∈ Ps,t (L).

Note that the dual of (2) is the linear program (1). One way to prove the maximum-
flow minimum-cut equality for standard flows is to apply the duality of linear
programming and to observe that there always exists an integral optimal solution
(which does not hold in the length-bounded case).

In the case of multiple commodities, we are given k source-sink node pairs
(s1, t1), . . . , (sk, tk) called commodities. A multicommodity flow f is a set of si -
ti -flows fi , for i = 1, . . . , k. The multicommodity flow f is feasible if for each
edge e ∈ E the capacity constraint holds, that is,

∑k
i=1 fi (e) ≤ ue. An L-length-

bounded multi-commodity flow f is a multicommodity flow such that the flow of
each commodity i is an L-length-bounded si -ti -flow.

2.4. SERIES-PARALLEL AND OUTERPLANAR GRAPHS. In this article we deal
several times with series-parallel graphs and outerplanar graphs and therefore their
definitions are provided. A directed acyclic graph G with two dedicated and distinct
nodes s, t ∈ V , the source and the sink, is series-parallel if and only if one of the
following holds (an equivalent definition can be found in Brucker [2001]):

(1) (Base case). G consists only of the nodes s, t and the edge (s, t).
(2) (Parallel decomposition). G can be obtained from two series-parallel graphs

G1 and G2, with source-sink pairs s1, t1 and s2, t2, by taking the disjoint union
of G1 and G2 and identifying s1 with s2 and t1 with t2, which gives the source s
and sink t of G, respectively.

(3) (Series decomposition). G is obtained analogously to the parallel composition
from two series-parallel graphs G1 and G2, except that in this case t1 is identified
with s2 and s = s1, t = t2.
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An undirected graph is series-parallel, if it can be derived from a series-parallel
directed graph by removing the edge directions.

An undirected graph is outerplanar, if it has a planar embedding such that all
vertices are on the same face. A directed graph is called outerplanar if its underlying
undirected graph is outerplanar.

2.5. FLOW NUMBER. At the end of Section 3.4 we deal with a graph parameter
called flow number. Here we recall the definition of the flow number for an undi-
rected graph. First, we define a few auxiliary terms. In a concurrent multicommodity
flow problem, there are k commodities, each specified by a pair of nodes (si , ti ) and
a demand di . A feasible solution for this problem is a multicommodity flow that
obeys the capacity constraints but need not meet the specified demands. The flow
value of a feasible solution is the maximum value f such that at least f · di units
of commodity i are routed for each i . The max-flow for a multicommodity flow
problem is defined as the maximum flow value over all feasible solutions. Given
a concurrent multicommodity flow problem with feasible solution S, the dilation
D(S) of S is the length of the longest flow path in S and the congestion C(S) of S is
the inverse of its flow value. Let I be the instance of the concurrent multicommod-
ity flow problem with a commodity for every ordered pair of nodes such that the
demand for the pair (u, v) is c(u)c(v)/

∑
w∈V c(w), where c(w) =

∑
e={w,z}∈E ue

for each vertex w ∈ V . The flow number F(G) of a graph G is the minimum
over all feasible solutions S for the instance I of max{C(S), D(S)} [Kolman and
Scheideler 2006]. The flow number F of a graph is closely related to the expansion
α of the graph: F = %(α−1) and F = O((α−1 log n), where ( is the maximum
degree in the graph [Kolman and Scheideler 2006].

3. Length-Bounded Cuts

3.1. LENGTH-BOUNDED FLOWS VERSUS LENGTH-BOUNDED CUTS

3.1.1. Edge-Cuts. It follows from linear programming duality that the maxi-
mum (fractional) length-bounded flow value equals the minimum fractional length-
bounded cut value. For standard flows, this equality holds for integral cuts as well.
In the presence of a length-bound, the maximum flow value and the minimum cut
value may be very different. This is in intimate relationship with the integrality gap
of the linear program (1).

THEOREM 3.1. There exist infinite families of directed and undirected graphs
for which the ratio of the minimum integral length-bounded edge-cut value to the
minimum fractional length-bounded edge-cut value is of order !(n2/3) for a graph
with n vertices, and this is the worst possible ratio.

PROOF. We describe the family of undirected graphs; the directed graphs are
obtained from the undirected graphs by a natural orientation of the edges (“from
left to right”). Let n be an integer such that n1/3 is integral and let k = n2/3. We
describe a graph G on !(n) vertices for which the ratio between the two cuts is
of order !(n2/3). The core of G is a layered graph G ′ consisting of 4k + 1 layers.
The first layer contains only a single vertex s and the last layer contains only a
single vertex t . The second layer and the last but one layer consist of n2/3 vertices
each. Every other layer consists of n1/3 vertices. Except for the pair 2, 3 and the
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4:8 G. BAIER ET AL.

FIG. 1. An instance (L = 3k where k = n2/3) with integrality gap %(n2/3). Every L-length-bounded
path has to use at least k shortcut edges (the topmost edges in the figure).

pair 4k − 1, 4k, each pair of consecutive layers of G ′ forms a complete bipartite
graph. The vertices of layer 2 are partitioned into n1/3 groups of size n1/3, and
all vertices from each group are connected to a unique vertex (different from the
vertices chosen for the other groups) from the third layer. Vertices in layers 4k − 1
and 4k are connected in an analogous way.

The desired graph G = (V, E) is obtained from G ′ by choosing a single vertex
from each odd layer, say a vertex vi from the odd layer i , and connecting vi with
vi+2 by an edge for each odd i ; these edges are called shortcut edges. The graph
G is depicted in Figure 1. We note that a similar graph was used in a lower bound
proof by Galil and Yu [1995] in the context of bounds on the average path length
of edge disjoint s-t-paths and by Chekuri and Khanna [2007] in the analysis of the
performance of a greedy algorithm for the edge disjoint paths problem.

For length bound L = 3k, we show that the minimum length-bounded cut has
size %(n2/3). Note that any s-t-path of length at most L must use at least k shortcut
edges. Given a subset F ⊆ E of edges, we say that a shortcut edge {vi , vi+2} from
E\F is substantial if 5 ≤ i ≤ 4k − 5, the vertex vi is connected in (V, E\F) to
more than n1/3/2 vertices from layer i − 1, and the vertex vi+2 is connected in
(V, E\F) to more than n1/3/2 vertices from layer i + 3. Note that 2k − 4 of the
2k shortcut edges can potentially be substantial. We claim that if the number of
substantial edges in (V, E\F) is at least k and the size of F is at most k/2, then
there exists an L-length-bounded path between s and t in (V, E\F). To see this,
note that G contains more than n2/3/2 edge-disjoint paths from s to any set of more
than n1/3/2 vertices in a layer i , 3 ≤ i ≤ 4k − 1; more than n2/3/2 edge-disjoint
paths from any set of more than n1/3/2 vertices in a layer i to any set of more than
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Length-Bounded Cuts and Flows 4:9

n1/3/2 vertices in a layer j , for 3 ≤ i ≤ 4k − 3 and i + 2 ≤ j ≤ 4k − 1; and more
than n2/3/2 edge-disjoint paths from any set of more than n1/3/2 vertices in a layer
i , 3 ≤ i ≤ 4k − 1, to t . In each of the three cases, a set F of at most k/2 edges
cannot hit all the more than n2/3/2 edge-disjoint paths. Therefore, we can construct
an L-length-bounded path from s to t in (V, E\F) by concatenating shortest paths
from s to the first substantial edge, between any two consecutive substantial edges,
and from the last substantial edge to t . Hence, if F is an L-length-bounded edge-
cut, we must have that (V, E\F) contains less than k substantial edges (implying
that |F | > k − 4) or |F | > k/2; in both cases, F has size %(k) = %(n2/3), as
claimed.

On the other hand, assigning each shortcut edge e a dual length le = 1/k ensures
that the dual length of every s-t-path from Ps,t (L) is at least 1. Thus, the integrality
gap is !(k) = !(n2/3) in this instance. It remains to show that this is the worst
case.

For length bounds L ≤ n2/3, a simple rounding scheme proves that the ratio
between fractional and integral minimum cuts in every graph is at most n2/3: given
a minimum fractional L-length-bounded cut, round every le ≥ 1/L to 1 and all
other le to zero; clearly this yields an integral L-length-bounded cut that is at most
L-times larger than the fractional one. For L > n2/3, we start with a similar rounding
scheme and round every le ≥ 1/n2/3 to 1 and all other le to zero. If we remove at
this point all edges with le = 1 from the graph, the distance between s and t will be
at least n2/3 + 1 and thus, by a theorem of Even and Tarjan [1975], the minimum
cut between s and t has size O(n2/3). Putting together edges with le = 1 and edges
from the minimum cut in the reduced graph gives an integral L-length-bounded
cut that is at most O(n2/3)-times larger than the fractional one.

As mentioned earlier, by duality of linear programming, the size of a minimum
fractional L-length-bounded cut equals the size of a maximum fractional L-length-
bounded flow, which implies the following corollary.

COROLLARY 3.2. There exist infinite families of directed and undirected
graphs for which the ratio of the minimum integral length-bounded edge-cut value
to the maximum fractional length-bounded flow is of order !(n2/3) for a graph
with n vertices, and this is the worst case.

Remarkably, asymptotically the same ratio applies for the minimum integral L-
length-bounded edge-cut and the maximum integral L-length-bounded flow (i.e.,
the maximum number of edge disjoint L-length-bounded paths between s and t).

COROLLARY 3.3. There exist infinite families of directed and undirected
graphs for which the ratio of the minimum integral length-bounded edge-cut value
to the maximum number of length-bounded edge disjoint paths is of order !(n2/3)
for a graph with n vertices, and this is the worst case.

PROOF. The graphs described in the proof of Theorem 3.1 provide again the
lower bound. For the upper bound, we describe an L-length-bounded cut C ⊆ E of
size at most O(n2/3)-times larger than the maximum number of L-length-bounded
edge disjoint paths between s and t , for a given instance of the problem. We argue
similarly as in the proof of Theorem 3.1. For L ≤ n2/3, let h be the maximum
number of edge-disjoint L-length-bounded paths between s and t ; the cut simply
consists of the edges of these h paths. For L > n2/3, let h be the maximum
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FIG. 2. Example of a large integrality gap of the linear program (1) of the minimum length-bounded
cut. The straight s-t-path (in gray) contains 2k + 1 edges. Each of these edges is accompanied by
k + 1 parallel paths of length 2 and the length bound is L = 3k + 1.

number of edge-disjoint n2/3-length-bounded paths between s and t . Consider the
cut consisting of all edges of the h edge-disjoint paths of length at most n2/3

between s and t . By removing these edges, the distance between s and t increases
to n2/3 +1 at least, and by the theorem of Even and Tarjan [1975], the minimum cut
between s and t has size O(n2/3). Altogether, we have again an L-length-bounded
cut that is at most O(n2/3)-times larger than the maximum number of edge disjoint
L-length-bounded s-t-paths.

For the instance used in the above proofs (cf. Figure 1), the maximum fractional
and integral L-length-bounded flows have the same size, namely, 2. It is worth
stressing that this is generally not the case (cf. the construction by Guruswami
et al. [2003] for the lower bound n1/2−ε on the approximation ratio of the L-length-
bounded edge disjoint paths problem).

3.1.2. Node Cuts. Analogous results hold for node cuts; the integrality gap is
smaller in this case. Since the same bounds apply for edge cuts on series-parallel
graphs, in the next theorems we mention both node and edge cuts.

THEOREM 3.4. There exist infinite families of directed and undirected graphs
for which the ratio of the minimum integral length-bounded node-cut value to the
minimum fractional one is of order !(

√
n) for a graph with n vertices, and this is

the worst possible ratio. The same bound applies for edge-cuts on series-parallel
graphs.

PROOF. We start by giving the construction for edge cuts and then describe
how to adapt it to node cuts. The construction is very similar to the construction in
the proof of Theorem 3.1. For every k ∈ N we construct a graph Gk on 2k2 +5k +3
vertices with a fractional length-bounded edge-cut value less than 2 and an integral
length-bounded cut value k + 1. The graph Gk is generated from an s-t-path
containing 2k + 1 edges; we call these edges ground edges. Parallel to each ground
edge we add k + 1 paths of length 2; see Figure 2 for the undirected case. Note that
the proof works for directed edges as well (direct edges from left to right).

Consider a graph Gk for arbitrary k and let L = 3k + 1. A minimum fractional
edge cut has a value less than 2. This can be seen as follows. For a fractional edge
cut, we have to assign a dual edge-length to each edge, such that the dual length of
each s-t-path with at most L = 3k + 1 edges is not less than 1. An s-t-path with at
most 3k + 1 edges must contain at least k + 1 ground edges. Thus, assigning each
ground edge a dual length of 1

k+1 and assigning zero to the remaining edges yields
a fractional cut of value 2k+1

k+1 < 2.
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Now we give a lower bound of k + 1 on the size of an (integral) edge cut. If we
take a nonground edge, we must take at least k +1 nonground edges. Otherwise for
any nonground edge in the cut there would always be another equivalent length 2
path which is not cut and thus the nonground edges could be removed from the
cut without invalidating it. A cut containing only ground edges must have size
greater than k; otherwise an s-t-path of length L = 3k + 1 remains. Since k + 1 is
in !(

√
n), this completes the proof.

For node-cuts one can simply take the line graph (replace each edge by a node,
connect two nodes, if the corresponding edges shared a node) of the above con-
struction. This gives the %(

√
n) lower bound on the integrality gap in undirected

and directed (direct edges from left to right) graphs.
The proof of optimality of the bound for node cuts follows the same argument

as the proof of Theorem 3.1. Given a fractional node cut and L ≤
√

n, round every
lv ≥ 1/L to 1 and all others to 0. For L >

√
n, first round every lv ≥ 1/

√
n to 1

and remove these nodes from the graph; at this point, the distance between s and t
is at least

√
n + 1 and thus the minimum cut has size at most

√
n. Putting together

nodes from this cut and the nodes with lv = 1, we get an L-bounded node cut that
is at most !(

√
n)-times larger than the size of the fractional cut.

Similarly as Theorem 3.1 implies Corollaries 3.2 and 3.3, Theorem 3.4 implies
the next two corollaries.

COROLLARY 3.5. There exist infinite families of directed and undirected
graphs for which the ratio of the minimum integral length-bounded node-cut size
to the maximum fractional length-bounded flow is of order !(

√
n) for a graph with

n vertices, and this is the worst possible ratio. The same bound applies for edge
cuts on series-parallel graphs.

COROLLARY 3.6. There exist infinite families of directed and undirected
graphs for which the ratio of the minimum integral length-bounded node-cut size
to the maximum number of length-bounded node disjoint paths is of order !(

√
n)

for a graph with n vertices, and this is the worst possible ratio. The same bound
applies for edge cuts and edge-disjoint paths on series-parallel graphs.

We note that one of the main questions posed in the paper by Lovász et al. [1978]
was exactly about the ratio of the minimum integral length-bounded node cut size
and the maximum number of node disjoint length-bounded paths.

3.2. CUTS VERSUS LENGTH-BOUNDED CUTS. In this subsection we establish
bounds on differences between the sizes of standard minimum cuts and length-
bounded minimum cuts.

THEOREM 3.7. Let G = (V, E) be a directed or undirected multigraph. The
difference between the size of a minimum node cut in G and the size of a minimum
L-length-bounded node cut is at most O( n

L ). If G is a simple graph, the difference
between the size of a minimum edge cut and the size of a minimum L-length-bounded
edge cut is at most O( n2

L2 ); if L ≥
√

m, then that difference is at most O(
√

m), even
for multigraphs.

PROOF. Our arguments apply to directed or undirected graphs in the same way;
therefore we describe the proof for undirected graphs only.
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FIG. 3. Example of the n
L gap between the standard and the length-bounded cut.

First, consider the case of node cuts. Let C1 be a minimum length-bounded node
cut. We will construct a node cut C of size at most |C1|+ n

L . In G\C1, all s-t-paths
have length at least L + 1. The number of node-disjoint s-t-paths in G\C1 is at
most (n − 2)/L ≤ n/L , as each such path contains at least L internal nodes and no
two such paths contain the same node. Therefore, a minimum node cut in G\C1
has size at most n/L . Let C2 be such a cut. Then C = C1 ∪ C2 is a node cut in G
of the desired size.

The proof for edge cuts follows along the same lines. Let C1 be a minimum
length-bounded edge cut. We will construct an edge cut C of size at most |C1| +
O( n2

L2 ), and for L ≥
√

m we also give an upper bound |C1|+
√

m on the size of C . In
G\C1, all s-t-paths have length at least L + 1. A result of Even and Tarjan [1975]
(cf. Galil and Yu [1995]; Chekuri and Khanna [2007]) implies that the number
of edge-disjoint s-t-paths in G\C1 is O(n2/L2) and thus a minimum edge cut in
G\C1 has size O(n2/L2). If L ≥

√
m, then the number of s-t-paths in G\C1 is at

most
√

m since each of these paths uses at least
√

m + 1 edges; again, this implies
that the minimum edge cut in G\C1 has size at most

√
m. Let C2 be a minimum

cut in G\C1. Then C = C1 ∪ C2 is an edge cut in G of size |C1| + O( n2

L2 ) and, if
L ≥

√
m, the size of C is at most |C1| +

√
m.

Figure 3 gives an example showing that the bound of n
L on the gap between

standard and length-bounded node cuts given in Theorem 3.7 is tight. In this
example, s and t are connected by one path of length L and by n−L−1

L ≈ n
L paths

of length L + 1. A minimum L-length-bounded node cut has size one while the
minimum standard node cut needs to cut all paths and has size approximately n

L .

3.3. HARDNESS OF APPROXIMATION. Table I provides an overview of known
and new results concerning the complexity, inapproximability, and polynomially
solvable cases of length-bounded cut problems. Furthermore, we give an NP-
hardness proof for the edge version in weighted series-parallel and outerplanar
graphs. Note that the polynomial algorithms for L equals 2, 3 and 1, 2 for the
node and edge version, respectively, are easy exercises for both directed and
undirected graphs (for the case L = 3 node cut or L = 2 edge cut: after
directly cutting length 2 or length 1 paths, respectively Theorem 3.13 can be
applied).

3.3.1. Node Cuts. We first present a simple polynomial time algorithm for
length-bounded node cuts with L = n − c, where c ∈ N is an arbitrary constant.
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FIG. 4. Gadgets for the reduction of VERTEX COVER to length-bounded node-cut (left) and length-
bounded edge-cut (right), respectively. Both correspond to two connected nodes u, v of the given
VERTEX COVER instance, shown in the middle. The highlighted nodes (edges) are in the cut and in
the vertex cover.

Then we come to the main result of this section, which is the inapproximability
result.

THEOREM 3.8. If c ∈ N is constant and L = n − c, then a minimum length-
bounded node cut can be computed in polynomial time in directed and undirected
graphs.

PROOF. Enumerate all C ⊆ V with |C | ≤ c and return the smallest C which
is a length-bounded node cut, if there is any. Otherwise, any length-bounded node
cut C contains at least c + 1 nodes so that the longest remaining s-t-path has a
length at most n − c −1 and therefore C actually cuts all s-t-paths. Thus, returning
a standard minimum node cut suffices.

THEOREM 3.9. For any ε > 0 and L ∈ {5, . . . , &n1−ε'}, it is NP-hard to
approximate the minimum length-bounded node cut in directed and undirected
graphs within a factor of 1.1377.

PROOF. We first look at the case L = 5 in directed graphs and give a reduction
from the well known VERTEX COVER problem. A vertex cover for an undirected
graph Gvc = (Vvc, Evc) is a subset V ′

vc of the nodes Vvc such that for each edge
{u, v} ∈ Evc at least one of the nodes u, v is in V ′

vc. The problem of finding a
minimum vertex cover has been shown to be NP-hard to approximate within a
factor ≈ 1.3606 [Dinur and Safra 2005]. Given a VERTEX COVER instance Gvc with
nvc = |Vvc| nodes, we construct a length-bounded node-cut instance G = (V, E)
as follows: start with V = {s, t} and no edges. For each node v ∈ Vvc we add a
node gadget to G consisting of seven nodes which are interconnected with s, t and
themselves as shown in Figure 4 (left)—the nodes in the top half surrounded by
a gray box. For each edge {u, v} ∈ Evc we add an edge gadget consisting of four
nodes and six edges connecting them to the node gadgets corresponding to u and
v as shown in Figure 4 (left).
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LEMMA 3.10. From a vertex cover V ′
vc in Gvc of size x one can always con-

struct in polynomial time a length-bounded node cut C in G of size nvc + x and
vice versa, for x ≤ nvc.

PROOF. We start with the easier direction “⇒”: let V ′
vc ⊆ Vvc be a vertex cover

with |V ′
vc| = x . For each node v ∈ V ′

vc we add two nodes lv and rv to our node
cut C ⊆ V and for each node u ∈ Vvc \ V ′

vc we add mu to C (see Figure 4 for an
example). Clearly this ensures |C | = nvc + x .

To see that no 5-length-bounded path between s and t remains after remov-
ing the nodes C from G, first consider paths that use vertices of the node gad-
gets only, apart from s and t . With respect to a node gadget for a node v ,
there are two cases to distinguish. In the case that mv was added to the cut,
no length-bounded path remains in the gadget. In the case that lv and rv were
added, the only remaining path (via mv ) has length 6, which is greater than the
length-bound 5.

Now assume that after removing nodes in C there remains an s-t-path of length
at most five that uses vertices from an edge gadget for some edge {u, v} ∈ Evc.
Then either lv and ru are not in the cut C or lu and rv are not in the cut C . By
construction this means that both u and v are not in V ′

vc which is a contradiction
to V ′

vc being a vertex cover. We conclude that no length-bounded s-t-path remains
in G after removing C .

Now we come to the direction “⇐”: let C ⊆ V be a length-bounded node cut
of size |C | = nvc + x . With two simple transformations we ensure that C contains
nodes from the node gadgets only, and that for each node gadget either the m-type
node or both the l- and r -type nodes are contained in C .

—No nodes from edge gadgets in C. Consider an edge gadget, say for an edge
{u, v} ∈ Evc, for which at least one of its four nodes is in C . The edge gadget
consists of two paths, one from lv to ru and one from lu to rv . If an inner node
of the lv -ru-path or the lu-rv -path is in C , we replace it by lv or lu , respectively.
This introduces no new length-bounded paths and does not increase the size of
the node cut.

—Node gadget: either m-type node or both l- and r-type nodes in C. Consider a
node gadget for a node v ∈ Vvc. First note that at least one node of the gadget
must be in C ; otherwise there exist three s-t-paths of length at most 5 via this
gadget. If only one node of the gadget is in C , it must be mv ; otherwise there
exists at least one length-bounded path via this gadget. If two or more nodes
of the gadget are in C , we replace them by lv and rv ; this guarantees that no
5-length-bounded path via this node gadget exists. The transformation clearly
does not increase the size of the node-cut C .

A vertex cover V ′
vc of size |C |−nvc can easily be derived from the transformed C

as follows: include in V ′
vc all nodes v ∈ Vvc for which both nodes lv and rv are in

C . Assume, for a contradiction, that V ′
vc is not a vertex cover, that is, there exists an

edge {u, v} ∈ Evc that is uncovered by V ′
vc. Then both mu and mv are in the cut C

(and no other nodes of the node gadgets for u and v) which implies that there exist
two 5-length-bounded s-t-paths via the edge gadget for {u, v}, a contradiction to C
being a node cut. Concerning the size of V ′

vc, we observe that every node gadget
after the two transformations contains either one or two nodes from C ; thus, by
construction, the size of V ′

vc is |C | − nvc.
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FIG. 5. Replacing s by a path of length L − 5.

If the size of C was decreased by the two transformations and the resulting vertex
cover V ′

vc has therefore smaller size than claimed in the lemma, we artificially
increase the size of the vertex cover by adding other vertices to it.

The proof of Theorem 1.1 in Dinur and Safra [2005] gives the following gap.
There are graphs Gvc for which it is NP-hard to distinguish between two cases: the
case where a vertex cover of size nvc·(1−p+ε′) exists, and the case where any vertex
cover has size at least nvc·(1−4p3+3p4−ε′), for any ε′ ∈ R>0 and p = (3−

√
5)/2.

If we plug this into the result of Lemma 3.10, we have shown that the length-
bounded node cut is hard to approximate within a factor (there is an ε′ ∈ R>0 for
which the inequality holds): (nvc+nvc·(1−4p3+3p4−ε′))/(nvc+nvc·(1−p+ε′)) >
1.1377.

For other values of L ∈ {5, . . . , &n1−ε'}, we modify the construction of G as
follows: (1) add a path of length L −5 from a new source node s ′ to s. (2) Stepwise
replace each node on this path after s ′ and until s (inclusive) by a group of 2nvc
nodes, and connect each new node with all neighbors of the replaced node (see
Figure 5).

We need to verify that Lemma 3.10 applies for the new construction too. The
proof of the left to right implication goes through without any modification. For the
right to left implication, we first observe that, if only a few nodes of a group are in
the cut, we easily find a smaller cut by removing these nodes from the cut. Further,
for every cut that contains all nodes from a group, we can find a smaller cut by
taking the l- and r -type nodes of all node gadgets but one and taking the m-type
node of the last node gadget in the cut. Thus, we can assume that none of the new
nodes appear in the length-bounded cut which makes it possible to transform again
a cut of size nvc + x in a vertex cover of size x . The total number of nodes in G
depends on L and is n = !(L · nvc + nvc + mvc), where mvc = |Evc|. Therefore,
we can create instances for which L is as large as &n1−ε', for arbitrarily small
ε ∈ R>0.

To see that the reduction also works for undirected graphs, observe that, by
removing the edge directions in the gadgets, no new undirected paths of length less
than L are introduced.

3.3.2. Edge Cuts. The polynomial time algorithm for node cuts with length-
bound n − c does not carry over for the edge version of the problem since by
removing c edges one cannot guarantee that computing a standard cut suffices.
The inapproximability result does carry over, as stated in the following theorem.
The proof is a straightforward modification of the proof of Theorem 3.9 and there-
fore we omit it; the difference is that other gadgets (described in Figure 4, right)
are used.
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FIG. 6. Reduction of 2-PARTITION to the length-bounded cut problem. The labels denote
length/capacity.

THEOREM 3.11. For any ε > 0 and L ∈ {4, . . . , &n1−ε'}, it is NP-hard to
approximate the length-bounded edge-cut in directed and undirected graphs within
a factor of 1.1377.

If we allow the edges to have different lengths and capacities, the length-bounded
cut problem is NP-hard even for the classes of series-parallel and outerplanar
graphs.

LEMMA 3.12. For series-parallel and outerplanar directed and undirected
graphs with general capacities and lengths, it is NP-hard to decide whether there
is a length-bounded edge cut of size less than a given value.

PROOF. We will show a reduction of 2-PARTITION to the length-bounded cut
problem. We are given an arbitrary 2-PARTITION instance a1, . . . , ak ∈ N. We have
to decide if there exists a partition A1, A2 of the ground set A1 ∪ A2 = {a1, . . . , ak}
such that

∑
i∈A1

ai =
∑

i∈A2
ai =: B holds.

Graph G is a single s-t-path with k multiedges; each multiedge consists of
two parallel edges; see Figure 6. All k upper edges have length zero and succes-
sively a1, . . . , ak as capacity. The lower edges get successively a1, . . . , ak as length
and capacity ∞ (or any finite capacity larger than B). Note that, to obtain a simple
graph, we can simply subdivide the parallel edges which still yields a series-parallel
and outerplanar graph. For the directed version simply direct the edges from left to
right.

Let the length bound be L = B − 1. We will show that there is an L-length-
bounded edge-cut of value at most B if and only if the instance of 2-PARTITION is
a yes-instance.

“⇐”: Given a solution A1, A2 to the 2-PARTITION instance, we take the upper
edges corresponding to set A1 as our edge cut. Clearly only s-t-paths of length at
least B remain and the cut has value B.

“⇒”: We start by showing that any L-length-bounded edge cut must have value
at least B. Assume C is a cut of value less than B; then the path which takes
the upper edges complementary to C will have length less than B, which gives a
contradiction. Thus, a given edge cut of value at most B has value exactly B and
yields a 2-PARTITION in the obvious way.

We will show in Theorem 4.2 that it is NP-hard to decide whether a fractional
length-bounded flow of a given flow value exists in a graph with edge lengths even
if the graph is series-parallel and outerplanar. Since the primal and dual programs
have identical optimal objective function values, the same holds for the fractional
length-bounded edge-cut problem.

3.4. APPROXIMATION ALGORITHMS. If the length-bound L is so large that the
system of L-length-bounded s-t-paths contains the set of all s-t-paths, then length-
bounded cuts and flows reduce to standard cuts and flows. The maximum-flow
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minimum-cut equality holds and there are many efficient algorithms to compute
minimum cuts and maximum flows exactly. If the length-bound L equals the
distance between s and t , we get another case solvable in polynomial time. Lovász
et al. [1978] showed a special version of the following theorem in the context of
length-bounded node-disjoint paths.

THEOREM 3.13. In directed and undirected multigraphs with general capac-
ities and edge lengths, for L = dist(s, t) the minimum length-bounded edge- and
node-cut problem and the maximum length-bounded flow problem can be solved
in polynomial time. In particular, the maximum flow value and the minimum cut
value coincide if L = dist(s, t).

PROOF. We first consider directed graphs. Let G be such a graph with edge
capacities and nonnegative edge lengths and let L = dist(s, t). First we generate
the subgraph G induced by all edges which are contained in at least one shortest s-
t-path in G. This subgraph can be found with a slightly modified Dijkstra-labeling
algorithm; one has to remember for each node all incoming edges generating
the smallest label at this node. The edges in G that have positive length form a
directed acyclic graph, and the edges in G with length zero connect nodes that
have the same distance to t in G. Each s-t-path in G is a shortest s-t-path in G.
Therefore, a standard minimum cut and a maximum flow in G correspond to a
minimum length-bounded cut and a maximum length-bounded flow in G. The
theorem follows from standard flow theory. For undirected graphs we replace each
edge by two antiparallel directed edges with the capacity and length of the original
edge. The subgraph G is then constructed in the same way, and any cut or flow in
G directly translates into a length-bounded cut or flow in the original graph.

For graphs with unit-lengths, Theorem 3.13 yields the following approximation
result for the minimum length-bounded cut problem. A similar result for node cuts
appears implicitly in Ben-Ameur [2000].

COROLLARY 3.14. In directed and undirected multigraphs with general ca-
pacities and unit lengths, one can find in polynomial time an (L + 1 − dist(s, t))-
approximation to the minimum L-length-bounded edge or node cut by at most
L + 1 − dist(s, t) standard minimum cut calculations.

PROOF. Removing a minimum dist(s, t)-length-bounded cut from the graph
increases the distance of s and t by at least 1. Repeating this iteratively increases
the s-t-distance to L + 1 within at most L + 1 − dist(s, t) iterations. The value
of each intermediate minimum cut is a lower bound on the value of the minimum
L-length-bounded cut. Thus, their union has value at most L + 1 − dist(s, t) times
the minimum value of an L-length-bounded cut.

In Figure 7 we provide an instance showing that the performance bound in the
above corollary is tight in the worst case. The core of the graph is a path on n − 2
vertices, the last of which is a node t , and two other vertices v and s. Each of the
n −2 vertices on the path is connected to the vertex v , and the vertex v is connected
to the vertex s. All edges have unit length and unit capacity. The length bound is
L = n − 1. If the algorithm breaks ties in favor of edges that are incident with v
but not incident with s, the algorithm finds a cut of value n − 2 while the minimum
cut has value 1.
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FIG. 7. An example showing that the performance bound is asymptotically tight. The length bound
is L = n − 1.

Another way to obtain an L-approximation for the L-length-bounded edge cut
is the following: while dist(s, t) ≤ L , remove edges on the shortest s-t-path. Since
all removed paths are edge disjoint, their number is a lower bound on the L-length-
bounded edge-cut value which, together with the fact that the removed paths have
length at most L , implies the approximation ratio.

Consider the following combination of the two approaches described above.
First, while there exists an s-t-path of length at most L/2, remove all edges on such
a path. Then, while there exists an s-t-path of length at most L , find a minimum
cut in the subgraph consisting of edges on the shortest s-t-paths in the current
graph, and remove edges in the cut. We observe that the number of iterations of
the first phase (i.e., the number of edge disjoint paths of length at most L/2 that
the algorithm finds), plus the size of any cut from the second iteration, is a lower
bound on the size of the minimum L-bounded cut. Since the length of each path
deleted in the first phase is at most L/2 and since there are at most L/2 iterations
of the second phase, the algorithm computes an L/2-approximation.

For the sake of completeness we mention again yet another L-approximation
algorithm that appeared already in the proof of Theorem 3.1: given a fractional
L-length-bounded cut, round every dual length with le ≥ 1/L to 1 and all others
to zero.

The algorithms described above for edge cuts can be adapted to node cuts in a
straightforward way.

For large values of the length-bound L , the O(L)-approximations are not very
satisfying. In such cases, a combination of Corollary 3.14 and Theorem 3.7 yields
the following theorem; we exploit the fact that minimum cuts can be computed in
polynomial time.

THEOREM 3.15. For directed and undirected graphs there exists an O(min{L ,
n/L}) ⊆ O(

√
n)-approximation algorithm for the minimum L-length-bounded

node-cut problem and an O(min{L , n2/L2,
√

m}) ⊆ O(n2/3)-approximation algo-
rithm for the minimum L-length-bounded edge-cut problem; the algorithms have
polynomial running times.

For a large class of graphs, a better approximation ratio is often possible. Let
F be the flow number of G, as defined by Kolman and Scheideler [2006]. The
following lemma from the same paper will be useful.

LEMMA 3.16 (SHORTENING LEMMA [KOLMAN AND SCHEIDELER 2006]). Let
an undirected network with flow number F be given. Then, for any ε ∈ (0, 1] and
any feasible multicommodity flow with a flow value of f , there exists a feasible
multicommodity flow with a flow value of f/(1 + ε) that can be decomposed into
paths of length at most 2 · F(1 + 1/ε).
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THEOREM 3.17. For undirected graphs and L ≥ 2 · F(1 + 1/ε), there exists
a polynomial-time (1 + ε)-approximation algorithm for the minimum L-length-
bounded node cut and minimum L-length-bounded edge cut problems, where F is
the flow number of the given graph.

PROOF. The proofs for node and edge cuts are identical. Consider a graph G
with flow number F . Let f denote the size of the standard minimum cut between
two vertices s and t ; by the duality of flows and cuts, f is also the size of the
standard maximum flow between s and t . By Lemma 3.16, there exists an L-
length-bounded flow between s and t of size at least f/(1 + ε). Since the size
of a length-bounded flow between s and t is a lower bound on the size of the
minimum length-bounded cut, we conclude that a standard minimum-cut is a
(1 + ε)-approximation for the L-length-bounded cut.

As the flow number of hypercubes or expander graphs is O(log n), the theorem
implies polynomial-time O(1)-approximation algorithms for L ≥ 3F = O(log n)
for these graphs. We remark that the definition of the flow number can be adapted to
directed graphs in which for every node the total capacity of the in-edges equals the
total capacity of the out-edges [Kolman and Scheideler 2006]; the corresponding
version of Theorem 3.17 holds for such graphs.

We conclude this section with a simple observation that for a graph G with
a source s and a sink t one can easily obtain an O(max{degree(s), degree(t)})-
approximation by removing all edges adjacent to the source or the sink. Thus, we
have O(1)-approximations for constant-degree graphs.

4. Length-Bounded Flows

4.1. COMPLEXITY. Choosing infinity as a length bound reduces the length-
bounded flow problem to the standard flow problem. For computing maximum
standard flows, in most cases one does not use the linear program (2), since the
number of paths and thus the number of variables may be exponential in the input
size. It is more common to use an edge-based formulation since it always uses a
polynomially bounded number of variables. For length-bounded (multicommodity)
flows in unit-length graphs (and general capacities), Kolman and Scheideler [2006]
described an edge-based linear programming formulation of polynomial size. The
main result of this section, Theorem 4.2, implies that there is no linear programming
formulation of polynomial size for the problem in graphs with general lengths,
unless P = NP; the formulation of Kolman and Scheideler [2006] has size
%(L(n+m)). We also note that, for graphs with unit lengths (and general capacities),
Baier [2003] described how to solve the linear program (2) in polynomial time.
However, we are not aware of a combinatorial algorithm with polynomial running
time for the maximum length-bounded flow problem in graphs with unit lengths.

When looking at a given length-bounded flow, from linear programming theory
we can infer the existence of a path decomposition of small size, where all paths
fulfill the length bound.

THEOREM 4.1. For every L-length-bounded (multicommodity) flow, there ex-
ists an L-length-bounded path representation of the flow that uses at most m paths
for each commodity.
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FIG. 8. The depicted graph possesses no small multicommodity pathrepresentation correspond-
ing to the prescribed edge representation of the flow. As set of commodities, we choose all 9
pairs (ai , b j ), i, j = 1, 2, 3. The capacity of all 6 edges is set to 1. For each commodity (ai , b j ) there
is a flow of size 1/3 (going along the only path between ai and b j ). This is a feasible multi-commodity
flow. However, the only corresponding path representation has to use altogether all 9 paths, which is
greater than |E | = 6.

PROOF. The theorem follows from the fact that the linear program in (2) has
only m linear constraints. Therefore, the rank of the linear program for a single
commodity is at most m. Consequently, there has to be a solution using no more
than m paths. We can modify the edge capacities appropriately and apply this
argument to each commodity one after another.

The argument in the proof of Theorem 4.1 can be applied simultaneously to
all commodities of a length-bounded flow. Hence, there always exists an optimal
solution (maximizing the sum of the flow values of all the commodities) that uses
no more than |E | paths in total. However, in general this transformation may
change the flow on some of the edges (and also the total flow value) for individual
commodities. An example is given in Figure 8.

We see that the theory of linear programming guarantees that there is always a
path representation of maximum flow value that has a small size. Nevertheless, for
graphs with general edge lengths, linear programming is unable to find maximum
fractional length-bounded flows efficiently, unless P = NP . We formalize this
statement in the following theorem.

THEOREM 4.2. For the length-bounded flow problem in directed and undi-
rected series-parallel and outerplanar graphs with unit capacities and general
lengths it is NP-complete to decide whether there is a fractional length-bounded
flow of given flow value.

PROOF. First of all we observe that this decision problem is inNP . Theorem 4.1
guarantees the existence of a polynomially sized path representation of a flow. This
is a certificate which certainly can be checked in polynomial time.

To prove NP-hardness, we proceed similarly as in the proof of Lemma 3.12 by
giving a reduction of 2-PARTITION. We are given an arbitrary 2-PARTITION instance
a1, . . . , ak ∈ N. We have to decide if there exists a partition A1, A2 of the ground
set A1 ∪ A2 = {a1, . . . , ak} such that

∑
i∈A1

ai =
∑

i∈A2
ai =: B holds.

Graph G is a single s-t-path with k multiedges; each multiedge consists of two
parallel edges. All k upper edges have length zero and the lower edges are succes-
sively assigned a1, . . . , ak as lengths. All capacities are set to 1. The constructed
graph is the same as the one shown in Figure 6 except for the choice of capacities.
Note that, to obtain a simple graph, we subdivide each of the parallel edges, which
still yields a series-parallel and outerplanar graph. For the directed version, we
direct the edges from left to right. Let the length-bound be L = B.
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Let us first consider a maximum integral flow (integral with respect to the path-
representation) respecting the length bound L . Obviously, the value of this flow
is bounded by 2 from above. Assume that the maximum flow has value 2. By the
integrality of the flow, there have to be exactly two edge-disjoint s-t-paths with
flow value 1 each. The total length of these two paths is 2L; thus both must have
length exactly L . The edges of length greater than zero in one path define a feasible
partition for our 2-PARTITION instance. On the other hand, each feasible partition
for the 2-PARTITION instance describes two s-t-paths in G, each of length exactly L .
Thus, there is an integral L-length-bounded flow of value 2 in G if and only if the
2-PARTITION problem is a yes instance.

To complete the proof, we have to show that there is an integral L-length-
bounded flow of value 2 if there is a fractional L-length-bounded flow of value 2.
If the fractional solution contains a single path of length exactly L we are done
since this path describes a feasible partition and thus an integral flow. We now
show that each path with flow value greater than zero in a maximum fractional
path flow f must have length exactly L . Assume that there is at least one path with
nonzero flow value and length strictly less than L . Let P< and P≥ denote the sets
of s-t-paths with nonzero flow value and length strictly less than L and greater or
equal to L , respectively. Since the fractional flow has a total flow value of 2, there
is a total of one unit of flow on each edge. Thus, for the “flow-weighted” sum of
path lengths we get 2L =

∑
P∈P<

fP |P| +
∑

P∈P≥
fP |P|, where |P| denotes the

length of a path P . Since
∑

P∈P<∪P≥
fP = 2, by averaging, there must be a path

of length greater than L if there is a path of length less than L . This contradicts the
condition that the length of all flow paths is bounded by L .

Finding a maximum length-bounded flow is computationally more difficult than
finding a standard maximum flow. For standard flows, the edge representation of a
flow is usually used. Each path representation of a flow can be easily transformed
into an edge representation. For standard flows, the reverse transformation can
also be efficiently computed. If length bounds are present, one may use the edge
representation, too. However, as the following corollary shows, edge and path
representations are not polynomially equivalent for length-bounded flows. The
following result is an immediate consequence of the proof of Theorem 4.2 and has
been shown independently by Correa et al. [2007, Corollary 3.4].

COROLLARY 4.3. UnlessP = NP , there is no polynomial algorithm to trans-
form an edge representation of a length-bounded flow in a graph with unit edge
capacities and general edge lengths, into a path representation, even if the graph
is series-parallel and outerplanar.

4.2. STRUCTURE OF OPTIMAL SOLUTIONS AND INTEGRALITY GAP. For stan-
dard single-commodity flows with integral capacities, there is always an integral
maximum flow. The situation is completely different in the presence of length
constraints. We will not only show that there need not exist an integral maximum
flow but also that there are instances where each fractional maximum flow ships a
large percentage of the flow along paths with very small flow values.

THEOREM 4.4. There exist directed and undirected series-parallel and outer-
planar graphs with n vertices such that every maximum fractional length-bounded
flow ships more than one half of the total flow along paths with flow values O(1/n).
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FIG. 9. Graph Gk in which the unique maximum length-bounded flow sends more than one-half of
the flow along paths with small flow values.

PROOF. We construct an infinite family {Gk}k∈N of series-parallel and outerpla-
nar graphs such that Gk has 3k + 4 vertices and a maximum fractional Lk-length-
bounded s-t-flow of value less than 2, for a certain length-bound Lk ∈ !(k). The
unique maximum Lk-length-bounded flow in Gk contains k + 1 paths each with
flow value 1

k+1 . We describe the construction for undirected graphs; for the directed
case, simply direct edges from left to right.

The graph Gk consists of a sequence of k + 1 triangles preceded by a path of
length k + 1 and a single edge that is parallel to the path; see Figure 9.

In Gk we consider a maximum fractional (2k + 2)-length-bounded s-t-flow,
that is, Lk = 2k + 2. There is only one s-t-path P̃ of length at most 2k + 2 that
contains the s-u-path of length k + 1. Indeed, this path has length exactly 2k + 2
and contains the unique shortest u-t-path. To obtain a total flow value larger than 1,
path P̃ has to be used. We call the edges in the shortest u-t-path ground edges.

All s-t-paths of length at most 2k + 2 except P̃ contain the edge su and at
least one of the ground edges. Consider the s-t-paths of length exactly 2k + 2 that
contain edge su. There are k + 1 of those paths, one corresponding to each ground
edge. Routing a fraction of 1

k+1 units along each of them yields a feasible flow
of value 1. Each ground edge is contained in exactly one of these paths and has
therefore a residual capacity of 1 − 1

k+1 . Thus, along path P̃ we can route further
1 − 1

k+1 units of flow and obtain a feasible (2k + 2)-length-bounded s-t-flow of
value 2 − 1

k+1 . We claim that this flow is maximum and unique.
Sending 1 unit of flow along path P̃ blocks each other path containing a ground

edge, i. e., each further feasible s-t-path. Assume 1 − δ units of flow are sent along
path P̃ , for an arbitrary 0 < δ < 1. Then all remaining paths have a flow value not
greater than δ each and thus altogether at most min{1, (k + 1)δ}. Therefore, the
maximum flow value dependent on δ is bounded by 1 − δ + min{1, (k + 1)δ}. This
expression, viewed as a function of δ, reaches its unique maximum for 0 < δ < 1
at δ = 1

k+1 . Hence, 2 − 1
k+1 is the maximum fractional s-t-flow value for the given

length-bound and the above constructed flow is unique.

For length-bounded flows, there is a surprising structural difference between
integrality of path and edge representations, stated in the next theorem.

THEOREM 4.5. There exist directed and undirected series-parallel graphs
such that a (maximum) fractional length-bounded flow has an integral edge repre-
sentation but does not have an integral length-bounded path representation.

PROOF. For the sake of simplicity, we start by proving an analogous result
for graphs with general edge capacities, and then describe how to modify the
construction for unit-capacity graphs. Consider the undirected graph in Figure 10
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FIG. 10. A unit-length graph with an integral edge flow of value 4 that corresponds to a maximum
fractional 6-length-bounded path flow but which has no integral 6-length-bounded path decomposi-
tion: edge vt has capacity 3; all other edges have unit capacity.

and a length-bound L = 6. (For the directed case, direct edges from left to right.)
We show that there exists a 6-length-bounded s-t-flow of value 4 with an integral
edge representation and that no 6-length-bounded s-t-flow of value 4 has an integral
path representation.

We send half a unit of flow along each of the two 6-length-bounded paths
avoiding the edge vt . All remaining 6-length-bounded paths contain the edge vt
and may use up to two detours from the shortest s-v-paths. Consider only paths
using exactly two detours. There are three of them using the upper-left-side part and
three using the lower-left-side part of the graph. In each triple, every two of them
share a detour, and no two of them share an edge from the shortest s-v-paths. We
send half a unit of flow along each of these six paths. Altogether we get a feasible
6-length-bounded s-t-flow of value 8

2 = 4 with integral edge representation; note
that the path representation is half-integral.

Assume now that there is a 6-length-bounded s-t-flow of value 4 that has an
integral path representation. All edges must have flow value 1 in such a flow. Since
the shortest s-v-path has length 3, each s-t-path not using edge vt must go along
one of the two shortest s-v-paths. An integral 6-length-bounded s-t-flow of value 4
must send one unit of flow along this path. Assume that this path uses the upper
half of the graph. Then each additional path in the upper half of the graph has
length 7 and is therefore infeasible. Thus, no integral 6-length-bounded s-t-flow
has value 4.

To prove the theorem for unit-capacity graphs, we replace the edge vt by three
paths of length 2 and the v-t-path of length 3 by a path of length 4, and we increase
the length bound to 7.

Baier [2003] showsed that the fractional length-bounded flow problem can be
approximated within arbitrary precision. Having this in mind, it is interesting how
far the value of such a fractional solution is away from the maximum integral
solution. We note that the hardness results in Guruswami et al. [2003] imply for
directed graphs an integrality gap of order %(n1/2−ε), for every ε > 0.

THEOREM 4.6. The integrality gap of the linear program (2) is of order %(
√

n)
even for directed or undirected planar graphs with n nodes.

PROOF. For each k we describe an undirected graph Gk on n = !(k2) vertices
such that the maximum integral length-bounded flow (integral with respect to the
path-representation) has value 1 while the maximum fractional length-bounded
flow has value %(

√
n). For ease of presentation, we first allow integral edge lengths

and then at the end of the proof we explain how to modify the construction for unit
lengths. The construction is inspired by Guruswami et al. [2003] and Kleinberg
[1996].
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FIG. 11. A graph with a large integrality gap for the maximum length-bounded s-t-flow.

The basic structure is half of a k − 1 by k − 1 grid (see Figure 11). The top
row has k − 1 columns, and each subsequent row has one column less than the
previous one. Each element of the grid (gray ellipse) consists of two nodes (a left
node and a right node). In addition, there are k nodes s1, . . . , sk arranged vertically,
and k nodes t1, . . . , tk arranged horizontally, and two nodes s and t . The node s is
connected to all si nodes and the node t is connected to all ti nodes. For each grid
element, its left and right nodes are connected by a horizontal edge (drawn dashed).
Further horizontal edges connect the right node of a grid element to the left node
of the grid element to the right (if any), and vertical edges connect the right node
of a grid element to the left node of the grid element above (if any). Furthermore,
for 2 ≤ i ≤ k, si is connected by a horizontal edge to the left node of the first grid
element in the corresponding row, and, for 1 ≤ i ≤ k − 1, ti is connected by a
vertical edge to the right node of the top grid element in the corresponding column.
Finally, there are diagonal edges connecting the right node of the rightmost grid
element in each row (or s1) to the left node of the rightmost grid element in the row
above (or to tk).

All edges have capacity 1. All edges except those adjacent to s or t have length 1.
The edges {s, si } and {t, tk+1−i } are assigned length 2i , for i = 1, . . . , k. As length
bound we choose L = 4k + 1.

Consider an s-t-path P of length at most L . Assume that P does not contain a
diagonal edge. Let {s, si } and {t j , t} be the first and last edge of P , respectively.
Because of the grid structure of the graph Gk , it is easy to see that, between si and
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t j , the path P must use at least k − i + 1 vertical edges and at least 2 j + (k − i)
horizontal edges. Together with the lengths of the edges {s, si } and {t j , t}, path P
has length at least k − i + 1 + 2 j + (k − i) + 2i + 2(k + 1 − j) = 4k + 3 > L , a
contradiction. Thus, each L-length-bounded s-t-path must contain a diagonal edge.
It is easy to see that any two such paths must share an edge. Therefore, there are
no two edge disjoint s-t-paths of length at most L .

The i th canonical path, for 1 ≤ i ≤ k, is the path starting in s, going to si and
then horizontally to the right end of the row, then using one diagonal edge, and then
going vertically up to t via {ti , t} (using one horizontal dashed edge in each row it
passes through). The length of the i th canonical path is exactly L . Since each pair
of such canonical paths shares a different single edge, we can feasibly send half
a unit of flow along each of them. That is, there is a fractional L-length-bounded
s-t-flow of value k/2.

Since the maximum number of edge-disjoint L-length-bounded s-t-paths is 1,
the gap between a maximum integral and a maximum fractional flow is at least k/2.
Since k is of size !(

√
n), this shows the lemma for integer edge lengths. If we

subdivide each edge of length & into a path with & unit-length edges, we increase
the number of nodes by a constant factor only and obtain the same result for unit
lengths.

Directed graphs with the same integrality gap can be obtained by directing the
edges from the undirected construction above in the following way: horizontal
edges toward the right, vertical and diagonal edges toward the top.

The big integrality gap in Theorem 4.6 is tied to the unit-capacities of the graph
used in the proof. Raising the edge capacities in this graph to 2 brings the integrality
gap down to a constant. Indeed, the integrality gap is always constant for high-
capacity graphs. The following result is a consequence of the randomized rounding
technique of Raghavan and Thompson [1987].

THEOREM 4.7. Consider a directed or undirected graph with minimal edge
capacity at least c log n, for a suitable constant c. Using randomized rounding, one
can convert any fractional length-bounded flow into an integral length-bounded
flow whose value is at most a constant factor smaller (with high probability). In
particular, the integrality gap is constant for high-capacity graphs.

5. Open Problems

In the Introduction and in Section 4.1 we mentioned that for graphs with unit
lengths it is possible to compute a maximum fractional length-bounded flow in
polynomial time using linear programming. However, we are not aware of a com-
binatorial algorithm for this problem. Even worse, a combinatorial algorithm that
would decide in polynomial time whether a given length-bounded flow with a path
representation is maximum has not been found either.

Another problem is to design an approximation algorithm for the minimum
length-bounded cut with an approximation factor better than L/2.
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