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Abstract. We present a new class of randomized approximation algorithms for unrelated parallel
machine scheduling problems with the average weighted completion time objective. The key idea is
to assign jobs randomly to machines with probabilities derived from an optimal solution to a linear
programming (LP) relaxation in time-indexed variables. Our main results are a (2+ε)-approximation
algorithm for the model with individual job release dates and a (3/2+ε)-approximation algorithm if all
jobs are released simultaneously. We obtain corresponding bounds on the quality of the LP relaxation.

It is an interesting implication for identical parallel machine scheduling that jobs are randomly
assigned to machines, in which each machine is equally likely. In addition, in this case the algorithm
has running time O(n logn) and performance guarantee 2. Moreover, the approximation result for
identical parallel machine scheduling applies to the on-line setting in which jobs arrive over time as
well, with no difference in performance guarantee.
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1. Introduction. It is well known that randomization can help in the design
of (approximation) algorithms; cf., e. g., [28, 29]. The use of linear programs (LPs)
is one way of guiding randomness. In this paper, we give LP-based, randomized
approximation algorithms for parallel machine scheduling problems with the average
weighted completion time objective. A randomized ρ-approximation algorithm for a
minimization problem is a polynomial-time algorithm that produces for every instance
a feasible solution whose expected objective function value is within a factor of ρ of
the optimum; ρ is also called the (expected) performance guarantee of the algorithm.
Most often, we actually compare the output of an algorithm to a lower bound given
by an optimal solution to a certain LP relaxation. Hence, at the same time we obtain
a result on the quality of the respective LP. All of our off-line algorithms can be
derandomized with no difference in performance guarantees, but at the expense of
increased yet still polynomial running times.

We consider the following scheduling model. We are given a set J of n jobs and
m unrelated parallel machines. The processing time of job j depends on the machine
on which j will be processed; it is a positive integer pij on machine i. Each job j
must be processed for the respective amount of time on one of the m machines and
may be assigned to any of them. Every machine can process at most one job at a
time. Each job j also has an integral release date rj � 0 before which it cannot be
started. We denote the completion time of job j in a schedule S by CS

j ; we also
use Cj if no confusion is possible as to which schedule we refer. The objective is to
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minimize the total weighted completion time: a weight wj � 0 is associated with
each job j, and the goal is to find a schedule S that minimizes

∑
j∈J wjC

S
j . The

classification scheme introduced by Graham et al. [19] offers a convenient way to refer
to individual scheduling problems. The problem that we just described is denoted
by R | rj |

∑
wjCj , and, if all jobs share the same release date, by R | | ∑wjCj .

We will also consider the special case of identical parallel machines, which arises
by assuming that, for each job j, pij = pj for all machines i. In general, we are
interested only in nonpreemptive schedules, in which each job must be processed
without interruption. Yet, for the identical parallel machine case we also discuss
preemptive schedules in which jobs may repeatedly be interrupted and continued
later, possibly on a different machine. Hence, the class of problems for which we will
present approximation algorithms includes P | | ∑wjCj , P | rj , pmtn |

∑
wjCj , and

P | rj |
∑

wjCj . These problems are strongly NP-hard [24, 25].

Scheduling to minimize the total weighted completion time (or, equivalently, the
average weighted completion time) has recently received a great deal of attention,
partly because of its importance as a classic objective function in scheduling but also
because of new applications, for instance, in compiler optimization [6] or in parallel
computing [4]. There has been significant progress in the design of approximation
algorithms for this class of problems. This progress essentially results from the use of
preemptive schedules to construct nonpreemptive ones and from solving an LP relax-
ation and then constructing a schedule by list scheduling in an order dictated by the
LP solution [5, 7, 9, 16, 17, 18, 20, 26, 27, 30, 33, 37, 42].

In this paper, we propose a new technique: random assignments of jobs to ma-
chines. In fact, we first introduce an LP relaxation in time-indexed variables for
the problem R | rj |

∑
wjCj , and we then show that a certain variant of randomized

rounding leads to an algorithm with performance guarantee 2. If all jobs are released
at the same time, R | | ∑wjCj , the performance guarantee of this algorithm is 3/2.
The latter observation was independently made by Chudak [8]. The corresponding LP
is a 2-relaxation and a 3/2-relaxation, respectively. That is, the true optimum is al-
ways within this factor of the optimal value of the LP relaxation. Our algorithm
improves upon a 16/3-approximation algorithm of Hall et al. [20], which is based on
a related interval-indexed LP relaxation. In contrast to their approach, our algo-
rithm does not rely on Shmoys and Tardos’s rounding technique for the generalized
assignment problem [39]. Rather, we exploit the LP by interpreting the values of the
LP variables in an optimal solution as probabilities with which jobs are assigned to
machines. For an introduction to randomized rounding and its application to other
combinatorial optimization problems, the reader is referred to [28, 34].

Since the time-indexed LP relaxation is of exponential size, we have to resort to
an interval-indexed formulation in order to obtain polynomial running times. The
resulting algorithm is a (2 + ε)-approximation algorithm for R | rj |

∑
wjCj , and a

(3/2 + ε)-approximation algorithm for R | | ∑wjCj , for any ε > 0. The second
author subsequently developed a different approach to overcome this difficulty. Based
on compact convex quadratic programming relaxations in assignment variables, the
same rounding technique yields a 2-approximation algorithm for R | rj |

∑
wjCj and

a 3/2-approximation algorithm for R | | ∑wjCj directly; see [41].

Actually, for P | rj |
∑

wjCj , our algorithm produces in time O(n log n) a solu-
tion that is expected to be within a factor of 2 of the optimum. Since the underlying
LP relaxation is also a relaxation of the corresponding preemptive problem, this al-
gorithm is a 2-approximation algorithm for P | rj , pmtn |

∑
wjCj as well. The best
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Table 1.1
Summary of performance guarantees for the minimization of the total weighted completion

time. The “Known” columns list the best previously known performance guarantees, whereas the
“New” columns list new results from this paper; “—” indicates the absence of a relevant result; and
ε is an arbitrarily small, positive constant. While the off-line results are achieved by deterministic
algorithms, all on-line results refer to randomized algorithms.

Off-line On-line
Model

Known New Known New

P | rj |
∑

Cj 2.85 [7] 2 2.89 + ε [5] 2
P | rj |

∑
wjCj 2.89 + ε [5] 2 2.89 + ε [5] 2

P | rj , pmtn | ∑Cj 2 [33] 2 2 [33] 2
P | rj , pmtn | ∑wjCj 3 [20] 2 — 2
R | | ∑wjCj 16/3 [20] 3/2 + ε — —
R | rj |

∑
wjCj 16/3 [20] 2 + ε — —

previously known approximation algorithms had performance guarantees of (2.89+ε)
and 3, respectively [5, 20]. In addition, our result implies that the value of an optimal
nonpreemptive schedule is at most twice the value of an optimal preemptive sched-
ule. Moreover, an optimal solution to the LP used in the case of identical parallel
machines is attained by the following preemptive schedule, which can be obtained
in a greedy manner. Consider a virtual single machine, which is m times as fast
as any of the original machines. At any point in time, schedule from the jobs that
are already released, but not yet completed, one with the largest ratio of weight to
processing time. We call this schedule the LP schedule. The idea of using a preemp-
tive relaxation on a virtual single machine was employed before by Chekuri et al. [7],
among others. They showed that any preemptive schedule on such a machine can
be converted into a nonpreemptive schedule on m identical parallel machines such
that the completion time of each job j in the nonpreemptive schedule is at most
(3− 1/m) times its preemptive completion time. For the problem of minimizing the
average completion time, P | rj |

∑
Cj , they refined this to a 2.85-approximation al-

gorithm. In the single-machine context, the LP schedule is the key ingredient of the
1.6853-approximation algorithm for 1 | rj |

∑
wjCj [17] and the 4/3-approximation

algorithm for 1 | rj , pmtn |
∑

wjCj [37].

Since an optimal solution to the LP relaxation can be obtained greedily, these
single-machine algorithms as well as our algorithm for identical parallel machine
scheduling also work in the corresponding on-line setting where jobs continually arrive
to be processed, and, for each time t, one must construct the schedule until time t
without any knowledge of the jobs that will arrive afterwards; our algorithm maintains
an (expected) competitive ratio of 2 for both the nonpreemptive and the preemptive
variant of this problem. A randomized on-line algorithm for a minimization problem
is ρ-competitive if it outputs for any instance a solution of expected value within a
factor of ρ of the value of an optimal off-line solution. A summary of our results, along
with a comparison to previously known performance guarantees, is given in Table 1.1.

Recently, Skutella and Woeginger [43] developed a polynomial-time approxima-
tion scheme for the problem P | | ∑wjCj that improves upon the previously best
known (1+

√
2)/2-approximation algorithm due to Kawaguchi and Kyan [23]. Subse-

quently, Afrati et al. [1] gave polynomial-time approximation schemes for the problem
P | rj |

∑
wjCj , its preemptive variant P | rj , pmtn |

∑
wjCj , and also for the corre-

sponding problems on a constant number of unrelated machines, Rm | rj |
∑

wjCj

and Rm | rj , pmtn |
∑

wjCj . On the other hand, Hoogeveen, Schuurman, and Woeg-
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inger [22] showed that the problems R | rj |
∑

Cj and R | | ∑wjCj are APX-hard;
hence, they do not possess a polynomial-time approximation scheme, unless P = NP.

The remainder of this paper is organized as follows. In section 2, we present our
main result: a pseudopolynomial-time algorithm with performance guarantee 2 in the
general context of unrelated parallel machine scheduling. We give a combinatorial
2-approximation algorithm for identical parallel machine scheduling in section 3 and
show how to use it in an on-line setting. Then, in section 4, we discuss the deran-
domization of the previously given randomized algorithms. Finally, in section 5, we
elaborate on the details of turning the pseudopolynomial-time algorithm of section 2
into a polynomial-time algorithm with performance guarantee 2 + ε. We conclude by
pointing out some open problems in section 6.

2. Scheduling unrelated parallel machines with release dates. In this
section, we consider the problem R | rj |

∑
wjCj . As in [20, 32, 41], we will actually

discuss a slightly more general problem, in which the release date of job j may also
depend on the machine i to which j is assigned, and is thus denoted by rij . Machine-
dependent release dates are relevant to model situations in which parallel machines
are connected by a network; each job is located at a given machine at date 0, and
cannot be started on another machine until sufficient time elapses to allow the job
to be transmitted to its new machine. This model, called network scheduling, was
introduced in [2, 10].

The problem R | rij |
∑

wjCj is strongly NP-hard; in fact, P 2 | |
∑

wjCj is NP-
hard, and 1 | rj |

∑
Cj as well as P | | ∑wjCj are strongly NP-hard [3, 25]. Phillips,

Stein, and Wein presented the first nontrivial approximation algorithm for this prob-
lem [32]. It has performance guarantee O(log2 n). Subsequently, Hall et al. [20] gave a
16/3-approximation algorithm that relies on an interval-indexed LP relaxation whose
optimal value serves as a surrogate for the true optimum in their analysis. We use
a related LP relaxation and construct feasible schedules from LP solutions by ran-
domized rounding, whereas Hall et al. invoke the deterministic rounding technique of
Shmoys and Tardos [39].

Let T + 1 = max i,j rij +
∑

j∈J max i pij be the time horizon. We introduce for
every job j ∈ J , every machine i = 1, . . . ,m, and every point t = rij , . . . , T in time
a variable yijt that represents the amount of time job j is processed on machine i
within the time interval (t, t + 1]. Equivalently, one can say that a yijt/pij -fraction
of job j is being processed on machine i within the time interval (t, t + 1]. The
LP relaxation, which is an extension of a single-machine LP relaxation considered by
Dyer and Wolsey [11], is as follows:

min
∑
j∈J

wjC
LP
j

s.t.

m∑
i=1

T∑
t=rij

yijt
pij

= 1 for all j,(2.1)

∑
j∈J

yijt � 1 for all i and t,(2.2)

CLP
j �

m∑
i=1

T∑
t=rij

(
yijt
pij

(
t+ 1

2

)
+ 1

2 yijt

)
for all j,(2.3)
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CLP
j �

m∑
i=1

T∑
t=rij

yijt for all j,(2.4)

yijt � 0 for all i, j, and t.

We refer to this LP relaxation as (LPR). Equation (2.1) ensures that the processing
requirement of every job is satisfied. The machine capacity constraints (2.2) express
that each machine can process at most one job at a time. For (2.3), consider an
arbitrary feasible schedule S in which job j is being continuously processed between
date CS

j − phj and CS
j on machine h. Then the right-hand side of (2.3) corresponds

to the real completion time CS
j of j if we assign the values to the LP variables yijt

as defined above; i.e., yijt = 1 if i = h and t ∈ {CS
j − phj , . . . , C

S
j − 1}, and yijt = 0

otherwise. The right-hand side of (2.4) equals the processing time phj of job j in
the schedule S and is therefore a lower bound on its completion time CS

j . Hence,
(LPR) is a relaxation of the scheduling problem R | rij |

∑
wjCj . In fact, even the

corresponding mixed-integer program, where the y-variables are forced to be binary,
is only a relaxation—it allows preemptions of jobs, and a job may use the capacity of
more than one machine at a time.

Due to the exponentially large number of variables, the linear programming re-
laxation (LPR) cannot be solved in time polynomial in the input size of an instance of
the problem R | rij |

∑
wjCj . Therefore, the running time of the following algorithm,

which turns an optimal LP solution into a feasible schedule, is only pseudopolyno-
mial. In particular, the results on the quality of the computed schedule that we prove
in the remainder of this section do not directly lead to an approximation algorithm
for the considered scheduling problem. However, we can overcome this drawback by
introducing new variables that are not associated with exponentially many time in-
tervals of length 1 but rather with a polynomial number of intervals of geometrically
increasing size. We discuss the technical details of this remedy in section 5.

The following algorithm takes an optimal LP solution and then constructs a fea-
sible schedule by using a variant of randomized rounding.

Algorithm LP Rounding.
(1) Compute an optimal solution y to (LPR).
(2) For all j ∈ J , assign job j to a machine-time pair (i, t), where

the machine-time pair is chosen from the probability distribution
that assigns job j to (i, t) with probability

yijt

pij
; set tj := t.

(3) Schedule on each machine i the jobs that were assigned to it non-
preemptively as early as possible in order of nondecreasing tj ;
ties are broken independently at random.

In the analysis of the algorithm, we assume that the random decisions for different
jobs in step (2) are pairwise independent.

Lemma 2.1. The expected completion time E[Cj ] of job j in the schedule con-
structed by Algorithm LP Rounding can be bounded from above by

E[Cj ] � 2

m∑
i=1

T∑
t=rij

yijt
pij

(t+ 1
2 ) +

m∑
i=1

T∑
t=rij

yijt.

If all jobs are released at date 0 on all machines, the following stronger bound holds:

E[Cj ] �
m∑
i=1

T∑
t=0

yijt
pij

(t+ 1
2 ) +

m∑
i=1

T∑
t=0

yijt.(2.5)
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Proof. We start by analyzing the structure of a schedule produced by Algo-
rithm LP Rounding. We consider an arbitrary but fixed job j ∈ J and denote the
machine-time pair to which job j has been assigned by (i, t). Let τ � 0 be the earliest
point in time such that there is no idle time in the constructed schedule during (τ, Cj ]
on machine i. Let K be the set of jobs processed in this time interval on machine i;
hence ∑

k∈K

pik = Cj − τ.(2.6)

Since all jobs k ∈ K are started no later than j, they must have been assigned to
machine-time pairs (i, tk) with tk � t. In particular, rik � tk � t for all k ∈ K, and
therefore τ � t. Together with (2.6) we obtain

Cj � t+
∑
k∈K

pik.

To analyze the expected completion time E[Cj ] of job j, we first keep the assignment
of j to machine-time pair (i, t) fixed and prove a bound on the conditional expecta-
tion Ei,t[Cj ]:

Ei,t[Cj ] � t+ Ei,t

[∑
k∈K

pik

]
� t+ pij +

∑
k �=j

pik · Pri,t[k on i before j]

= t+ pij +
∑
k �=j

pik

(
t−1∑
�=rik

yik�
pik

+
1

2

yikt
pik

)

(Note that the factor 1
2 before the term

yikt

pik
results from breaking ties randomly.)

� t+ pij + (t+
1
2 ) � 2 (t+ 1

2 ) + pij .

The second but last inequality follows from the machine capacity constraints (2.2).
Finally, unconditioning the expectation by the formula of total expectation leads to

E[Cj ] =

m∑
i=1

T∑
t=rij

yijt
pij

Ei,t[Cj ] � 2

m∑
i=1

T∑
t=rij

yijt
pij

(t+ 1
2 ) +

m∑
i=1

T∑
t=rij

yijt.

In the absence of nontrivial release dates, we can prove a stronger bound. Observe
that τ = 0 and Cj =

∑
k∈K pik in this case. This yields Ei,t[Cj ] � pij + (t +

1
2 ) and

eventually the claimed result.
Theorem 2.2. For instances of R | rij |

∑
wjCj, the expected objective function

value of the schedule constructed by Algorithm LP Rounding is at most twice the
value of an optimal solution.

Proof. Lemma 2.1 together with constraints (2.3) implies that the expected
completion time of every job j is bounded from above by twice its LP completion
time CLP

j . Since the optimal LP value is a lower bound on the value of an opti-
mal schedule and the weights are nonnegative, the result follows from linearity of
expectations.

Note that Theorem 2.2 still holds if we use the weaker LP relaxation where con-
straints (2.4) are missing. However, this is not true for the following result.
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Theorem 2.3. For instances of R | | ∑wjCj, Algorithm LP Rounding con-
structs a schedule of expected objective function value at most 3/2 times the value of
an optimal schedule.

Proof. The claimed result follows from Lemma 2.1 and LP constraints (2.3)
and (2.4).

In the absence of nontrivial release dates, Algorithm LP Rounding can be im-
proved and simplified.

Algorithm LP Simple Rounding.
(1) Compute an optimal solution y to (LPR).
(2) For all j ∈ J , assign job j to a machine i, where machine i is

chosen from the probability distribution that assigns job j to i
with probability

∑T
t=0

yijt

pij
.

(3) Sequence on each machine i the assigned jobs in order of non-
increasing ratios wj/pij .

Again, the random decisions in step (2) are performed pairwise independently.

Corollary 2.4. For instances of R | | ∑wjCj, the approximation result of
Theorem 2.3 also holds for Algorithm LP Simple Rounding.

Proof. Notice that the random assignment of jobs to machines is identical in Algo-
rithms LP Rounding and LP Simple Rounding. Moreover, for a fixed assignment
of jobs to machines, sequencing the jobs according to Smith’s ratio rule [44] on each
machine is optimal. In particular, it improves upon the random sequence used in the
final step of Algorithm LP Rounding.

In the analysis, we have compared the value of the solution computed by Algo-
rithm LP Rounding to the optimal LP value, which is a lower bound on the value
of an optimal solution. Hence, we obtain the following result on the quality of the
LP relaxation.

Corollary 2.5. The linear program (LPR) is a 2-relaxation for R | rij |
∑

wjCj

(even without constraints (2.4)) and a 3
2 -relaxation for R | | ∑wjCj.

We show in the following section that (LPR) without constraints (2.4) is not
better than a 2-relaxation, even for instances of P | | ∑wjCj . On the other hand, the
relaxation can be strengthened by adding the constraints

m∑
i=1

yijt � 1 for j ∈ J , t = 0, . . . , T .(2.7)

These constraints ensure that no job can use the capacity of more than one machine
in each time period. We do not know whether these constraints can be used to get
provably stronger results on the quality of the LP relaxation and better performance
guarantees for Algorithm LP Rounding.

In section 5, we eventually derive from Theorems 2.2 and 2.3 a (2+ε)-approxima-
tion algorithm for the problem R | rij |

∑
wjCj and a (3/2 + ε)-approximation algo-

rithm for R | | ∑wjCj .

The techniques presented in this section (and in section 5) can be modified to
design approximation algorithms for the corresponding preemptive scheduling prob-
lems as well. Notice that, although the LP relaxation (LPR) allows preemptions of
jobs, it is not a relaxation of R | rij , pmtn |

∑
wjCj ; one can easily show (see, e. g.,

[40, Example 2.10.8.]) that the right-hand side of (2.3) can in fact overestimate the
actual completion time of a job in the preemptive schedule corresponding to a solu-
tion of (LPR). However, replacing (2.3) with the following slightly weaker constraint
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yields an LP relaxation for the preemptive scheduling problem:

CLP
j �

m∑
i=1

T∑
t=rij

yijt
pij

(
t+ 1

2

)
for all j ∈ J .

This leads to a (3 + ε)-approximation algorithm for R | rij , pmtn |
∑

wjCj and a
(2 + ε)-approximation algorithm for R |pmtn | ∑wjCj . These results can again be
slightly improved by using convex quadratic programming relaxations; see [41].

In the next section, we consider the special case of identical parallel machines and
give a different interpretation of Algorithm LP Rounding in terms of so-called α-
points. The following variant of Algorithm LP Rounding will be useful in this
context.

Remark 2.6. The following is an equivalent way of breaking ties randomly in the
last step of Algorithm LP Rounding: At the end of the second step, draw tj from
the interval (t, t+1] independently at random with uniform distribution; then, in the
last step, ties occur with probability zero and can therefore be neglected.

3. Identical parallel machine scheduling with release dates. We now con-
sider the special case of m identical parallel machines. The processing time and the
release date of job j no longer depend on the machine job j is assigned to; consequently,
they are denoted by pj and rj , respectively. As mentioned before, even P 2 | |

∑
wjCj

is NP-hard. We consider P | rj |
∑

wjCj .

In this context, we can turn Algorithm LP Rounding into a purely combinatorial
algorithm. Following earlier work (see, e.g., Eastman, Even, and Isaacs [12]), we first
reduce an identical parallel machine instance to a single-machine instance. Here, the
single machine is assumed to be m times as fast as each of the original m machines;
i.e., the processing time of job j on this virtual single machine is p′j := pj/m. (We
assume without loss of generality that pj is a multiple of m.) Its weight and its release
date remain the same. The crucial part of our algorithm is to assign jobs to machines
uniformly at random. Then, on each machine, we schedule the assigned jobs in order
of random α-points with respect to the LP schedule on the fast single machine.

For 0 < α � 1, the α-point CS
j (α) of job j with respect to a given preemptive

schedule S on the fast single machine is the first point in time when an α-fraction
of job j has been completed, i.e., when j has been processed for α · p′j time units.
In particular, CS

j (1) = CS
j , and for α = 0 we define CS

j (0) to be the starting time
of job j. Slightly varying notions of α-points were considered in [21, 33], but their
full potential was revealed when Chekuri et al. [7] as well as Goemans [16] chose the
parameter α at random. The following procedure may be seen as an extension of their
single-machine algorithms to identical parallel machines.

Algorithm Random Assignment.
(1) Construct the preemptive LP schedule S on the virtual single

machine by scheduling, at any point in time, among the already
released but not yet completed jobs the one with largest wj/p

′
j

ratio.
(2) Independently, for all j ∈ J , assign job j to a machine i ∈

{1, . . . ,m}, where machine i is chosen from the probability dis-
tribution that assigns job j to i with probability 1

m .
(3) For all j ∈ J , let αj be a realization of an independent, uniformly

distributed random variable in [0, 1].
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(4) Schedule on each machine i the assigned jobs nonpreemptively
as early as possible in order of nondecreasing CS

j (αj).
Notice that in the first step, whenever a job is released, the job being processed (if
any) will be preempted if the released job has a larger wj/p

′
j ratio; here, the p′j

values are the original processing times and not the remaining processing times. The
appendix provides an illustration of Algorithm Random Assignment. Its running
time is dominated by the computation of the preemptive LP schedule in the first step,
which can be done in O(n log n) time using a priority queue [16].

We will show in the following that Algorithm Random Assignment can be in-
terpreted as the reformulation of Algorithm LP Rounding discussed in Remark 2.6.
We notice first that the preemptive LP schedule on the virtual single machine corre-
sponds to an optimal solution to an LP relaxation which is equivalent to (LPR). We
introduce a variable yjt for every job j and every time period (t, t+1], t = rj , . . . , T ;
the variable yjt is set to 1/m if job j is being processed on one of the m machines
in this period and to 0 otherwise. In contrast to the unrelated parallel machine case,
we do not need machine-dependent variables, since it is not necessary to distinguish
between the identical parallel machines. We can express the new variables yjt with
the help of the old variables yijt by setting yjt =

1
m (y1jt + · · · + ymjt) for j ∈ J ,

t = rj , . . . , T . This leads to the following simplified LP (ignoring constraints (2.4)
of (LPR)):

min
∑
j∈J

wjC
LP
j

s.t.

T∑
t=rj

yjt = p′j for all j ∈ J ,

(LPP)
∑
j∈J

yjt � 1 for t = 0, . . . , T ,

CLP
j =

pj
2
+
1

p′j

T∑
t=rj

yjt
(
t+ 1

2

)
for all j ∈ J ,

yjt � 0 for all j ∈ J and t = rj , . . . , T .

Dyer and Wolsey noticed that this linear program can be solved in O(n log n) time
for the special case m = 1 [11]. Goemans showed (also for the case m = 1) that the
preemptive schedule that is constructed in the first step of Algorithm Random As-
signment defines an optimal solution to (LPP) [15]. This result as well as its proof
easily generalize to an arbitrary number of identical parallel machines.

Lemma 3.1. For instances of P | rj |
∑

wjCj, the preemptive LP schedule on the
fast single machine is an optimal solution to relaxation (LPP). Moreover, it can be
computed in O(n log n) time.

Theorem 3.2. Random Assignment is a randomized 2-approximation algo-
rithm for P | rj |

∑
wjCj.

Proof. We show that Algorithm Random Assignment can be interpreted as a
special case of the variant of Algorithm LP Rounding discussed in Remark 2.6. The
result then follows from its polynomial running time and Theorem 2.2.

Lemma 3.1 implies that we compute in the first step of Algorithm Random As-
signment an optimal solution to the LP relaxation (LPP), which is equivalent to
(LPR) without constraints (2.4). In particular, the corresponding solution to (LPR)
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is symmetric with regard to the m machines. Therefore, Algorithm LP Rounding
assigns each job uniformly at random to one of the machines. The symmetry also
yields that for each job j the choice of tj is not correlated with the choice of i in
Algorithm LP Rounding.

Next we observe that the probability distributions of the random variable tj
in Algorithm LP Rounding and of CS

j (αj) in Algorithm Random Assignment

are the same. In fact, the probability that CS
j (αj) ∈ (t, t + 1] for some t equals

the fraction yjt/p
′
j of job j that is being processed in this time interval. Moreover,

each point in (t, t + 1] is equally likely to be obtained by CS
j (αj). Therefore, the

random choice of CS
j (αj) in Algorithm Random Assignment is an alternate way

of choosing tj as described in Algorithm LP Rounding. Consequently, the two
algorithms coincide for the identical parallel machine case. The result eventually
follows from Theorem 2.2.

At this point, let us briefly compare the approximation results of this section for
the single-machine case (m = 1) with related results. If we work only with one α for all
jobs instead of individual and independent αj ’s, and if we draw α uniformly from [0, 1],
then Random Assignment coincides with Goemans’s randomized 2-approximation
algorithm Randomα for 1 | rj |

∑
wjCj [16]. Goemans et al. have improved this result

to performance guarantee 1.6853 by using job-dependent αj ’s (as in Algorithm Ran-
dom Assignment) together with a nonuniform choice of the αj ’s [17]. The latter idea
can also be applied in the parallel machine setting to obtain a performance guarantee
better than 2 for Algorithm Random Assignment. However, this improvement de-
pends on m. A comprehensive overview of the use of α-points for machine scheduling
problems can be found in [40, Chapter 2].

We have already argued in the previous section that (LPR), and thus (LPP), is a
2-relaxation of the scheduling problem under consideration.

Corollary 3.3. The relaxation (LPP) is a 2-relaxation of the scheduling prob-
lem P | rj |

∑
wjCj. This bound is tight, even for P | | ∑wjCj.

Proof. The positive result follows from Corollary 2.5. For the tightness of this
bound, consider an instance withmmachines and one job of lengthm and unit weight.
The optimal LP completion time is (m+ 1)/2, whereas the optimal completion time
is m. When m goes to infinity, the ratio of the two values converges to 2.

The following lemma helps to extend Theorem 3.2 and Corollary 3.3 to the cor-
responding preemptive scheduling problem.

Lemma 3.4. Linear program (LPP) is a relaxation of the preemptive scheduling
problem P | rj , pmtn | ∑wjCj.

Proof. Since all release dates and processing times are integral, there exists an
optimal preemptive schedule where preemptions only occur at integral points in time.
Take such an optimal schedule S and construct the corresponding feasible solution
to (LPP) by setting yjt = 1/m if job j is being processed on one of the m machines
within the interval (t, t+ 1], and yjt = 0 otherwise. We observe that C

LP
j � CS

j , and

equality holds if and only if job j is continuously processed in the interval (CS
j −pj , C

S
j ].

Thus, the value of the constructed solution to (LPP) is a lower bound on the value of
an optimal schedule.

Corollary 3.5. For instances of P | rj , pmtn | ∑wjCj, the value of the (non-
preemptive) schedule produced by Algorithm Random Assignment is at most twice
the value of an optimal preemptive schedule. Moreover, (LPP) is a 2-relaxation of this
scheduling problem. This bound is tight.

Another consequence is the following result on the power of preemption.
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Corollary 3.6. For identical parallel machine scheduling with release dates
so as to minimize the weighted sum of completion times, the value of an optimal
nonpreemptive schedule is at most twice the value of an optimal preemptive schedule.

Moreover, for identical parallel machines, steps two and three of Algorithm LP
Rounding can be used to convert an arbitrary preemptive schedule into a nonpre-
emptive one such that the objective function value increases at most by a factor of 2:
for a given preemptive schedule, construct the corresponding solution to (LPR). The
value of this feasible solution to the LP relaxation is a lower bound on the value
of the given preemptive schedule. (As discussed at the end of section 2, this is in
general not true for unrelated parallel machines.) Using Algorithm LP Rounding,
the solution to (LPR) can be turned into a nonpreemptive schedule whose expected
value is bounded by twice the value of the LP solution and thus by twice the value of
the preemptive schedule we started with. This improves upon a bound of 7/3 due to
Phillips et al. [31].

Several different on-line paradigms have been studied in the area of scheduling;
see [38] for a survey. We consider the setting where the only on-line feature is the lack
of knowledge of jobs arriving in the future. In particular, the processing time and
the weight of a job become known at its arrival. Let us show that Algorithm Ran-
dom Assignment can easily be turned into an on-line algorithm. First, note that we
can immediately determine αj when job j is released; this drawing does not depend
on any other decision of the algorithm. The same argument holds for the random
machine assignment. Moreover, we can construct the LP schedule until time t with-
out any knowledge of jobs that are released afterwards. Finally, it follows from the
analysis in the proof of Lemma 2.1 that we obtain the same performance guarantee
if job j is not started before time tj = CS

j (αj). Thus, we modify step four in the
on-line variant of Algorithm Random Assignment: on each machine we schedule
the assigned jobs as early as possible in order of nondecreasing CS

j (αj), with the ad-

ditional constraint that no job j may start before time CS
j (αj). This technique was

introduced in a similar context in [33].
Corollary 3.7. The on-line variant of Algorithm Random Assignment has

competitive ratio 2.
One appealing aspect of Algorithm Random Assignment is that the assignment

of jobs to machines does not depend on job characteristics; a job is put with proba-
bility 1/m to any of the machines. This technique also proves useful for the problem
without release dates.

Theorem 3.8. Assigning jobs independently and uniformly at random to the ma-
chines and then applying Smith’s ratio rule on each machine is a 3/2-approximation
algorithm for P | | ∑wjCj. There exist instances for which this bound is asymptoti-
cally tight.

Proof. First, notice that the described algorithm is identical to Algorithm Ran-
dom Assignment and therefore to the variant of LP Rounding discussed in Re-
mark 2.6. Because of the negative result in Corollary 3.3, we cannot derive the bound
of 3/2 by comparing the expected value of the computed solution to the optimal value
of (LPP). Remember that we used a stronger relaxation including constraints (2.4)
in order to derive this bound in the unrelated parallel machine setting. However,
Lemma 2.1 implies that

E[Cj ] � CLP
j + 1

2pj

because the second term on the right-hand side of (2.5) is equal to pj for the case of
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identical parallel machines. Since both
∑

j wjC
LP
j and

∑
j wjpj are lower bounds on

the value of an optimal solution, the result follows.

In order to show that this performance guarantee is tight, we consider instances
with m identical parallel machines and m jobs of unit length and weight. We obtain
an optimal schedule with value m by assigning one job to each machine. On the
other hand, we can show that the expected completion time of a job in the schedule
constructed by Algorithm Random Assignment is 3

2 − 1
2m , which converges to

3
2

for increasing m. Since the ratio wj/pj equals 1 for all jobs, we can without loss of
generality schedule on each machine the jobs that were assigned to it in random order.
Consider a fixed job j and the machine i it has been assigned to. The probability that
a job k �= j was assigned to the same machine is 1/m. In this case, job k is processed
before j with probability 1/2. We therefore get E[Cj ] = 1+

∑
k �=j

1
2m = 3

2 − 1
2m .

Interestingly, the derandomized variant of the algorithm considered in Theo-
rem 3.8 coincides with the WSPT-rule: sort the jobs according to nonincreasing
ratios wj/pj and schedule the next job from this list whenever a machine becomes
available. Kawaguchi and Kyan proved that this algorithm has performance guar-
antee (1 +

√
2)/2 ≈ 1.21 [23]. While their proof is somewhat intricate, our simpler,

probabilistic analysis yields a performance guarantee of 3/2. However, this weaker
result also follows from the work of Eastman, Even, and Isaacs [12]. They gave a com-
binatorial lower bound for P | | ∑wjCj that coincides with the lower bound obtained
from (LPP). The latter observation is due to Uma and Wein [46] and Williamson [49].
Details on the derandomization are given in the next section.

4. Derandomization. The hitherto presented algorithms are randomized and
compute feasible schedules whose expected value can be bounded from above. While
this shows that our algorithms perform well on average, we cannot give firm guarantees
for the performance of a single execution. In certain situations, it may be more de-
sirable to have deterministic algorithms with bounded worst-case ratio. Fortunately,
there exists a deterministic version of every algorithm proposed in this paper that
maintains the performance guarantee of its randomized companion, as we are about
to illustrate now. We can derandomize the randomized algorithms in this paper by
using the method of conditional probabilities. The method of conditional probabil-
ities is one of the most important techniques for derandomization. This method is
implicitly contained in a paper of Erdős and Selfridge [14] and was extended to a
more general context by Spencer [45]. It considers the random decisions one after
the other and chooses the most promising alternative at every decision point. Here,
it is assumed that all remaining decisions are random. Thus, an alternative is said
to be most promising if the corresponding conditional expected objective function
value is smallest. We shall demonstrate this technique for the most general problem,
R | rij |

∑
wjCj , and Algorithm LP Rounding.

Our analysis of Algorithm LP Rounding in the proof of Lemma 2.1 does not
give a precise expression for the expected value of the computed solution but only an
upper bound. Hence, we modify Algorithm LP Rounding by replacing its last step
with the following variant:

(3’) Schedule on each machine i the assigned jobs nonpreemptively
in order of nondecreasing tj ; ties are broken by preferring jobs
with smaller indices. At the starting time of job j, the amount
of idle time on its machine has to be exactly tj .

Since rij � tj for each job j that has been assigned to machine i and tj � tk if
job k is scheduled after job j, step (3’) defines a feasible schedule. In the proof of
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Lemma 2.1, we have bounded the idle time before the start of job j from above by tj .
Thus, the analysis still works for the modified version of Algorithm LP Rounding.
The advantage of the modification is that we are now in a position to give precise
expressions for the expectations and conditional expectations of completion times.

Let y be an optimal solution to (LPR). Using the same arguments as in the proof
of Lemma 2.1, we obtain the following expression for the expected completion time
of job j in the schedule output by the modified Algorithm LP Rounding:

E[Cj ] =

m∑
i=1

T∑
t=rij

yijt
pij


pij + t+

∑
k �=j

t−1∑
�=rik

yik� +
∑
k<j

yikt


 .

Moreover, we are also interested in the conditional expectation of j’s completion time
if some of the jobs have already been assigned to a machine-time pair. Let K ⊆ J
be such a subset of jobs. For each job k ∈ K, let the 0/1-variable xikt for t � rik
indicate whether k has been assigned to the machine-time pair (i, t) (i.e., xikt = 1) or
not (xikt = 0). This enables us to give the following expressions for the conditional
expectation of j’s completion time. If j �∈ K, we have

EK,x[Cj ] =

m∑
i=1

T∑
t=rij

yijt
pij

(
pij + t+

∑
k∈K

t−1∑
�=rik

xik�pik +
∑

k∈K, k<j

xiktpik

+
∑

k∈J\(K∪{j})

t−1∑
�=rik

yik� +
∑

k∈J\K, k<j

yikt

)
,

(4.1)

and, if j ∈ K, we obtain

EK,x[Cj ] = pij + t+
∑
k∈K

t−1∑
�=rik

xik�pik +
∑

k∈K, k<j

xiktpik

+
∑

k∈J\K

t−1∑
�=rik

yik� +
∑

k∈J\K, k<j

yikt,

(4.2)

where (i, t) is the machine-time pair job j has been assigned to, i.e., xijt = 1. The
following lemma is the most important part of derandomizing Algorithm LP Round-
ing.

Lemma 4.1. Let y be an optimal solution to (LPR), K ⊆ J , and let x be a
fixed assignment of the jobs in K to machine-time pairs. Furthermore, let j ∈ J \K.
Then there exists an assignment of j to a machine-time pair (i, t) (i.e., xijt = 1)
with rij � t such that

EK∪{j},x

[∑
�

w�C�

]
� EK,x

[∑
�

w�C�

]
.(4.3)

Proof. Using the formula of total expectation, the conditional expectation on
the right-hand side of (4.3) can be written as a convex combination of conditional
expectations EK∪{j},x

[∑
� w�C�

]
over all possible assignments of job j to machine-

time pairs (i, t) with coefficients
yijt

pij
. The best one satisfies (4.3).

Lemma 4.1 leads to a derandomized version of Algorithm LP Rounding if we
replace the second step by the following variant:
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(2’) Set K := ∅; x := 0; for all j ∈ J do
(i) for all possible assignments of j to machine-time pairs (i, t)

(i.e., xijt = 1) compute EK∪{j},x
[∑

� w�C�

]
;

(ii) determine the machine-time pair (i, t) that minimizes the
conditional expectation in (i);

(iii) set K := K ∪ {j}; xijt = 1.
Notice that we have replaced step (3) of Algorithm LP Rounding by (3’) only to
give a more accessible analysis of its derandomization. Since the value of the schedule
constructed in step (3) is always at least as good as the one constructed in step (3’), the
following theorem can be formulated for Algorithm LP Rounding with the original
step (3).

Theorem 4.2. If we replace step (2) in Algorithm LP Rounding with (2’),
we obtain a deterministic algorithm with performance guarantee 2 for R | rij |

∑
wjCj

and with performance guarantee 3/2 for R | | ∑wjCj. Moreover, the running time of
this algorithm is polynomial in the number of variables of (LPR).

Proof. The result follows by an inductive use of Lemma 4.1 and from Theorems 2.2
and 2.3. The computation of (4.1) and (4.2) is polynomially bounded by the number
of variables. Therefore, the running time of each of the n iterations in step (2’) is
polynomially bounded by this number as well.

The same derandomization process also works for the polynomial-time approx-
imation algorithms in section 5 that are based on interval-indexed LP relaxations.
Since these LP relaxations contain only a polynomial number of variables, the run-
ning time of the derandomized algorithms is polynomially bounded in the input size
of the scheduling problem.

The derandomization of Algorithm Random Assignment for P | | ∑wjCj by
the method of conditional probabilities leads to an interesting result, as indicated
at the end of section 3. It essentially follows from the considerations above that
the derandomized version of this algorithm assigns each job to the machine with the
smallest load. If we consider the jobs in order of nonincreasing ratios wj/pj , the
resulting algorithm coincides with the WSPT-rule.

5. Interval-indexed LP relaxations. We pointed out earlier that the LP-
based Algorithms LP Rounding and LP Simple Rounding for unrelated parallel
machine scheduling suffer from the exponential number of variables in the corre-
sponding LP relaxation (LPR). However, we can overcome this drawback by us-
ing new variables that are not associated with exponentially many time intervals
of length 1 but with a polynomial number of intervals of geometrically increas-
ing size. This idea was earlier introduced by Hall, Shmoys, and Wein [21]. We
show that Algorithm LP Rounding can be turned into a polynomial-time algo-
rithm for R | rij |

∑
wjCj at the cost of an increased performance guarantee of 2 + ε.

The same technique can be used to modify Algorithm LP Simple Rounding to a
(3/2 + ε)-approximation algorithm for R | | ∑wjCj .

For a given η > 0, the number L is chosen to be the smallest integer such that
(1 + η)L � T + 1. Consequently, L is polynomially bounded in the input size of
the considered scheduling problem. Let I0 =

[
0, 1
]
and for 1 � � � L let I� =(

(1 + η)�−1, (1 + η)�
]
. We denote with |I�| the length of the �th interval; i.e., |I�| =

η(1+η)�−1 for 1 � � � L. To simplify notation we define (1+η)�−1 to be 1
2 for � = 0.

We introduce variables yij� for i = 1, . . . ,m, j ∈ J , and (1 + η)�−1 � rij with the
following interpretation: yij� · |I�| is the time job j is processed on machine i within
time interval I�, or, equivalently, (yij� · |I�|)/pij is the fraction of job j that is being
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processed on machine i within I�. Consider the following linear program in these
interval-indexed variables:

min
∑
j∈J

wjCj

s. t.

m∑
i=1

L∑
�=0

(1+η)�−1�rij

yij� · |I�|
pij

= 1 for all j,(5.1)

∑
j∈J

yij� � 1 for all i and �,(5.2)

Cj =

m∑
i=1

L∑
�=0

(1+η)�−1�rij

(
yij� · |I�|

pij
(1 + η)�−1 + 1

2 · yij� · |I�|
)

for all j,(5.3)

yij� � 0 for all i, j, and �.

We refer to this LP relaxation as (LPη
R).

Consider a feasible schedule and assign the values to the variables yij� as defined
above. This solution is clearly feasible: constraints (5.1) are satisfied since a job j
consumes pij time units if it is processed on machine i; constraints (5.2) are satisfied
since the total processing time of jobs that are processed within the interval I� on
machine i cannot exceed its length. Finally, if job j is continuously being processed
between Cj − phj and Cj on machine h, then the right-hand side of (5.3) is a lower
bound on the real completion time. Thus, (LPη

R) is a relaxation of the scheduling
problem R | rij |

∑
wjCj . Since (LPη

R) is of polynomial size, an optimal solution
can be computed in polynomial time. We rewrite Algorithm LP Rounding for the
new LP:

Algorithm LP Rounding.
(1) Compute an optimal solution y to (LPη

R).
(2) Independently, for all j ∈ J , assign job j to a machine-interval

pair (i, I�), where the machine-interval pair is chosen from the
probability distribution that assigns job j to (i, I�) with proba-

bility
yij�·|I�|

pij
; set tj to the left endpoint (1 + η)�−1 of the time

interval I�.
(3) Schedule on each machine i the assigned jobs in order of nonde-

creasing tj ; ties are randomly broken.

Theorem 5.1. The expected completion time of each job j in the schedule con-
structed by Algorithm LP Rounding is at most 2 · (1 + η) · CLP

j .

Proof. We argue almost exactly as in the proof of Lemma 2.1. We consider an
arbitrary but fixed job j ∈ J . We also consider a fixed assignment of j to machine i
and time interval I�. Again, the conditional expectation of j’s starting time equals
the expected idle time plus the expected processing time on machine i before j is
started.

With similar arguments as in the proof of Lemma 2.1, we can bound the sum of
the idle time plus the processing time by 2 · (1 + η) · (1 + η)�−1. This, together with

the expected processing time of job j itself, which is
∑m

i=1

∑L
�=0 yij� · |I�|, and (5.3),

yields the theorem.
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For any given ε > 0, we can choose η = ε/2. Then Algorithm LP Rounding is
a (2 + ε)-approximation algorithm for the problem R | rij |

∑
wjCj , and (LP

η
R) is a

(2 + ε)-relaxation.

6. Concluding remarks and open problems. In this paper, we have devel-
oped LP-based approximation algorithms for a variety of parallel machine scheduling
problems with the average weighted completion time objective. A by-product of our
analysis are results on the quality of the underlying LP relaxations.

Our central off-line result is the (2+ ε)-approximation algorithm for the problem
R | rij |

∑
wjCj , and there exist instances which show that the underlying LP re-

laxation ((LPR) without inequalities (2.4)) is indeed not better than a 2-relaxation.
However, it is open whether the quality of (LPR) (with (2.4) and/or (2.7)) is bet-
ter than 2 and also whether it can be used to derive an approximation algorithm
with performance guarantee strictly less than 2. On the negative side, R | rj |

∑
Cj

is APX-hard [22]. In other words, the best known approximation algorithm for
R | rij |

∑
wjCj has performance guarantee 2 (we proved 2 + ε here, and [41] gets

rid of the ε using a convex quadratic relaxation), but the only known limit to its ap-
proximation is the nonexistence of a polynomial-time approximation scheme (PTAS),
unless P = NP. The situation for R | | ∑wjCj is similar. (LPR) is a 3/2-relaxation,
the quality of (LPR) together with (2.7) is unknown, the 3/2-approximation given in
[41] (improving upon the (3/2 + ε)-approximation in section 2) is best known, and
again there cannot be a PTAS, unless P = NP [22]. For identical parallel machines,
one important property of our 2-approximation algorithm for P | rj |

∑
wjCj is that it

runs in time O(n log n). The running time of the recent PTAS is O
(
(m+1)poly(1/ε)n+

n log n
)
[1]. The other important feature of the O(n log n) algorithm is that it is ca-

pable of working in an on-line context as well, which brings us to the second set of
open problems.

If jobs arrive over time and if the performance of algorithms is measured in terms
of their competitiveness to optimal off-line algorithms, it is important to distinguish
between deterministic and randomized algorithms. For identical parallel machine
scheduling, there is a significant gap between the best known lower bound and com-
petitive ratio of a deterministic algorithm. A universal lower bound of 1.309 is proved
in [47, Chapter 3], while a (4+ ε)-competitive algorithm emerges from a more general
framework given in [20]. For randomized algorithms, the situation is only slightly
better. No relevant lower bound on the competitive ratio of any randomized on-line
algorithm is known, and the modified version of Algorithm Random Assignment
discussed in section 3 is a randomized 2-competitive algorithm.

An interesting application of the approximation results for R | rij |
∑

wjCj and
R | | ∑wjCj was subsequently proposed in [13]. In a generalization of standard
scheduling models, Engels et al. introduce the possibility to outsource a job j at a
cost ej . Since there is an approximation-preserving reduction from an instance of the
resulting scheduling with rejection problem R | (rj) |

∑
S wjCj +

∑
S ej to an instance

of R | (rij) |
∑

wjCj , the approximation results are inherited.

Finally, in a computational study of R | | ∑wjCj , Vredeveld and Hurkens [48]
compared the algorithms based on time-indexed and interval-indexed formulations
proposed herein to the algorithm based on a convex quadratic programming relaxation
in [41] and to a variant based on a time-indexed LP that uses variables xijt. Here,
xijt = 1 if and only if job j is started at time t on machine i. The latter relaxation
is tighter than (LPR) and the convex program in [41] (see, e.g., [48]), and this is
confirmed by their studies. In addition, the algorithm based on the relaxation in x-
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variables also leads to the best upper bounds on their test instances. It follows from
Theorem 2.3 that randomized rounding based on this relaxation has performance
guarantee 3/2 as well.

Appendix. An illustrating example. Consider the following instance of
P 2 | rj |

∑
wjCj , consisting of the job set {1, 2, 3, 4} together with fixed values αj :

job j rj pj wj/pj αj

1
���
���
���

���
���
��� 0 4 1 3/4

2
���
���
���
��� 1 6 2 1/3

3
��
��
��
�� 3 2 3 1/2

4
���
���
���
��� 6 4 2 1/4

Figure A.1 illustrates the action of AlgorithmRandom Assignment for the given
instance. In the first step, it computes the preemptive LP schedule S on a virtual
single machine, which is twice as fast as each of the original two machines. Then each
job is randomly assigned to one of the two machines, and the α-points are chosen.
Finally, the jobs are scheduled on their machines nonpreemptively in nondecreasing
order of CS

j (αj).
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(1) preemptive schedule:
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(4) feasible schedule:

(2) & (3) random choices:

machine 1:
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Fig. A.1.
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Boyd, and R. Z. Ŕıos-Mercado, eds., Springer, Berlin, 1998, pp. 367–382.

[31] C. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein, Improved bounds on
relaxations of a parallel machine scheduling problem, J. Comb. Optim., 1 (1998), pp. 413–
426.

[32] C. Phillips, C. Stein, and J. Wein, Task scheduling in networks, SIAM J. Discrete Math.,
10 (1997), pp. 573–598.

[33] C. Phillips, C. Stein, and J. Wein, Minimizing average completion time in the presence of
release dates, Math. Programming, 82 (1998), pp. 199–223.

[34] P. Raghavan and C. D. Thompson, Randomized rounding: A technique for provably good
algorithms and algorithmic proofs, Combinatorica, 7 (1987), pp. 365–374.

[35] A. S. Schulz and M. Skutella, Random-based scheduling: New approximations and LP lower
bounds, in Randomization and Approximation Techniques in Computer Science, Lecture
Notes in Comput. Sci. 1269, J. Rolim, ed., Springer, Berlin, 1997, pp. 119–133.

[36] A. S. Schulz and M. Skutella, Scheduling-LPs bear probabilities: Randomized approxima-
tions for min-sum criteria, in Algorithms—ESA ’97, Lecture Notes in Comput. Sci. 1284,
R. Burkard and G. J. Woeginger, eds., Springer, Berlin, 1997, pp. 416–429.

[37] A. S. Schulz and M. Skutella, The power of α-points in preemptive single machine schedul-
ing, J. Sched., 5 (2002), pp. 121–133.

[38] J. Sgall, On-line scheduling—a survey, in Online Algorithms: The State of the Art, Lecture
Notes in Comput. Sci. 1442, A. Fiat and G. J. Woeginger, eds., Springer, Berlin, 1998,
pp. 196–231.

[39] D. B. Shmoys and E. Tardos, An approximation algorithm for the generalized assignment
problem, Math. Programming, 62 (1993), pp. 461–474.

[40] M. Skutella, Approximation and Randomization in Scheduling, Ph.D. thesis, Technische Uni-
versität Berlin, Berlin, Germany, 1998.

[41] M. Skutella, Convex quadratic and semidefinite programming relaxations in scheduling, J.
ACM, 48 (2001), pp. 206–242.

[42] M. Skutella and M. Uetz, Scheduling precedence-constrained jobs with stochastic processing
times on parallel machines, in Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, Washington, DC, 2001, ACM, New York, 2001, pp. 589–590.

[43] M. Skutella and G. J. Woeginger, A PTAS for minimizing the total weighted completion
time on identical parallel machines, Math. Oper. Res., 25 (2000), pp. 63–75.

[44] W. E. Smith, Various optimizers for single-stage production, Naval Res. Logist. Quart., 3
(1956), pp. 59–66.

[45] J. Spencer, Ten Lectures on the Probabilistic Method, CBMS-NSF Reg. Conf. Ser. in Appl.
Math. 52, SIAM, Philadelphia, 1987.

[46] R. N. Uma and J. M. Wein, On the relationship between combinatorial and LP-based ap-
proaches to NP-hard scheduling problems, in Integer Programming and Combinatorial Op-



SCHEDULING UNRELATED MACHINES 469

timization, Lecture Notes in Comput. Sci. 1412, R. E. Bixby, E. A. Boyd, and R. Z.
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