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APPROXIMATION ALGORITHMS FOR THE DISCRETE
TIME-COST TRADEOFF PROBLEM

MARTIN SKUTELLA

Dueto its obvious practical relevance, the Time-Cost Tradeoff Problem has attracted the atten-
tion of many researchers over the last forty years. While the Linear Time-Cost Tradeoff Problem
can be solved in polynomial time, its discrete variant is known to be NP-hard. We present the
first approximation algorithms for the Discrete Time-Cost Tradeoff Problem. Specifically, given
a fixed budget we consider the problem of finding a shortest schedule for a project. We give an
approximation algorithm with performance ratio 3/2 for the class of projects where all feasible
durations of activities are either 0, 1, or 2. We extend our result by giving approximation algo-
rithms with performance guarantee O(log | ), where | is the ratio of the maximum duration of any
activity to the minimum nonzero duration of any activity. Finally, we discuss bicriteria approxi-
mation a gorithms which compute schedules for a given deadline or budget such that both project
duration and cost are within a constant factor of the duration and cost of an optimum schedule
for the given deadline or budget.

1. Introduction. An instance P of the Time-Cost Tradeoff Problem is a project
given by a finite set of activities J° = J together with a partial order (J, <) on the set
of activities. In order to carry out a project, the activities have to be executed in accordance
with the precedence constraints given by the partial order: if j < k, activity k may not be
started before activity j is completed. The activities are indivisible tasks, hence their
execution must not be interrupted. The duration of an activity j € J, i.e, the difference
between its completion and start time, depends on the amount of money that is paid for
it. This correlation is described by a nonincreasing nonnegative cost function ¢f’ = ¢; :
R: = R, U {} for each activity j € J, where ¢;( %) is the amount of money one has to
pay to run j with duration x,. We will drop the upper index P at any symbol whenever it
is clear from the context.

Throughout this paper we will consider projects that are represented by an edge dia-
gram. Thisisadirected acyclic graph where each activity j € Jisrepresented by an edge
of the graph, such that for any two activities j, k € J there is a directed path from j to k
if and only if j < k. We have chosen the representation of a project by an edge diagram
rather than by an activity-on-node network since edge diagrams are more appropriate to
explain the classical results on the Linear Time-Cost Tradeoff Problem in §2.

In general, dummy edges are needed to represent the precedence constraints in an edge
diagram. Such a dummy edge corresponds to a dummy activity ] with ¢;(x) = O for all x;
= 0. We can without loss of generality merge all sources (vertices with in-degree 0) of
the edge diagram to a super-source s and all sinks (vertices with out-degree 0) to a super-
sink s’.

In order to keep the size of the edge diagram small it is desirable to use as few dummy
edges as possible. However, Krishnamoorthy and Deo (1979) proved that it is NP-hard
to obtain a representation with a minimum number of dummy edges. On the other hand
one can easily find an edge diagram where the number of dummy edges is polynomially
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bounded in the input size of the project. To be more precise, given a project by a set of
activities J and precedence constraints (J, <) on J, an edge diagram can be obtained by
introducing for each pair of activities j, k € J with j < k a dummy edge between the
endpoint of edge j and the starting point of edge k.

A realization x = x € R’ of project P is an assignment of durations x; to activities
€ J. Thetotal cost c”(x) = c(x) of the realization x is given by

c(x) =3 ¢(x).

jed

The project duration tP(x) = t(x) of the realization x is the makespan of the earliest start
schedule which starts each activity at the earliest point in time obeying the precedence
constraints and durations x;. In other words, the project duration equals the length of a
longest chain in the partial order which isitself the length of alongest directed s-s’-path
in a corresponding edge diagram. Thereby, the length of an edge corresponding to an
activity j is the chosen duration x;.

Ideally, we would like to minimize both time and cost for a given project P. Unfor-
tunately, there is a tradeoff between time and cost, i.e., short redlizations are usually
expensive and cheap realizations take a long time. Fixing either cost or time we get two
related optimization problems with the objective to minimize the other parameter. The
first problem is the

BupGer ProBLEM. For agiven nonnegative budget B = 0, find a shortest realization
x satisfying c(x) < B.

Therefore, we are interested in the function Ty = Tox : R = R, U {} that givesthe
minimum time T, (B) needed for realizing project P with budget B:

Tot(B) := min{t(x)|x € R}, c(x) < B}.

Since this minimum existsin all cases that we will consider, the function is well defined.
The second problem is the

DeaDLINE ProBLEM. For a given project duration T = 0 (deadline) find a cheapest
realization x satisfyingt(x) < T.

Therefore, we are interested in the function B5, = Boy : R, = R, U {0} that gives
the minimum budget B,y (T) needed to realize project P intime T:

Bopt (T) := min{c(x)|x € R}, t(x) < T}.

Again, the minimum existsin al cases that we will consider.

A redlization x of the project P is an optimal realization if c(x) = By (t(X)) and t(x)
= To(C(X)). That is, x is an optimal realization if and only if P can be realized neither
cheaper nor shorter without increasing time or cost. An optimal realization x is called
optimal for adeadline T = 0, if c(X) = Box(T). It is called optimal for a budget B = 0,
if t(X) = Tou(B).

The Budget Problem and the Deadline Problem are specia parts of the Time-Cost
Tradeoff Problem that was formulated amost forty years ago by Kelley and Walker
(1959): Find optimal realizations for all deadlines T = 0 (or equivalently for all budgets
B = 0). They considered linear projects where all cost functions of activities are affine
linear and decreasing functions over closed intervals. The Linear Time-Cost Tradeoff
Problem has independently been solved by Fulkerson (1961) and Kelley (1961). Later,
Phillips and Dessouky (1977) gave an improved version of the original algorithms. We
briefly review these resultsin 82.
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In contrast to the Linear Time-Cost Tradeoff Problem, its discrete variant, the Discrete
Time-Cost Tradeoff Problem, is known to be NP-hard (De et a. 1997). In a discrete
project the duration of each activity can be chosen from a finite number of alternatives.
In this paper we assume that for an activity j al possible durations are explicitly given
such that the encoding length of j is linear in the number of possible durations. Since
discrete aternatives are quite common in practice (Harvey and Patterson 1979, Hindelang
and Muth 1979) and can also be used for approximating arbitrary time-cost relationships
of jobs (Panagiotakopoulos 1977, Robinson 1975), the Discrete Time-Cost Tradeoff
Problem has frequently been considered; for further references see De et al. (1995).

Since one cannot find algorithms that compute optimal realizations for the Discrete
Time-Cost Tradeoff Problem in polynomial time, unless P = NP, we are interested in
algorithms that run in polynomial time and compute provably good redizations: an a-
approximation algorithmis a polynomial-time algorithm that produces a feasible solution
whose value is within a factor of o of the optimum; « is called performance guarantee
or performance ratio of the algorithm. To the best of the author’s knowledge, no approx-
imation algorithm was known before for the Discrete Time-Cost Tradeoff Problem.

We present the following results: First of all we show that it sufficesto consider projects
with a most two alternatives for the duration of each activity, where the shorter of two
possible durationsis zero. This enables us to introduce a relaxation of discrete projectsto
linear projects. An optimal solution to this linear relaxation then serves as a surrogate for
the true optimum in our estimations. Moreover, the structure of an optimal realization for
the linear relaxation guides the construction of provably good realizations for the discrete
project.

Using a simple rounding technique, we give approximations with performance guar-
antee | for the Budget Problem and the Deadline Problem of projects where all possible
durations of activitiesare in therange {0, ..., |} . Using somewhat more sophisticated
ideas these results can be improved. For the special class of projects where al feasible
durations are either 0, 1, or 2, we present an approximation algorithm with performance
guarantee 3 for the Budget Problem. We also show that there exists no approximation
agorithm with abetter performance guarantee for the considered class of instances, unless
P = NP. Furthermore, for the more general class of discrete projects where all possible
durations of activitieslieintheset {0, ..., |} we present approximation algorithms for
the Budget Problem with performance guarantee depending logarithmically on|. We also
show that the analysisistight. On the other hand we argue why we get much better results
for wide classes of projects. Finally, we discuss bicriteria approximation algorithms that
construct feasible realizations for arbitrary discrete projects and for a given deadline or
budget such that both time and cost are within a constant factor of an optimal schedule
for the given deadline or budget.

The paper isorganized asfollows: In the next section we state someimportant properties
of linear projects; in particular, we describe the algorithm of Phillips and Dessouky
(1977). In 83 we consider discrete projects, present the reduction to the case of at most
two alternatives for the duration of each activity, and describe the linear relaxation. This
enables us to develop simple | -approximation algorithms in 84. In 85 we present the
improvement to performance guarantee £ for the Budget Problem in case | = 2. For
arbitrary |, we give O(log I)-approximations in 86. Finaly, in 87 we discuss bicriteria
approximation algorithms with constant performance ratio for the Discrete Time-Cost
Tradeoff Problem.

2. Thelinear Time-Cost Tradeoff Problem. In this section we consider projects P
where the duration of each activity j € J can be chosen from a certain positive interval
[a], bl’] = [&, bj] belonging to this activity. Moreover, the cost function c; of j is affine
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linear and decreasing within that interval. Consequently, it is defined by the values c;(g;),
ci(b) € R, and can be written in the following form:

o0 ift<a,
b —t t—a _
c(t) = ﬁQ(a,) + rzcj(bj) ifgg<ts<Db;,
] ]
ci(by) ift=b.

Since ¢; is constant for t = by, we will only consider realizations x satisfying a < x < b.
An instance P of the described form is called a linear project and is an instance of the
Linear Time-Cost Tradeoff Problem (LTCT Problem).

Since the realization x = b is obvioudy the shortest realization of alinear project P for
the minimum budget c(b) and since there can be no cheaper realization of P at al, it is
an optimal realization for the deadline t(b). Moreover, the duration t(a) of the realization
a is the shortest deadline that can be reached with finite cost, though a is not an optimal
realization for this deadline in general.

2.1. Thetime-cost curveof linear projects. The following result was discovered by
Fulkerson (1961) and independently by Kelley (1961). It is not only crucia for solving
the Linear Time-Cost Tradeoff Problem, but it also plays a fundamental role in the deri-
vation of our approximation results for the discrete case.

Lemma 2.1. For alinear project P the functions B,y and T,y are piecewise affine
linear, convex, nonincreasing, and continuous, except for the intervalswherethefunction
values are infinite.

Proor. Finding a cheapest redlization for afixed deadline T can easily be formulated
as alinear program whose right-hand side linearly depends on T (Fulkerson 1961). The
function B, can thus be determined by a parametric linear programming problem and is
therefore piecewise affine linear, convex, and continuous; see, e.g., Padberg (1995, Sec-
tion 6.5); moreover, By, is by definition nonincreasing. The result for the function Ty
follows since it is the inverse function of Byy. [

As aconsequence of Lemma 2.1 it suffices to know all breakpoints of the function By
in order to construct B, and T,,. Moreover, given for each breakpoint a corresponding
optimal realization, one can easily compute an optimal realization for an arbitrary deadline
or budget as a convex combination of the optimal realizations corresponding to the two
neighboring breakpoints.

2.2. SolvingtheLinear Time-Cost Tradeoff Problem. Thealgorithm of Phillipsand
Dessouky solves the Linear Time-Cost Tradeoff Problem by computing B, and optimal
realizations for al breakpoints. It starts with the optimal realization b and constructs a
sequence of optimal realizations for decreasing deadlines and increasing budgets. In par-
ticular, this sequence contains optimal realizations for all breakpoints of Byy and Top; We
refer to this algorithm as LTCT-Solver. Since it will be used as a subroutine in our
approximation algorithms we give a more detailed explanation in what follows.

Asalready mentioned, algorithm LTCT-Solver computes optimal solutionsfor decreas-
ing deadlines. Thus, given an optimal redization x, it has to find a way to shorten x
without losing optimality, i.e., without too much increase in cost. More precisely, the
increase in cost must not exceed the absolute value of the left-hand derivative of By at
t(x). Since it is obviously useless to shorten the durations x; of those activities j whose
corresponding edges do not liein alongest s-s’-path at the moment, the algorithm LTCT-
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Solver only considers the subgraph that is induced by critical edges; we call an edge
critical if it lies on alongest s-s’-path.

If the realization x can be shortened, i.e., if t(x) > t(a), then there existsan (s, s')-
cut Sin the subgraph of critical edges such that all activities j that correspond to forward
edgesin Scan be shortened, i.e., X, > g. Shortening those durations uniformly by 6 > 0
leads to a decrease of the project duration by the same amount or a positive multiple of
it as long as no other edge becomes critical. Of course, this can also only be done until
one of the edges in the cut attains its minimum duration & . To save cost we can at the
same time uniformly enlarge the durations of those activities j, with x; < by, that corre-
spond to backward edges in S by the same amount; this can be done until one of them
has reached its upper bound b,.

For each (s, s’)-cut Swe can in this way define the cost used per time to shorten all
forward edges and enlarge backward edges of S together with a maximum possible és.
Changing durations along a cheapest cut S* in the subgraph of critical edges by 6s- as
described above preserves optimality and shortens the project duration by exactly 6s- .
Moreover, such a cheapest cut can be found by solving a maximum flow problem on the
subgraph of critical edges. We do not go into the details at this point, the interested reader
is referred to the work of Phillips and Dessouky (1977).

To summarize, agorithm LTCT-Solver starts with the optimal realization x = b and
then iteratively shortens this realization along a cheapest (s, s')-cut S* in the subgraph
of critical edges by és.. The algorithm stops as soon as the project duration t(x) has
reached the minimum possible duration t(a). The running time of each iteration of the
algorithm is dominated by the running time needed to find the minimum cut. This can be
donein O(nmlog(n?/m)) time (Goldberg and Tarjan 1988), where n denotes the number
of vertices and m the number of edges of the current subgraph. Since there are no isolated
vertices in the edge diagram and edges correspond to activities of the project, we get n
< m < |J|. Hence, the overall running time of algorithm LTCT-Solver is O(# itera-
tions- | J|%log| J]).

We should mention here that the number of iterations can be exponential in the input
size. In (Skutella 1998) the author presents a class of linear projects with exponentially
many breakpoints for the functions B, and T, Since the algorithm LTCT-Solver needs
at least one iteration to get from one breakpoint to the next, it is not an efficient tool for
solving the Deadline Problem or Budget Problem of linear projects for a single deadline
or budget. Of course, both problems can efficiently be solved since they can be formulated
as linear programs of polynomial size. It was observed by Fulkerson (1961) that the dual
program can easily be transformed into a min-cost flow problem. Thus there even exist
efficient combinatorial algorithms.

The following lemmaiis crucia for finding good realizations of discrete projects.

Lemma 2.2. If g, bjareintegral for all j € J, then algorithm LTCT-Solver computes
in O((t(b) — t(a))|J|?log| J|) time for each integral deadline T an optimal, integral
realization.

Proor. The algorithm starts with the integral realization x = b. Since a and b are
integral, the durations of activities along the selected cut can at least be changed by
6 := 1in each iteration and the realization x stays integral. As mentioned above, the
project duration is then also decreased by 1 in each iteration and the algorithm computes
for each integral deadline an optimal, integral realization. Moreover, the number of iter-
ations of the algorithm can be bounded by t(b) — t(a) and we get the desired result for
the running time. [

A similar integrality result was already achieved by Fulkerson (1961) and by Kelley
(1961, Remark 4). Thereit is shown that under the conditions of Lemma 2.2 all solutions
computed by Algorithm LTCT-Solver are integral. For a more detailed discussion of the
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stated resultsfor linear projects we refer to Fulkerson (1961), Kelley (1961), and Phillips
and Dessouky (1977). An order-theoretic view of the problem can be found in Mohring
and Radermacher (1989).

3. The Discrete Time-Cost Tradeoff Problem. We consider projects P where the
duration of each single activity | can attain at most two different nonnegative values h;
and k;, where h; is equal to O or k;. By ignoring fixed costs we assume c;(k)) = 0 such
that c(k) = 0 and kisafeasible realization of P for any nonnegative budget B. Moreover,
if 0 =h, < k weassume 0 < ¢;(h;) < . We can think of the cost function of activity j
as a step function

o  ifo<t<h,
g(t) =4 ¢(h) ifh<t<k,
0 if k< t.

A project of the described form is adiscrete project and an instance of the Discrete Time-
Cost Tradeoff Problem (DTCT Problem).

3.1. Areduction of general instances. At first sight, allowing only two feasible du-
rations for each activity might look like a substantial restriction. But we can in fact model
any activity j with afinite number q > 2 of feasible nonnegative durationsd; < --- < dq
asaset of q paralé activities with the properties described above. These parallel activities
are represented by parallel edges in the edge diagram. Again, ignoring fixed costs we
assume ¢;(d,) = 0 and think of ¢; as a step function (recall that we assume c; to be
nonincreasing).

We first introduce an activity j; with fixed length hy, := k;, := d; and ¢;,(k;,) := 0. This
activity guarantees that we cannot get shorter than the minimum feasible duration d, of
j- Then we model the cost structure of j by introducing for all other feasible durationsd, ,
2 < i = q, an activity j;. The idea of this construction is that activity j; can only be
shortened below duration d; if the difference in cost to the next shorter feasible duration
di_, of j isbeing paid. Therefore we defineh;, := 0,k; :=d;, ¢, (0) := ¢;(di_1) — ¢;(d;),
and ¢, (k;) := 0. It is an easy observation that the sum of the cost functions of the new
activitiesj,, . . ., jq exactly equalsthe cost function of j . Thusthereisacanonical mapping
of feasible durations x; for j to tuples of feasible durations x,, .. ., X, for ji, ..., jgsuch
that x = max{x,, ..., %} and¢;(x) = ¢,(X,) + --- + ¢,(x,) . Moreover, thismapping
is bijective if we restrict ourselves without loss of generality to tuples of durations X,
ooy X satisfying x; = K if k= max{x,, ..., x.}.

Since we assume that the encoding length of each activity j islinear in the number of
possible durations, the input size of a project is only increased by a constant factor if
activities with more than 2 feasible durations are replaced by a set of parallel activities.
In the remainder we will only consider discrete projects with no more than two feasible
durationsfor each activity. Thisisjustified by the following lemmawhichisaconsequence
of our considerations above.

Lemma 3.1. Any approximation algorithm for the class of discrete projects with
at most two feasible durations h; < k; for each activity j, where hy € {0, k}, implies
an approximation algorithm with same performance guarantee for arbitrary discrete pro-
jects. i B

For the same reason that b" is an optimal realization for alinear project P, we know
that k" is an optimal realization for the discrete project P since it is the cheapest possible
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realization. On the other hand, the duration t (h) isthe shortest deadline that can be reached
with finite cost, though h is not an optimal realization in general. Therefore we only
consider deadlines T = t(h).

In what follows we will study specia classes of instances of the Discrete Time-Cost
Tradeoff Problem: adiscrete project P isan instance of the|-DTCT Problem for an integer
l e Nif k € {0, 1,...,1} for each activity j € J. If we consider arbitrary discrete
projects with more than two alternative durations for activities, this is (by the above
transformation) equivalent to the requirement that all feasible durations lie in the set { O,
1,...,1}. Asmentioned above, it isshown in (De et a. 1997) that it is NP-hard to find
optimal realizations for discrete projects. Thisis proved by reducing an NP-hard variant
of 3SAT to instances of the 2-DTCT Problem. Hence it is already NP-hard to find optimal
realizations if we restrict ourselves to the 2-DTCT Problem.

3.2. Linear relaxations of discrete projects. In order to design approximation al-
gorithms for the Budget Problem and the Deadline Problem of discrete projects we intro-
duce a linear relaxation which is used to get a lower bound on the value of an optimal
solution. The linear relaxation P of a discrete project P is alinear project that consists of
the same set of activities, i.e., J* = JP. Its structure is defined by the same partial order
(J, <) on this set, hence the edge diagram corresponding to P isthe same as for P. The
interval [a", b{'] is given by a := hf” and b{" := kf* for each activity j € J. The cost
function cf is defined by c/(a) := cf(h) and c[(b) := c{(k). This definition of the
linear relaxation is the main reason why we have transformed arbitrary discrete projects
to those with at most two possible aternatives for the duration of each activity.

Lemma 3.2, If P is the linear relaxation of the discrete project P, then Thy(B)
< Tox(B) for all B= 0and B (T) < Box(T) for all T= 0.

The proof of the lemmafollows immediately from the definition of the linear relaxation
and is therefore left out. We shall often refer to the following two basic properties of
realizations for arbitrary projects.

Lemma 3.3. Letx, x’ be realizations of the project P.
(a) Ife=0andx < «-X/ for each activity j € J, then t(x) < a-t(x’).
(b) If 8 =0andx — x/ < g for each activity j € J, thent(x) — t(x’) < 8-|J].

ProoF. Let | c J be the subset of activities corresponding to a longest s-s’-path in
the edge diagram with respect to x and | ' the subset of J corresponding to alongest s-s’-
path with respect to x’, then

tX)=>¥x<a) X =sa) X =atx)

jel jel jel’
in case (a), and

tx) —tx)=>x—->Yx<=s>x->Xx <> (X—X)=<pg-]J|

jel jel’ jel jel jel
incase(b). O

4. Approximation algorithmsfor general instances of the Discrete Time-Cost Trade-
off Problem. In this section, we consider the Budget Problem and the Deadline Problem
for instances P of thel -DTCT Problem, for arbitrary | € N. Oneideato get good solutions
to these problems is to compute an optimal realization % of the linear relaxation P of P
and to round it appropriately to afeasible redlization of P. The quality of this realization
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can then be tested by comparing its value, i.e., its duration or cost, to the value of the
realization we started with.

Consider the following example: We are given a project P whose only activity j has
feasible durations h; = 0 and k; = 2, where ¢;(2) = 0 and ¢;(0) = q, for someq € N;
furthermore, we are alowed to spend the budget B = q — 1 and want to minimize the
project duration. Since we cannot afford to choose duration O for activity j, the duration
of the optimal redlization is 2. However, the optimal solution to the linear relaxation P
has value 2/q and is thus afactor of q away from 2. Consequently, since g may be chosen
arbitrarily large one cannot give any performance guarantee by comparing the value of a
feasible realization of the discrete project to the optimal solution of its linear relaxation
P. But we can overcome this drawback if we use as a lower bound the shortest integral
realization of the linear relaxation for the given budget instead. This yields a duration of
1 in the example which is only a factor of 2 away from the optimum for the discrete
project P.

41. Integral optimal realizations. Therefore, we call a redization X of P integral
optimal for abudget B (for adeadline T), if Xisthe shortest (cheapest) integral realization
of P satisfying c(X) < B (respectively t(%) < T). In contrast, if we talk about an optimal ,
integral realization for a budget (for a deadline) we mean one which is optimal for this
budget (for this deadline) and integral. In the above example % = 2/q is optimal and %,
= lisintegral optimal for the budget g — 1. However, % = 1 is not optimal, integral for
the budget q — 1, but it is optimal, integral for the budget g/2.

The following lemma states some important properties of integral optimal realizations.

LeEmmA 4.1. Let P be an instance of the I-DTCT Problem and X a realization for the
linear relaxation P of P. )

(a) IfXisintegral optimal for the deadline T, then c”(X) < B (T).

(b) If xisintegral optimal for the budget B, then t(X) = (T (B)O< Tox(B).

(c) Algorithm LTCT-Solver can be used to compute integral optimal realizations of P
for all deadlines and budgetsin time O(l|J|®log| J|).

PrOOF. Since we are interested in integral realizations % of P only and all feasible
realizations of P are integral, we can without loss of generality assume that the deadline
T in part (a) is integral too (because otherwise we can replace T by [T0). There exists
an optimal, integral realization X’ for the integral deadline T by Lemma 2.2 and algorithm
LTCT-Solver can be used to compute it. Moreover, X’ is by definition integral optimal
for the deadline T and we get cP(X) = cP(X') = Box(T) < Bix(T) by Lemma 3.2.

To prove part (b), consider an optimal, integral realization X’ for the deadline
(T 6 (B)C. By definition of T, (B) we know that c(X’) < B and since X’ is integral we
get

t(%) < t(X') < 5, (B)O< T5,(B),

where the last inequality follows from the integrality of T5,(B) and Lemma 3.2. On the
other hand, the integrality of X yieldst(X) = [T« (B)0. In particular X’ isintegral optimal
for the budget B, and can be computed by algorithm LTCT-Solver.

As a consequence of part (a) and (b) we get integral optimal realizations by computing
optimal realizations for integral deadlines. By Lemma 2.2 and Lemma 3.3(b) this can be
doneintimeO(l|J|%log|J|). O

We get the following interesting corollary:
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CoroLLARY 4.2. Letr > 0and P be an instance of the DTCT Problem satisfying k;
€ {0, r} for al j € J. Then, algorithm LTCT-Solver can be used to compute optimal
realizations of P for all possible deadlines and budgetsin O(| J|3log| J|) time.

Proor. Since all feasible durations are either 0 or r, only multiples of r can occur as
project durations and it suffices to consider those deadlines which are multiples of r. We
may without loss of generality assume that r = 1 because otherwise one can rescale all
feasible durations by multiplication with the positive scalar 1/r. Thisleads to an instance
of the 1-DTCT Problem. The result now follows from Lemma 4.1 and the observation
that for an instance P of the 1-DTCT Problem all integral realizations of its linear relax-
ation P are feasible for P. [

4.2. Approximationsfor the Deadline Problem. When we are looking for provably
good solutions x to the Deadline Problem of a discrete project P, we can first compute
an integral optimal realization X of the linear relaxation P for the given deadline T. This
givesalower bound c” (%) on the value of an optimal solution B&,(T) by Lemma4.1(a).
Unfortunately, X is not a feasible solution for the discrete project P in general. But hope-
fully it is not too far away from an optimal feasible realization of P for the deadline T.
Thus a straightforward approach is to round X to a feasible reaization x of P.

We only need to consider those activities j which have been assigned a duration ¥; that
is not feasible for the discrete project, i.e., 0 < ¥ < k. Of course we would like to round
% to the less expensive duration k;, but unfortunately this could possibly increase the
project duration and thus violate the deadline T. To avoid this, we better round these
durations to the more expensive alternative x; := 0 such that t(x) < t(X) < T by Lemma
3.3(a). If Pisan instance of the |-DTCT Problem, we get by definition of the linear
relaxation and by integrality of X,

(41) cf(5) = e (0) = 1-cf(0).

This yields cP(0) < Icf (%) and, as a result, c”(x) < IcP(X) < IBE,(T) by Lemma
4.1(a). Note that we had to start with an integral optimal realization X, because otherwise
we could not give any bound on k; — % in (4.1). We have proved the following theorem:

THeorem 4.3. For instances of the I-DTCT Problem, rounding the durations of an
integral optimal realization to the linear relaxation uniformly to the next shorter feasible
duration yields an approximation algorithm with performance guarantee | for the Dead-
line Problem.

We cannot get a better bound in this way since our analysis of the cost for the rounded
solution istight: Consider a discrete project P where both duration and cost are dominated
by only one activity j with hy = 0 and k, = | together with the deadline T := | — 1. In this
case equality holds in (4.1) and thus the bound is tight. In particular, our lower bound
can be away from the value of an optimal solution by a factor of |.

4.3. Approximations for the Budget Problem. When we are looking for good so-
lutions to the Budget Problem, we can apply a similar idea. In afirst step we compute an
integral optimal solution X of the linear relaxation for the given budget B. By Lemma
4.1(b) we get alower bound t(X) on the duration T&,(B) of an optimal solution. In the
rounding step we should now set the durations of activities j with 0 < X < k; to the less
expensive duration x; = k;, because rounding to O increases cost and we would possibly
overspend the budget B. If P is an instance of the [-DTCT Problem we therefore get
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X = k% < 1%,

since % = 1 by integrality of X. Thisyields t(x) < It(X) < ITgx(B) by Lemma 3.3(a)
and Lemma 4.1(b). Thus we have also developed an approximation algorithm with per-
formance guarantee | for the Budget Problem.

THEOREM 4.4. For instances of the I-DTCT Problem, rounding the durations of an
integral optimal realization to the linear relaxation uniformly to the next longer feasible
duration yields an approximation algorithm with performance guarantee| for the Budget
Problem.

We can even get better results for the Budget Problem. Because, unlike the situation
for the Deadline Problem, we can now repair the violation of the budget caused by round-
ing some durations to the shorter but more expensive aternative 0O, if we save money by
rounding durations of other activities to the less expensive aternative k;. We will use this
ideain the next section to get a better approximation result for the 2-DTCT Problem.

5. The approximability of special instances of the Discrete Time-Cost Tradeoff
Problem. We consider the Budget Problem for instances of the2-DTCT Problem. Hence
we are given adiscrete project P with k € {0, 1, 2} for each activity j € J, and a budget
B = 0. By construction of the linear relaxation P the cost functions ¢” and cf coincide
for all feasible durations x in P. Therefore, to simplify notation, we only use the symbols
¢;:= ¢f and ¢ := c" throughout this section. For the same reason we denote both functions
t? and t” simply by t.

To compute a provably good, feasible realization of P we first use algorithm LTCT-
Solver in order to find an integral optimal realization % of the linear relaxation P for the
given budget B. Then an agorithm called Relnvest roundsthisrealization X in asomewhat
more intricate way according to the idea given at the end of the last section in order to
get a good, feasible realization of P. First of al, it fixes the durations of al activities j
that are already feasibleto x; := X € { h;, ki} . Now it remains to consider those activities
jwithh =0, k = 2, and X = 1. We denote the subset of J consisting of these activities
by J'.

The feasible realization that we get by just setting x, := 2 for al j € J’ is a 2-approx-
imation by Theorem 4.4. Notice that this realization does not use an amount of B’ := B
—c(x) = B — c(X) + <y ¢(1) of the budget B. The main idea of the algorithm isto
reinvest this saved amount in order to round some of the durations back from 2 to 1 and
then to the feasible duration 0. In other words, algorithm Relnvest rounds not all but only
some of the jobsin J’ from 1 to 2 such that at least 3 B’ of the whole budget is left. This
amount suffices to round all other jobsin J’ from 1 to O; the reason is that the amount
saved by rounding a job from 1 to 2 exactly equals the cost that is heeded to round it
from 1to O; see Figure 1. A more precise argument is given in the proof of Theorem 5.1.
We denote the subset of J’ consisting of those activities whose duration is rounded to
0 by J".

It remains to decide which activities should be rounded from 1 to 2 preserving an
amount of 3 B’ with minimum increasein the project duration. This problem can be solved
optimally: We construct another linear project P’ where the durations of activitiesj € J’
can be chosen out of the interval [1, 2]; see Figure 1, and the durations and costs of all
other activities arefixed, i.e,a = 1,b]" = 2forj € J’ anda] = b = % forj € I\J'.
Note that the redization b”" is the solution found by the 2-approximation algorithm in
Theorem 4.4. Therefore, it isat most twice aslong as an optimal realization for the budget
B. Moreover, by definition of B’ weget c(b”’) = B — B’. We compute an integral optimal
realization x’ of P’ for thebudget B — 1 B’, i.e., weforce the new realization x’ to preserve
an amount of 3B’ with minimum increase in the project duration. The convexity of the
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function T§, yields that the duration of x’ is (up to integrality) at most the average of
t(X) and t(b"") since its budget is the average of the cost of b”" and the budget B.
Therefore it is within afactor 2 of the optimum (again, up to integrality); see Figure 2.

Finally, as mentioned above, we turn X’ into a feasible realization for P by setting the
durations of the remaining activitiesj € J” < J’ from 1 to 0 using the remaining budget
1B’. A formal description of algorithm Relnvest is given in Figure 3.

THeorem 5.1. Given an instance P of the 2-DTCT Problem and a budget B = 0,
algorithm Relnvest computes a feasible realization x such that c(x) < B and t(x)
< BTH(B) The running time of the algorithmis O(| J|® log| J|).

ProoF. By construction of thelinear project P’ its cost functions ¢ and c”’ coincide
with cf” respectively c” for al feasible durations; see Figure 1. Therefore, we also use the
notation ¢;, ¢, and t for the project P’.

First of al we show that the realization x of P does not violate the given budget B.
Since x; = x; for al j € J\J", we get

c(x) —c(x') = ¥ (¢(0) —¢ci(1)) bystep4,

jea

> (c(1) — ¢(2)) by linearity of c;; see Figure 1,

jed

c(x’) — c(b®) by definition of b”".
Sincec(x’) < B — 1B’ and c(b”') = B — B’, we get
c(x) = 2¢(x’) — c(b®) < B.

Now we want to show that t(x) < 3T5,(B)0. We know from the last section that
t(b”) < 2t(X). Considering X as arealization of P’ yields Th,(B) =< t(X) because c(X)
< B. Since t(X) < Tox(B) by Lemma4.1(b), we get
(5.1) To(B) < Tox(B) and t(bP) < 2T5:(B).

Theremaining part of the proof isdescribed in Figure 2. Since the budget for theintegral

cj(xj)

jEJII

.

c;(0)

jEJ/\J”

0

Xj

hj=0 %=1 kj=2

Ficure 1. The cost function of an activity j € J'.



920 M. SKUTELLA

é : - budget
B—B ~ 1B B

FIGURE 2. The convexity of Thy yieldst(x’) < H(3/2) Thx(B)OD.

optimal realization x’ of P’ is the average of the budget B and the cost B — B’ of the
realization b”’, the convexity of the function TG, yields that t(x”) is up to integrality at
most the average of T5x(B) and t(b"") which can be bounded by (5.1). Putting these
results together, we get

t(x') = OTox(3(B + ¢(b™)))J by Lemma4.1(b),
< B(Thx(B) + Thx(c(b®)))J by Lemma2.1,
= B(Tox(B) + t(b”))0 by optimality of b™’,

< BTeu(B)D by (5.2).

Sincex < x{ for &l j € J, the result follows by Lemma 3.3(a).

Input: instance P of the 2-DTCT Problem, budget B = 0;
Output: feasible realization x of P.
(1) computean integral optimal realization X of the linear relaxation P of P for
the budget B;
(2) construct a new linear project P’:
- let (P, <):= (P, <) = (P, <);
e if % € {h,k} forjeJthensatal := bl := % and c[' (a]") := ¢;(%);
e if{h,k} ={0,2} and% = 1forje J(i.e,j € J’'), thensetal := 1, b
=2, ¢/'(1) :=¢(1), and ¢['(2) := ¢;(2);
(3) compute an integral optimal realization x’ of P’ for the budget B — 3B’;
(4) setx = {y [ ucini. for al j € J and return x.

it xi=1and jeJ’,

Ficure 3. Algorithm Relnvest.
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Steps 2 and 4 of algorithm Relnvest can be done in linear time. Its running time is
therefore dominated by the two calls of algorithm LTCT-Solver in steps 1 and 3. Since
t(b") — t(a") < 2| J| andt(b”) — t(a”) < | J| by Lemma3.3(b), the overall running
timeisO(|J|®log|J|) by Lemma2.2. [

In the next section we make use of the following slightly stronger result.

CoroLLARY 5.2. The duration t(x) of the realization x computed by algorithm Re-
Invest can be bounded from above by BT, (B)1

Proor. Lemma 4.1(b) yields t(X) = DI'Ept(B)D. Thus we can replace T5,(B) by
N6 (B)Jin (5.1). The result now follows using the same arguments as in the proof of
Theorem 5.1. O

Finally, we want to show that there can be no better approximation algorithm for the
Budget Problem of the 2-DTCT Problem, unless P = NP.

THeEOREM 5.3. Thereis no polynomial-time algorithm computing a realization x for
arbitrary instances P of the 2-DTCT Problem and for arbitrary budgets B = 0, such that
c(x) < Band t(x) < 3T5:(B), unlessP = NP.

Proor. De et a. (1997) show that the following decision problem is NP-complete.
Given aninstance of the 2-DTCT Problem and afixed budget, doesthere exist arealization
X obeying the budget, such that t(x) < 2? If there was a polynomial-time approximation
algorithm for the Budget Problem with performance guarantee 3 — ¢ for some e > 0, it
would find optimal realizations for all instances P with T5,(B) < 2, and could therefore
solve the NP-complete decision problem. [

The statement of Theorem 5.3 may be of little relevance in some sense since we have
only shown it to be tight for instances with optimal value 2. Thus, like for the edge-
coloring problem, it could be the case that the Budget Problem can be approximated within
an additive constant of 1 for instances of the 2-DTCT Problem. Unfortunately, there does
not seem to be the possibility to carry over the nonapproximability result directly to
instances of the 2-DTCT Problem with arbitrarily large optimal value. On the one hand,
the problem lacks a straightforward scaling property. On the other hand, a simple seria
concatenation of several copies of a project whose duration is NP-hard to approximate
within a factor of 2 — ¢ does not necessarily lead to a longer project with the same
nonapproximability property; the reason is that we cannot force a fixed distribution of the
given budget among those copies.

However, the statement of Theorem 5.3 is certainly of relevance in the context of
arbitrary discrete projects. There can always be a sub-project of a given discrete project
which dominates both time and cost and is up to rescaling an instance of the 2-DTCT
Problem. Therefore, for arbitrary discrete projects the Budget Problem cannot be approx-
imated within a constant 2 — ¢ for e > 0, even if the optimal duration of such a project
islarge.

6. Improved approximation algorithmsfor the Budget Problem. In thissection we
consider instances P of the [-DTCT Problem and present approximation algorithms with
performance guarantee O(log |) for the Budget Problem. The algorithms even work for
the more general class of discrete projects where the ratio of the maximum feasible du-
ration of any activity to the minimum allowed nonzero duration of any activity isbounded
by |. Using the representation of discrete projects described in 83.1 and rescaling all
durations by the inverse of the minimum allowed nonzero duration of any activity asin
the proof of Corollary 4.2, those instances can be described by discrete projects with at
most two possible durations h; < k where h, € {0, k} and k; € {0} U [1, I] for each
activity j € J. To simplify notation we set \ := [dog, | in this section.
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6.1. Partitioning a project into sub-projects. The main idea of the O(\)-approxi-
mation algorithm, which is called Partition and is formally described in Figure 4, isto
divide the project P into A + 1 sub-projects. We first cover theinterval [1, ] with A + 1
intervals[2', 2'*1), 0 < i < \, of geometrically increasing size. Then the activities of P
are partitioned according to their maximum durationk: ForO<i<\let J :={j € J|2'
< k < 2'*'}. Each subset J; of Jinduces a sub-project P; of P which is given by (J;,
<|3). Here <, denotesthe restriction of the partial order < of Jto the subset J; . Notice
that we did not take activities j with k = 0 into account since they are dummy activities
and thus part of the partia order.

All sub-projects P; of P have the nice property that the maximum durations k; of activ-
itiesj € J have up to afactor of 2 the same value 2'. In the approximation algorithm we
want to compute optimal realizations for all sub-projects of P. Thus, in view of Corollary
4.2, we round those durations for activities of sub-projects P, uniformly to 2', i.e., we set
forj € J,

(6.1) kP, = 21, e, (kP)) == cP(KP) = 0,

0 ifhP=0,
h™, = c”(h?;) := ¢/ (hf).
2" otherwise,

The main idea underlying algorithm Partition is to combine optimal realizations of the
sub-projects to a provably good realization of project P. For every tuple x, . .., x™ of
feasible realizations for the sub-projects Py, ..., P, we can construct a corresponding
feasible realization x” of P and vice versa: Given redlizations x™, ..., x™ we set for 0
sis\Nandj e J,

hJP |f Xpij = hPij,
(6.2) xP =

kP otherwise.

This defines a bhijection between realizations for P and tuples of redlizations for
Po, ..., P\.

In order to decide which optimal realizations of sub-projects should be combined to a
realization of P, agorithm Partition computes the minimum deadline T such that all sub-
projects can be finished at time T and the sum of the corresponding costs does not exceed
the budget B, i.e, =), B”,(T) < B. Note that such a deadline T always exists and
max; t7 (k™) is an upper bound on it. In the proof of Theorem 6.1 we will show that T
is a lower bound on the optimal value T, (B). Algorithm Partition computes optimal

Input: discrete project P, budget B = 0;

Output: feasible realization x” of P;

(1) construct the sub-projects Py, . .., P, asdefined in (6.1);

(2) for 0 < i < \ compute B, and corresponding optimal realizations of P;;

(3) compute the minimum deadline T satisfying 2o BP0 (T) < B;

(4) combine optimal redlizations of Py, ..., P, for the deadline T to aredization
xP of P as defined in (6.2) and return x°.

Ficure 4. Algorithm Partition.
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realizations of all sub-projects for this deadline T and combines them to a realization of
P as described in (6.2).

THEOREM 6.1. Algorithm Partition returns for every discrete project P and budget B
= 0 arealization x of P satisfying c(x) < B and t(x) < 2(\ + 1)Tox(B), where A
= [og, I0and | is the ratio of the maximum feasible duration of any activity to the
minimum allowed nonzero duration of any activity. The algorithm can be implemented
to run in strongly polynomial time.

In the proof of Theorem 6.1 we use the fact that the deadline T in step 3 is a lower
bound on Tg.(B). If we combine the optimal realizations of sub-projects in step 4 we
nearly have to double the durations of activities in the worst case because of the rounding
of k;in (6.1). This contributes afactor of two to the performance guarantee of algorithm
Partition. Moreover, in the worst case the durations of the realizations for the A + 1 sub-
projects can add up to the duration of the final realization x°. This yields another factor
of N + 1.

In order to give amore formal proof of Theorem 6.1 we need the following lemma:

LemMA 6.2. If xPand x™, ..., x™ arerealizationsof Pand P, . . ., P, asin (6.2),
the following relations hold:

(a) cP(x") =2k, ¢ (x7),

(b) t°(x") < 23, t7 (x7),

(c) th(xP) <tP(xP)for0O<i =<\

Proor. Part (a) of the lemma follows from the definition of sub-projectsin (6.1). In
order to prove part (b) let I < J be the elements of alongest chain in the partial order of
the set J with respect to x°. Since for any activity j € J; the duration x{ is at most twice
as long as the duration x™; by (6.1) and | N J; isachain in the partial order of the set
JP, we get

A A A
tPxX)=5Sx=5 5 x<3 5 2x"j <23 th(x").
i=0 jelny i=0

jel i=0jelny,

The last part of the lemmais adirect consequence of the fact that x™; < x{" forall j € J,,
OsisA O

Proor oF THEOREM 6.1. Since the redlization x” is composed of realizations x"
witht(x?) < Tfor0 <i < \, Lemma6.2(b) yieldst(x") < 2(\ + 1) T. Moreover, by
Lemma 6.2(a) and the choice of T in step 3 of the algorithm we get ¢(x”) < B. Hence
it remains to show that T < T§«(B). Let X” be an optimal realization of P for the budget
B. By Lemma 6.2(a) the corresponding realizations X™, ..., X" of Py, . .., P, satisfy

% chi(RP)=c?(x°)<B

i=0

and t7(X") < tP(X") = Teu(B) for 0 < i < \ by Lemma 6.2(c). Hence we get T
< Teu(B).

Finally we want to show that algorithm Partition can be implemented to run in strongly
polynomial time. In the algorithm we only have to consider those sub-projects P; of P
with J; # . Thustheir number can be bounded by | J|. In particular we can implement
all loops and summations over the set of sub-projects to run in strongly polynomial time.

Steps 1 and 4 can obviously be done in linear time. By Corollary 4.2 we can use
algorithm LTCT-Solver to perform step 2 in strongly polynomial time. It remainsto show
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that the minimum deadline T in step 3 can be computed in strongly polynomia time. We
replace step 3 by the following subroutine:

(i) setq:=0;

(ii) whileZ} BPige(tPe(k™)) > Bdoq:=q+ 1;

(iii) determine the smallest T € 29N, with tPa(hP1) < T < tP(k™) satisfying 2,
BP ou(T) < B.

Note that there always existsa0 < q < \ which terminates the while-loop in step (ii):
Consider g with tPa(k") = max; t™ (k™), then =X, B o, (t"a(k™)) = 0 < B. We have
to make sure that the value T computed by the subroutine equals the minimum deadline
TwithSk, BPox(T) < B. Thuswe haveto showtpq(hpq) <T<tPa(kP)and T e 29N.
By construction of q in step (ii) we know that T > t? (k") for 0 <i < gqand T

< tPa(kP). Moreover, since tPa(h™) is the smallest deadline that can be reached with
finite cost for the sub-project P,, we get T = tPa(hPa).

By contradiction we assume that T & 2°N,. Since for g < i < \ al feasible durations
of activities in P; are multiples of 29, the same holds for the breakpoints of the step
function B .. Thisyields

(63) Bpiopt(-/r) = Bpiopt(-r - 1)

for g < i < \. Moreover, since T > t” (k™) for 0 < i < q, equation (6.3) also holds for
these values of i. Hence SXo BP o (T — 1) = =X, BPou(T) < Bin contradiction to the
minimality of T.

Since we only have to consider values for q with J, # J, step (ii) can beimplemented
to run in strongly polynomial time. In step (iii) we can simply enumerate all possible
values of T since t(k"™) — t(h™) < 29| J,| by Lemma3.3(b). O

The proven performance guarantee of algorithm Partition is tight: Let A € N and |
;= 2™ — ¢ for some small ¢ > 0 and consider the project P consisting of A + 2 parallel
chainsO,...,\ + 1 of seria activities. For 0 < i < \, theith chain contains 2" " identical
activities j; with hy, 1=k, := 2 and its length is thus fixed to 2*. The last chain is the
seria concatenation of al other chains, with the small but crucia difference that we set
h, := 0and k, := 2"** — ¢ for all activities of the ith chain now. In Figure 5(a) we give
an edge diagram of P for the case A = 1. We choose the budget B such that we can afford
to shorten the last chain to length O, i.e., B = cP(h"). Thuswe get Tq(B) = t(h*) = 2%
see Figure 5(a).

But algorithm Partition performs very poorly on this class of instances. For 0 < i < A
sub-project P; consists of two parallel chains: Theith chain of P with fixed length 2* and

(a) Project P. (c) Sub-project Py.

Ficure 5. A bad instance for algorithm Partition with A = 1.
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a copy of it from the (N + 1)th chain of P with the only difference that hy, = O for all
activities, see Figure 5(b) and (c). Therefore t™ (h™) = t7 (k™) = 2* and the only
optimal realization of P; is k" . Hence, algorithm Partition returns the trivial realization
k" whose length is given by the length of the last chain, i.e.,

t(kP) = % 2 (2F =) =2(N+ 1 - )2+ e =2(A+ 1 — €)Tou(B) + e.

i=0

6.2. Further improvements. Since the performance ratio of agorithm Partition
mainly depends on the number of sub-projects that have to be considered, it can be
significantly better if some of the sets J, are empty. If for examplek; € {0, 1, | } for each
activity j € J, we only have to consider the projects P, and P, . Moreover, we do not need
therounding of durationsin this situation and get performance guarantee 2. More generally
we can state the following corollary:

CoroLLARY 6.3. For a given project P and budget B algorithm Partition returns a
realization x of P with c(x) < Band t(x) < 2qT5x(B), where g isthe number of nonempty
sets J;.

Algorithm Partition can even be dightly improved for general instances by combining
the idea of partitioning P into sub-projects with the rounding technique of algorithm
Relnvest. Remember that the factor A + 1 in the performance guarantee of algorithm
Partition equal s the number of sub-projects that have to be combined in step 4. The main
idea for the improved variant of the algorithm (see Figure 6) isto partition project P into
half as many sub-projects as before in order to save a factor 2 in the performance guar-
antee. The new sub-projects are (up to rescaling) instances of the 2-DTCT Problem and
can therefore only be approximated within a factor 3 of an optimal solution. These two
effectstogether yield an improvement in the performance guarantee of Algorithm Partition
by a factor of 3.

For 0 < i < [\/20Owe combine sub-projects P, and P, to a new sub-project P; (if
\ is even, P, ., is defined to be a trivial project with an empty set of activities J,, 1
= ). The new sub-project P, consists of the set of activities J; U J,., together with
the induced partial order. The durations of activities are again rounded as described
in(6.1).

Thus, up to rescaling by a factor of 272, the sub-project P, is an instance of the 2-
DTCT Problem. We denote the corresponding instance of the 2-DTCT Problem by P' and
its linear relaxation by P'. Since it is NP-hard to compute B" ., (T) and corresponding
optimal realizations of P,, we use BS,([2"2T[) and integral optimal realizations of P’
instead. By construction and Lemma 3.2 we get

Input: discrete project P, budget B = 0;

Output: feasible realization x* of P;

(1’) for 0 < i < D\/2Oconstruct the sub-project P, together with P' and P';

(2") for 0 < i < O\/2Ocompute Bh, and corresponding integral optimal
relizations of P'; 3

(3") compute the minimum deadline T with 2 2{2“ B5,((22TD < B;

(4") compute for each 0 < i < D\/20arealization x*' of P' satisfying
c(xP) = BE(272TD) and t(x”') < [(3/2) 22T i
for 0 < i < [O\/20Orescale x™ by afactor of 22' to get a realization x"
of P, and combine these redlizations to a realization x° of P.

FiGURE 6. Improved variant of algorithm Partition.
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BEL((R2TD) < Bhy((272TD) = BP o (T).

Thus, the same argument as in the proof of Theorem 6.1 yields that the deadline T com-
puted in step 3’ is alower bound on T, (B). Moreover, using the rounding technique of
algorithm Relnvest, we can construct realizations xP' of the projects P', 0 < i < I\/2[J
with c(x™) < Bi (22 TD and t(x™) < (B[R~ T by Corollary 5.2. Theserealizations
can finally be rescaled to realizations of the sub-projects P; and combined to arealization
xP of P as described in (6.2).

THEOREM 6.4. The improved variant of algorithm Partition given in Figure 6
achieves performance guarantee 3\ + 3 and can be implemented to run in strongly
polynomial time.

Since the proof of Theorem 6.4 is very similar to the proof of Theorem 6.1 we only
highlight the main differences that lead to the improved performance guarantee. In par-
ticular, we do not give the analysis of the running time.

SKeETCH oF Proor. As mentioned above, the reason for the improved performance
guarantee is that we only have to combine half as many realizations as before and can
therefore save a factor 2. We get an additional factor 3 since we cannot compute optimal
realizations for the sub-projects but use algorithm Relnvest with performance guarantee
essentially 3 instead. Using the same arguments as in the proof of Theorem 6.1 we get
c(x?) < Band

o 0 if T< 2%,
tP(x7) < B2 ATOR? <
T+ 27471 if T =27,

for 0 < i < IN/20 If X is even we can get a better bound for the casei = [\/20since
in this case J,,, = & and Py,,»nis up to rescaling an instance of the 1-DTCT Problem as
in Corollary 4.2. Thus we can find an optimal realization xPovzn of Py opfor the deadline
T such that t?»27(x"2) < T. Moreover, sinceall feasible durations of P, ,nare multiples
of 2" we get tPove(xPovzd) = Qif T < 2*. Thisyields

r _
g<)\21+1)T+ y 2%°' if Nisodd,
i:T=22
20 _ 3)\ N2-1 )
Y tA(xP) << <§§+1>T+ y 2%t if Nisevenand T = 2,
i=0 i=0
3\ i1 o N
§§T+ > 2¢ if Nisevenand T < 2*.
. i:T=22

All right-hand sides can be bounded from above by 3(3\ + 3)T. Thus, an appropriate
adaption of Lemma 6.2(b) yields

/20

t(xP) <2 ) tP(xP) < G\ + 3)T.

It remains to be shown that T is alower bound on T, (B) and that T can be computed
in strongly polynomial time. This can be done using the same ideas that have already been
described in the proof of Theorem 6.1. [



APPROXIMATION ALGORITHMS 927

7. Bicriteria results. From a practical point of view the results in 884 and 6 are
certainly of minor interest. On the one hand, the proven performance guarantee | for the
Deadline Problem and O(log |) for the Budget Problem are somewhat weak. On the other
hand, in many situationsit may not be realistic to assume a hard given deadline or budget.
Thus, it could be a better idea to treat both time and cost as parameters having equal
rights. This means that we allow some restricted tolerance in both directions. More pre-
cisely, we consider the following problem: We are given a discrete project P together
with adeadline T (or budget B) which implicitly defines an optimal time-cost pair (T, B)
where B = B (T) (respectively T = T5x(B)). We are looking for a realization x of P
such that t(x) < «T and ¢(x) < A\B for given parameters «, A\ = 1 which define the
allowed tolerance for the project duration and cost. Algorithms that compute such solu-
tions in polynomial time are caled bicriteria approximation algorithms or pseudo ap-
proximation algorithms.

The main idea for getting bicriteria approximation results for the Discrete Time-Cost
Tradeoff Problem is again to start with an optimal solution to the linear relaxation and to
round this solution to a feasible realization of the discrete project. Thus, in the following
we will always assumethat X is an optimal realization of the linear relaxation for the given
deadline or budget. As described in 82, X can be computed in polynomial time.

In contrast to our considerations in 84, we may now round the duration of an activity
in both directions depending on which feasible duration is closer in some sense. In our
rounding procedure called Bicriteria-Rounding () we partition for each activity j the
interval [0, k] into two parts [0, uk;) and [ uk;, k] depending on a parameter 0 < p < 1.
If the duration ¥; of activity j iswithin theinterval [ O, uk;), weroundittox := O, otherwise
to x := k;. In the first case, the cost of the solution is increased by a factor less than 1/
(1 — ), inthe second case, the duration of j isincreased by 1/y in the worst case. Thus
we get arealization x of the discrete project P with c(x) < ¢(X)/(1 — u) and t(x) < t(X)/
u by Lemma 3.3(a). Thus, as a consequence of Lemma 3.2 we get the following theorem.

THeorem 7.1. For a given deadline T (or budget B) and a fixed parameter 0 < p
< 1, Bicriteria-Rounding () computes a realization x such that c(x) < B/(1 — u) and
t(X) < T/p, where B = B5x(T) (respectively T = T5x(B)).

If we choose . = 1 for example, we get arealization which is at most twice asexpensive
and twice as long as an optimal realization for the given deadline or budget. Our analysis
istight: Consider a project P consisting of two parallel activities 1 and 2, where h, = h,
=0,kk=1k;=1+¢¢(0) =¢ andc,(0) = 1for somee > 0. An optimal realization
% of the linear relaxation P of P for the deadline 1 is obviously given by %, = % = x such
that t(X) = pand c(X) = (1 — p)e + 1 — /(1 + ¢). BicriteriazRounding(u) leads to
the redlization x of P with x; = 1, X, = 0, t(X) = 1, and c(x) = 1. Thisyields t(x)/t(X)
= 1/p and c(x)/c(X) = 1/(1 — w) when e goes to 0.

We get another kind of bicriteria result if we allow our algorithm to use randomness.
The mativation to consider randomized algorithmsin this context isthat for agiven project
P and afixed realization X not all possible choices of u can lead to an increase in cost by
afactor 1/(1 — u). Notice that we have constructed different worst case examples for
different values of p in the last paragraph. By choosing p randomly we can avoid the
worst case behavior of BicriteriasRounding(u) that can occur in the deterministic case,
and improve the expected performance of our algorithm. This idea has already proven
useful in other contexts; see, e.g., Bertsimaset a. (1996), Chekuri et a. (1997), Goemans
(1997), Shmoys et al. (1997), Schulz and Skutella (1997), Goemans et al. (1998).

THEOREM 7.2. If the parameter u is drawn at random with uniform distribution from
the interval (y, 1) for some 0 < y < 1, Bicriteria-Rounding () computes for a given
deadline T (or budget B) a realization x such that the expected duration E(t(x)) is
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bounded by T-In(1/)/(1 — y) and the expected cost E(c(x)) isbounded by B/ (1 — v),
where B = Bo,(T) (respectively T = T5,(B)).

Proor. Since E(c(x)) = =<, E(ci(%)) it suffices to show that E(c¢;(X)) < ¢;(%)/
(1 — ) fordl j € J. By construction of the algorithm, we get

~ - %k %
E(6(%)) = Pr(u > 1K) (0) = 2 8-6(0) = 710

=

For each fixed choice of u we get t(x) < t(X)/u by Lemma 3.3(a), and therefore

t(X)
1-v

E(t(x)) < t(X) fl 111“7 du = In(1/y). O

Instead of the (2, 2)-approximation by deterministically choosing 4 = 3 we can now
randomly compute a realization where both duration and cost are expected to be within
afactor of e/(e — 1) =~ 1.58 of an optimal solution; thisis done by setting y = 1/e and
drawing p randomly from (y, 1) as in Theorem 7.2. We should however mention that
such a randomized bicriteria approximation result is in some sense weaker than a deter-
ministic one. We cannot guarantee that there exists a feasible realization which simulta-
neously achieves both bounds. Consider the example with two parallel jobs given above.
In this situation we either have to increase cost or time by a factor of 2.
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