
/ 3907 no33 Mp 909 Tuesday Dec 01 12:04 PM INF–MOR no33

909

0364-765X/98/2304/0909/$05.00
Copyright q 1998, Institute for Operations Research and the Management Sciences

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 23, No. 4, November 1998
Printed in U.S.A.

APPROXIMATION ALGORITHMS FOR THE DISCRETE
TIME-COST TRADEOFF PROBLEM

MARTIN SKUTELLA

Due to its obvious practical relevance, the Time-Cost Tradeoff Problem has attracted the atten-
tion of many researchers over the last forty years. While the Linear Time-Cost Tradeoff Problem
can be solved in polynomial time, its discrete variant is known to be NP-hard. We present the
first approximation algorithms for the Discrete Time-Cost Tradeoff Problem. Specifically, given
a fixed budget we consider the problem of finding a shortest schedule for a project. We give an
approximation algorithm with performance ratio 3/2 for the class of projects where all feasible
durations of activities are either 0, 1, or 2. We extend our result by giving approximation algo-
rithms with performance guarantee O( log l) , where l is the ratio of the maximum duration of any
activity to the minimum nonzero duration of any activity. Finally, we discuss bicriteria approxi-
mation algorithms which compute schedules for a given deadline or budget such that both project
duration and cost are within a constant factor of the duration and cost of an optimum schedule
for the given deadline or budget.

1. Introduction. An instance P of the Time-Cost Tradeoff Problem is a project
given by a finite set of activities JP Å J together with a partial order (J , ≥) on the set
of activities. In order to carry out a project, the activities have to be executed in accordance
with the precedence constraints given by the partial order: if j ≥ k , activity k may not be
started before activity j is completed. The activities are indivisible tasks, hence their
execution must not be interrupted. The duration of an activity j √ J , i.e., the difference
between its completion and start time, depends on the amount of money that is paid for
it. This correlation is described by a nonincreasing nonnegative cost function Å cj :Pc j

R/ r R/ < {`} for each activity j √ J , where cj( xj) is the amount of money one has to
pay to run j with duration xj . We will drop the upper index P at any symbol whenever it
is clear from the context.

Throughout this paper we will consider projects that are represented by an edge dia-
gram . This is a directed acyclic graph where each activity j √ J is represented by an edge
of the graph, such that for any two activities j , k √ J there is a directed path from j to k
if and only if j ≥ k . We have chosen the representation of a project by an edge diagram
rather than by an activity-on-node network since edge diagrams are more appropriate to
explain the classical results on the Linear Time-Cost Tradeoff Problem in §2.

In general, dummy edges are needed to represent the precedence constraints in an edge
diagram. Such a dummy edge corresponds to a dummy activity j with cj( xj) Å 0 for all xj

§ 0. We can without loss of generality merge all sources (vertices with in-degree 0) of
the edge diagram to a super-source s and all sinks (vertices with out-degree 0) to a super-
sink s *.

In order to keep the size of the edge diagram small it is desirable to use as few dummy
edges as possible. However, Krishnamoorthy and Deo (1979) proved that it is NP-hard
to obtain a representation with a minimum number of dummy edges. On the other hand
one can easily find an edge diagram where the number of dummy edges is polynomially

Received July 3, 1996; revised December 8, 1997 and June 11, 1998.
AMS 1991 subject classification. Primary: 90B35; secondary: 68Q25.
OR/MS subject classification. Primary: Production/Scheduling; Secondary: Analysis of algorithms/Approxi-
mation algorithms.
Key words. Time-cost tradeoff, approximation algorithm, scheduling, bicriteria optimization.



910 M. SKUTELLA

/ 3907 no33 Mp 910 Tuesday Dec 01 12:04 PM INF–MOR no33

bounded in the input size of the project. To be more precise, given a project by a set of
activities J and precedence constraints (J , ≥) on J , an edge diagram can be obtained by
introducing for each pair of activities j , k √ J with j ≥ k a dummy edge between the
endpoint of edge j and the starting point of edge k .

A realization xP Å x √ of project P is an assignment of durations xj to activities jJR/
√ J . The total cost cP(x) Å c(x) of the realization x is given by

c(x) :Å c ( x ) .∑ j j

j√J

The project duration tP(x) Å t(x) of the realization x is the makespan of the earliest start
schedule which starts each activity at the earliest point in time obeying the precedence
constraints and durations xj . In other words, the project duration equals the length of a
longest chain in the partial order which is itself the length of a longest directed s-s*-path
in a corresponding edge diagram. Thereby, the length of an edge corresponding to an
activity j is the chosen duration xj .

Ideally, we would like to minimize both time and cost for a given project P . Unfor-
tunately, there is a tradeoff between time and cost, i.e., short realizations are usually
expensive and cheap realizations take a long time. Fixing either cost or time we get two
related optimization problems with the objective to minimize the other parameter. The
first problem is the

BUDGET PROBLEM. For a given nonnegative budget B§ 0, find a shortest realization
x satisfying c(x) £ B .

Therefore, we are interested in the function Å Topt : R/ r R/ < {`} that gives thePTopt

minimum time Topt (B ) needed for realizing project P with budget B :

JT (B) :Å min{ t(x)Éx √ R , c(x) £ B}.opt /

Since this minimum exists in all cases that we will consider, the function is well defined.
The second problem is the

DEADLINE PROBLEM. For a given project duration T § 0 (deadline) find a cheapest
realization x satisfying t(x) £ T .

Therefore, we are interested in the function Å Bopt : R/ r R/ < {`} that givesPB opt

the minimum budget Bopt (T ) needed to realize project P in time T :

JB (T ) :Å min{c(x)Éx √ R , t(x) £ T}.opt /

Again, the minimum exists in all cases that we will consider.
A realization x of the project P is an optimal realization if c(x) Å Bopt ( t(x)) and t(x)

Å Topt (c(x)) . That is, x is an optimal realization if and only if P can be realized neither
cheaper nor shorter without increasing time or cost. An optimal realization x is called
optimal for a deadline T § 0, if c(x) Å Bopt (T ) . It is called optimal for a budget B § 0,
if t(x) Å Topt (B) .

The Budget Problem and the Deadline Problem are special parts of the Time-Cost
Tradeoff Problem that was formulated almost forty years ago by Kelley and Walker
(1959): Find optimal realizations for all deadlines T § 0 (or equivalently for all budgets
B § 0). They considered linear projects where all cost functions of activities are affine
linear and decreasing functions over closed intervals. The Linear Time-Cost Tradeoff
Problem has independently been solved by Fulkerson (1961) and Kelley (1961). Later,
Phillips and Dessouky (1977) gave an improved version of the original algorithms. We
briefly review these results in §2.



911APPROXIMATION ALGORITHMS

/ 3907 no33 Mp 911 Tuesday Dec 01 12:04 PM INF–MOR no33

In contrast to the Linear Time-Cost Tradeoff Problem, its discrete variant, the Discrete
Time-Cost Tradeoff Problem, is known to be NP-hard (De et al. 1997). In a discrete
project the duration of each activity can be chosen from a finite number of alternatives.
In this paper we assume that for an activity j all possible durations are explicitly given
such that the encoding length of j is linear in the number of possible durations. Since
discrete alternatives are quite common in practice (Harvey and Patterson 1979, Hindelang
and Muth 1979) and can also be used for approximating arbitrary time-cost relationships
of jobs (Panagiotakopoulos 1977, Robinson 1975), the Discrete Time-Cost Tradeoff
Problem has frequently been considered; for further references see De et al. (1995).

Since one cannot find algorithms that compute optimal realizations for the Discrete
Time-Cost Tradeoff Problem in polynomial time, unless P Å NP , we are interested in
algorithms that run in polynomial time and compute provably good realizations: an a-
approximation algorithm is a polynomial-time algorithm that produces a feasible solution
whose value is within a factor of a of the optimum; a is called performance guarantee
or performance ratio of the algorithm. To the best of the author’s knowledge, no approx-
imation algorithm was known before for the Discrete Time-Cost Tradeoff Problem.

We present the following results: First of all we show that it suffices to consider projects
with at most two alternatives for the duration of each activity, where the shorter of two
possible durations is zero. This enables us to introduce a relaxation of discrete projects to
linear projects. An optimal solution to this linear relaxation then serves as a surrogate for
the true optimum in our estimations. Moreover, the structure of an optimal realization for
the linear relaxation guides the construction of provably good realizations for the discrete
project.

Using a simple rounding technique, we give approximations with performance guar-
antee l for the Budget Problem and the Deadline Problem of projects where all possible
durations of activities are in the range {0, . . . , l }. Using somewhat more sophisticated
ideas these results can be improved. For the special class of projects where all feasible
durations are either 0, 1, or 2, we present an approximation algorithm with performance
guarantee for the Budget Problem. We also show that there exists no approximation3

2

algorithm with a better performance guarantee for the considered class of instances, unless
P Å NP . Furthermore, for the more general class of discrete projects where all possible
durations of activities lie in the set {0, . . . , l } we present approximation algorithms for
the Budget Problem with performance guarantee depending logarithmically on l . We also
show that the analysis is tight. On the other hand we argue why we get much better results
for wide classes of projects. Finally, we discuss bicriteria approximation algorithms that
construct feasible realizations for arbitrary discrete projects and for a given deadline or
budget such that both time and cost are within a constant factor of an optimal schedule
for the given deadline or budget.

The paper is organized as follows: In the next section we state some important properties
of linear projects ; in particular, we describe the algorithm of Phillips and Dessouky
(1977). In §3 we consider discrete projects , present the reduction to the case of at most
two alternatives for the duration of each activity, and describe the linear relaxation. This
enables us to develop simple l-approximation algorithms in §4. In §5 we present the
improvement to performance guarantee for the Budget Problem in case l Å 2. For3

2

arbitrary l , we give O( log l)-approximations in §6. Finally, in §7 we discuss bicriteria
approximation algorithms with constant performance ratio for the Discrete Time-Cost
Tradeoff Problem.

2. The Linear Time-Cost Tradeoff Problem. In this section we consider projects P
where the duration of each activity j √ J can be chosen from a certain positive interval

Å [aj , bj] belonging to this activity. Moreover, the cost function cj of j is affineP P[a , b ]j j



912 M. SKUTELLA

/ 3907 no33 Mp 912 Tuesday Dec 01 12:04 PM INF–MOR no33

linear and decreasing within that interval. Consequently, it is defined by the values cj(aj) ,
cj(bj) √ R/ and can be written in the following form:

` if t õ a ,j

b 0 t t 0 aj jc ( t) Å c (a ) / c (b ) if a £ t £ b ,j j j j j j jb 0 a b 0 aj j j j5
c (b ) if t § b .j j j

Since cj is constant for t § bj , we will only consider realizations x satisfying a £ x £ b .
An instance P of the described form is called a linear project and is an instance of the
Linear Time-Cost Tradeoff Problem (LTCT Problem).

Since the realization x Å b is obviously the shortest realization of a linear project P for
the minimum budget c(b) and since there can be no cheaper realization of P at all, it is
an optimal realization for the deadline t(b) . Moreover, the duration t(a) of the realization
a is the shortest deadline that can be reached with finite cost, though a is not an optimal
realization for this deadline in general.

2.1. The time-cost curve of linear projects. The following result was discovered by
Fulkerson (1961) and independently by Kelley (1961). It is not only crucial for solving
the Linear Time-Cost Tradeoff Problem, but it also plays a fundamental role in the deri-
vation of our approximation results for the discrete case.

LEMMA 2.1. For a linear project P the functions Bopt and Topt are piecewise affine
linear , convex , nonincreasing , and continuous , except for the intervals where the function
values are infinite .

PROOF. Finding a cheapest realization for a fixed deadline T can easily be formulated
as a linear program whose right-hand side linearly depends on T (Fulkerson 1961). The
function Bopt can thus be determined by a parametric linear programming problem and is
therefore piecewise affine linear, convex, and continuous; see, e.g., Padberg (1995, Sec-
tion 6.5); moreover, Bopt is by definition nonincreasing. The result for the function Topt

follows since it is the inverse function of Bopt . h

As a consequence of Lemma 2.1 it suffices to know all breakpoints of the function Bopt

in order to construct Bopt and Topt . Moreover, given for each breakpoint a corresponding
optimal realization, one can easily compute an optimal realization for an arbitrary deadline
or budget as a convex combination of the optimal realizations corresponding to the two
neighboring breakpoints.

2.2. Solving the Linear Time-Cost Tradeoff Problem. The algorithm of Phillips and
Dessouky solves the Linear Time-Cost Tradeoff Problem by computing Bopt and optimal
realizations for all breakpoints. It starts with the optimal realization b and constructs a
sequence of optimal realizations for decreasing deadlines and increasing budgets. In par-
ticular, this sequence contains optimal realizations for all breakpoints of Bopt and Topt ; we
refer to this algorithm as LTCT-Solver. Since it will be used as a subroutine in our
approximation algorithms we give a more detailed explanation in what follows.

As already mentioned, algorithm LTCT-Solver computes optimal solutions for decreas-
ing deadlines. Thus, given an optimal realization x , it has to find a way to shorten x
without losing optimality, i.e., without too much increase in cost. More precisely, the
increase in cost must not exceed the absolute value of the left-hand derivative of Bopt at
t(x) . Since it is obviously useless to shorten the durations xj of those activities j whose
corresponding edges do not lie in a longest s-s*-path at the moment, the algorithm LTCT-



913APPROXIMATION ALGORITHMS

/ 3907 no33 Mp 913 Tuesday Dec 01 12:04 PM INF–MOR no33

Solver only considers the subgraph that is induced by critical edges; we call an edge
critical if it lies on a longest s-s*-path.

If the realization x can be shortened, i.e., if t(x) ú t(a) , then there exists an (s , s *)-
cut S in the subgraph of critical edges such that all activities j that correspond to forward
edges in S can be shortened, i.e., xj ú aj . Shortening those durations uniformly by d ú 0
leads to a decrease of the project duration by the same amount or a positive multiple of
it as long as no other edge becomes critical. Of course, this can also only be done until
one of the edges in the cut attains its minimum duration aj . To save cost we can at the
same time uniformly enlarge the durations of those activities j , with xj õ bj , that corre-
spond to backward edges in S by the same amount; this can be done until one of them
has reached its upper bound bj .

For each (s , s *)-cut S we can in this way define the cost used per time to shorten all
forward edges and enlarge backward edges of S together with a maximum possible dS .
Changing durations along a cheapest cut S* in the subgraph of critical edges by dS * as
described above preserves optimality and shortens the project duration by exactly dS * .
Moreover, such a cheapest cut can be found by solving a maximum flow problem on the
subgraph of critical edges. We do not go into the details at this point, the interested reader
is referred to the work of Phillips and Dessouky (1977).

To summarize, algorithm LTCT-Solver starts with the optimal realization x Å b and
then iteratively shortens this realization along a cheapest (s , s *)-cut S* in the subgraph
of critical edges by dS * . The algorithm stops as soon as the project duration t(x) has
reached the minimum possible duration t(a) . The running time of each iteration of the
algorithm is dominated by the running time needed to find the minimum cut. This can be
done in O(nm log(n 2 /m)) time (Goldberg and Tarjan 1988), where n denotes the number
of vertices and m the number of edges of the current subgraph. Since there are no isolated
vertices in the edge diagram and edges correspond to activities of the project, we get n
£ m £ ÉJÉ. Hence, the overall running time of algorithm LTCT-Solver is O(# itera-
tions·ÉJÉ2 logÉJÉ) .

We should mention here that the number of iterations can be exponential in the input
size. In (Skutella 1998) the author presents a class of linear projects with exponentially
many breakpoints for the functions Bopt and Topt . Since the algorithm LTCT-Solver needs
at least one iteration to get from one breakpoint to the next, it is not an efficient tool for
solving the Deadline Problem or Budget Problem of linear projects for a single deadline
or budget. Of course, both problems can efficiently be solved since they can be formulated
as linear programs of polynomial size. It was observed by Fulkerson (1961) that the dual
program can easily be transformed into a min-cost flow problem. Thus there even exist
efficient combinatorial algorithms.

The following lemma is crucial for finding good realizations of discrete projects.

LEMMA 2.2. If aj , bj are integral for all j √ J , then algorithm LTCT-Solver computes
in O(( t(b) 0 t(a))ÉJÉ2 logÉJÉ) time for each integral deadline T an optimal , integral
realization .

PROOF. The algorithm starts with the integral realization x Å b . Since a and b are
integral, the durations of activities along the selected cut can at least be changed by
d :Å 1 in each iteration and the realization x stays integral. As mentioned above, the
project duration is then also decreased by 1 in each iteration and the algorithm computes
for each integral deadline an optimal, integral realization. Moreover, the number of iter-
ations of the algorithm can be bounded by t(b) 0 t(a) and we get the desired result for
the running time. h

A similar integrality result was already achieved by Fulkerson (1961) and by Kelley
(1961, Remark 4). There it is shown that under the conditions of Lemma 2.2 all solutions
computed by Algorithm LTCT-Solver are integral. For a more detailed discussion of the



914 M. SKUTELLA

/ 3907 no33 Mp 914 Tuesday Dec 01 12:04 PM INF–MOR no33

stated results for linear projects we refer to Fulkerson (1961), Kelley (1961), and Phillips
and Dessouky (1977). An order-theoretic view of the problem can be found in Möhring
and Radermacher (1989).

3. The Discrete Time-Cost Tradeoff Problem. We consider projects P where the
duration of each single activity j can attain at most two different nonnegative values hj

and kj , where hj is equal to 0 or kj . By ignoring fixed costs we assume cj(kj) Å 0 such
that c(k) Å 0 and k is a feasible realization of P for any nonnegative budget B . Moreover,
if 0 Å hj õ kj we assume 0 õ cj(hj) õ ` . We can think of the cost function of activity j
as a step function

` if 0 £ t õ h ,j

c ( t) Å c (h ) if h £ t õ k ,j j j j j5
0 if k £ t .j

A project of the described form is a discrete project and an instance of the Discrete Time-
Cost Tradeoff Problem (DTCT Problem).

3.1. A reduction of general instances. At first sight, allowing only two feasible du-
rations for each activity might look like a substantial restriction. But we can in fact model
any activity j with a finite number q ú 2 of feasible nonnegative durations d1 õ ···õ dq

as a set of q parallel activities with the properties described above. These parallel activities
are represented by parallel edges in the edge diagram. Again, ignoring fixed costs we
assume cj( dq) Å 0 and think of cj as a step function (recall that we assume cj to be
nonincreasing).

We first introduce an activity j1 with fixed length :Å :Å d1 and :Å 0. Thish k c (k )j j j j1 1 1 1

activity guarantees that we cannot get shorter than the minimum feasible duration d1 of
j . Then we model the cost structure of j by introducing for all other feasible durations di ,
2 £ i £ q , an activity ji . The idea of this construction is that activity ji can only be
shortened below duration di if the difference in cost to the next shorter feasible duration
di01 of j is being paid. Therefore we define :Å 0, :Å di , :Å cj( di01) 0 cj( di ) ,h k c (0)j j ji i i

and :Å 0. It is an easy observation that the sum of the cost functions of the newc (k )j ji i

activities j1 , . . . , jq exactly equals the cost function of j . Thus there is a canonical mapping
of feasible durations xj for j to tuples of feasible durations . . . , for j1 , . . . , jq suchx , xj j1 q

that xjÅ . . . , and cj( xj)Å / ···/ Moreover, this mappingmax{x , x } c (x ) c (x ) .j j j j j j1 q 1 1 q q

is bijective if we restrict ourselves without loss of generality to tuples of durations x ,j1

. . . , satisfying Å if ° . . . ,x x k k max{x , x }.j j j j j jq i i i 1 q

Since we assume that the encoding length of each activity j is linear in the number of
possible durations, the input size of a project is only increased by a constant factor if
activities with more than 2 feasible durations are replaced by a set of parallel activities.
In the remainder we will only consider discrete projects with no more than two feasible
durations for each activity. This is justified by the following lemma which is a consequence
of our considerations above.

LEMMA 3.1. Any approximation algorithm for the class of discrete projects with
at most two feasible durations hj £ kj for each activity j , where hj √ {0, kj}, implies
an approximation algorithm with same performance guarantee for arbitrary discrete pro-
jects .

For the same reason that bP̃ is an optimal realization for a linear project P̃ , we know
that kP is an optimal realization for the discrete project P since it is the cheapest possible



915APPROXIMATION ALGORITHMS

/ 3907 no33 Mp 915 Tuesday Dec 01 12:04 PM INF–MOR no33

realization. On the other hand, the duration t(h) is the shortest deadline that can be reached
with finite cost, though h is not an optimal realization in general. Therefore we only
consider deadlines T § t(h) .

In what follows we will study special classes of instances of the Discrete Time-Cost
Tradeoff Problem: a discrete project P is an instance of the l-DTCT Problem for an integer
l √ N if kj √ {0, 1, . . . , l } for each activity j √ J . If we consider arbitrary discrete
projects with more than two alternative durations for activities, this is (by the above
transformation) equivalent to the requirement that all feasible durations lie in the set {0,
1, . . . , l }. As mentioned above, it is shown in (De et al. 1997) that it is NP-hard to find
optimal realizations for discrete projects. This is proved by reducing an NP-hard variant
of 3SAT to instances of the 2-DTCT Problem. Hence it is already NP-hard to find optimal
realizations if we restrict ourselves to the 2-DTCT Problem.

3.2. Linear relaxations of discrete projects. In order to design approximation al-
gorithms for the Budget Problem and the Deadline Problem of discrete projects we intro-
duce a linear relaxation which is used to get a lower bound on the value of an optimal
solution. The linear relaxation of a discrete project P is a linear project that consists ofP̃
the same set of activities, i.e., JP̃ Å JP . Its structure is defined by the same partial order
(J , ≥) on this set, hence the edge diagram corresponding to P̃ is the same as for P . The
interval is given by :Å and :Å for each activity j √ J . The cost˜ ˜ ˜ ˜P P P P P P[a , b ] a h b kj j j j j j

function is defined by :Å and :Å This definition of the˜ ˜ ˜P P P P Pc c (a ) c (h ) c (b ) c (k ) .j j j j j j j j j

linear relaxation is the main reason why we have transformed arbitrary discrete projects
to those with at most two possible alternatives for the duration of each activity.

LEMMA 3.2. If P̃ is the linear relaxation of the discrete project P , then P̃T (B)opt

£ for all B § 0 and £ for all T § 0.˜P P PT (B) B (T ) B (T )opt opt opt

The proof of the lemma follows immediately from the definition of the linear relaxation
and is therefore left out. We shall often refer to the following two basic properties of
realizations for arbitrary projects.

LEMMA 3.3. Let x , x* be realizations of the project P .
(a) If a § 0 and xj £ for each activity j √ J , then t(x) £ a· t(x *) .a·x*j
(b) If b § 0 and xj 0 £ b for each activity j √ J , then t(x) 0 t(x *) £ b·ÉJÉ.x*j

PROOF. Let I ⊆ J be the subset of activities corresponding to a longest s-s*-path in
the edge diagram with respect to x and I * the subset of J corresponding to a longest s-s*-
path with respect to x *, then

t(x) Å x £ a x* £ a x* Å a· t(x*)∑ ∑ ∑j j j

j√I j√I j√I=

in case (a) , and

t(x) 0 t(x*) Å x 0 x* £ x 0 x* £ (x 0 x*) £ b·ÉJÉ∑ ∑ ∑ ∑ ∑j j j j j j

j√I j√I= j√I j√I j√I

in case (b) . h

4. Approximation algorithms for general instances of the Discrete Time-Cost Trade-
off Problem. In this section, we consider the Budget Problem and the Deadline Problem
for instances P of the l-DTCT Problem, for arbitrary l√N. One idea to get good solutions
to these problems is to compute an optimal realization x̃ of the linear relaxation P̃ of P
and to round it appropriately to a feasible realization of P . The quality of this realization



916 M. SKUTELLA

/ 3907 no33 Mp 916 Tuesday Dec 01 12:04 PM INF–MOR no33

can then be tested by comparing its value, i.e., its duration or cost, to the value of the
realization we started with.

Consider the following example: We are given a project P whose only activity j has
feasible durations hj Å 0 and kj Å 2, where cj(2) Å 0 and cj(0) Å q , for some q √ N;
furthermore, we are allowed to spend the budget B Å q 0 1 and want to minimize the
project duration. Since we cannot afford to choose duration 0 for activity j , the duration
of the optimal realization is 2. However, the optimal solution to the linear relaxation P̃
has value 2/q and is thus a factor of q away from 2. Consequently, since q may be chosen
arbitrarily large one cannot give any performance guarantee by comparing the value of a
feasible realization of the discrete project to the optimal solution of its linear relaxation
P̃ . But we can overcome this drawback if we use as a lower bound the shortest integral
realization of the linear relaxation for the given budget instead. This yields a duration of
1 in the example which is only a factor of 2 away from the optimum for the discrete
project P .

4.1. Integral optimal realizations. Therefore, we call a realization x̃ of P̃ integral
optimal for a budget B (for a deadline T ) , if x̃ is the shortest (cheapest) integral realization
of P̃ satisfying c( x̃)£ B (respectively t( x̃)£ T ) . In contrast, if we talk about an optimal ,
integral realization for a budget (for a deadline) we mean one which is optimal for this
budget (for this deadline) and integral. In the above example x̃j Å 2/q is optimal and x̃j

Å 1 is integral optimal for the budget q 0 1. However, x̃j Å 1 is not optimal, integral for
the budget q 0 1, but it is optimal, integral for the budget q /2.

The following lemma states some important properties of integral optimal realizations.

LEMMA 4.1. Let P be an instance of the l-DTCT Problem and x̃ a realization for the
linear relaxation P̃ of P .

(a) If x̃ is integral optimal for the deadline T, then cP̃( x̃) £ PB (T ) .opt

(b) If x̃ is integral optimal for the budget B , then t( x̃) Å £P̃ PT (B) T (B) .opt opt

(c) Algorithm LTCT-Solver can be used to compute integral optimal realizations of P̃
for all deadlines and budgets in time O( lÉJÉ3 logÉJÉ) .

PROOF. Since we are interested in integral realizations x̃ of P̃ only and all feasible
realizations of P are integral, we can without loss of generality assume that the deadline
T in part (a) is integral too (because otherwise we can replace T by T) . There exists
an optimal, integral realization x̃* for the integral deadline T by Lemma 2.2 and algorithm
LTCT-Solver can be used to compute it. Moreover, x̃* is by definition integral optimal
for the deadline T and we get cP̃( x̃) Å c P̃( x̃ *) Å £ by Lemma 3.2.P̃ PB (T ) B (T )opt opt

To prove part (b) , consider an optimal, integral realization x̃ * for the deadline
By definition of we know that c( x̃ *) £ B and since x̃ * is integral we˜ ˜P PT (B) . T (B)opt opt

get

P̃ Pt( x̃) £ t( x̃*) £ T (B) £ T (B) ,opt opt

where the last inequality follows from the integrality of and Lemma 3.2. On thePT (B)opt

other hand, the integrality of x̃ yields t( x̃)§ In particular x̃* is integral optimalP̃T (B) .opt

for the budget B , and can be computed by algorithm LTCT-Solver.
As a consequence of part (a) and (b) we get integral optimal realizations by computing

optimal realizations for integral deadlines. By Lemma 2.2 and Lemma 3.3(b) this can be
done in time O( lÉJÉ3 logÉJÉ) . h

We get the following interesting corollary:



917APPROXIMATION ALGORITHMS

/ 3907 no33 Mp 917 Tuesday Dec 01 12:04 PM INF–MOR no33

COROLLARY 4.2. Let r ú 0 and P be an instance of the DTCT Problem satisfying kj

√ {0, r} for all j √ J . Then , algorithm LTCT-Solver can be used to compute optimal
realizations of P for all possible deadlines and budgets in O(ÉJÉ3 logÉJÉ) time .

PROOF. Since all feasible durations are either 0 or r , only multiples of r can occur as
project durations and it suffices to consider those deadlines which are multiples of r . We
may without loss of generality assume that r Å 1 because otherwise one can rescale all
feasible durations by multiplication with the positive scalar 1/r . This leads to an instance
of the 1-DTCT Problem. The result now follows from Lemma 4.1 and the observation
that for an instance P of the 1-DTCT Problem all integral realizations of its linear relax-
ation P̃ are feasible for P . h

4.2. Approximations for the Deadline Problem. When we are looking for provably
good solutions x to the Deadline Problem of a discrete project P , we can first compute
an integral optimal realization x̃ of the linear relaxation P̃ for the given deadline T . This
gives a lower bound cP̃( x̃) on the value of an optimal solution by Lemma 4.1(a) .PB (T )opt

Unfortunately, x̃ is not a feasible solution for the discrete project P in general. But hope-
fully it is not too far away from an optimal feasible realization of P for the deadline T .
Thus a straightforward approach is to round x̃ to a feasible realization x of P .

We only need to consider those activities j which have been assigned a duration x̃j that
is not feasible for the discrete project, i.e., 0 õ x̃j õ kj . Of course we would like to round
x̃j to the less expensive duration kj , but unfortunately this could possibly increase the
project duration and thus violate the deadline T . To avoid this, we better round these
durations to the more expensive alternative xj :Å 0 such that t(x) £ t( x̃) £ T by Lemma
3.3(a) . If P is an instance of the l-DTCT Problem, we get by definition of the linear
relaxation and by integrality of x̃j ,

k 0 x̃ 1j jP̃ P Pc ( x̃ ) Å ·c (0) § ·c (0) .(4.1) j j j jk lj

This yields £ and, as a result, cP(x) £ lc P̃( x̃) £ by Lemma˜P P Pc (0) lc ( x̃ ) lB (T )j j j opt

4.1(a) . Note that we had to start with an integral optimal realization x̃ , because otherwise
we could not give any bound on kj 0 x̃j in (4.1) . We have proved the following theorem:

THEOREM 4.3. For instances of the l-DTCT Problem , rounding the durations of an
integral optimal realization to the linear relaxation uniformly to the next shorter feasible
duration yields an approximation algorithm with performance guarantee l for the Dead-
line Problem .

We cannot get a better bound in this way since our analysis of the cost for the rounded
solution is tight: Consider a discrete project P where both duration and cost are dominated
by only one activity j with hj Å 0 and kj Å l together with the deadline T :Å l 0 1. In this
case equality holds in (4.1) and thus the bound is tight. In particular, our lower bound
can be away from the value of an optimal solution by a factor of l .

4.3. Approximations for the Budget Problem. When we are looking for good so-
lutions to the Budget Problem, we can apply a similar idea. In a first step we compute an
integral optimal solution x̃ of the linear relaxation for the given budget B . By Lemma
4.1(b) we get a lower bound t( x̃) on the duration of an optimal solution. In thePT (B)opt

rounding step we should now set the durations of activities j with 0 õ x̃j õ kj to the less
expensive duration xj Å kj , because rounding to 0 increases cost and we would possibly
overspend the budget B . If P is an instance of the l-DTCT Problem we therefore get



918 M. SKUTELLA

/ 3907 no33 Mp 918 Tuesday Dec 01 12:04 PM INF–MOR no33

x £ k x̃ £ lx̃ ,j j j j

since x̃j § 1 by integrality of x̃ . This yields t(x) £ lt( x̃) £ by Lemma 3.3(a)PlT (B)opt

and Lemma 4.1(b) . Thus we have also developed an approximation algorithm with per-
formance guarantee l for the Budget Problem.

THEOREM 4.4. For instances of the l-DTCT Problem , rounding the durations of an
integral optimal realization to the linear relaxation uniformly to the next longer feasible
duration yields an approximation algorithm with performance guarantee l for the Budget
Problem .

We can even get better results for the Budget Problem. Because, unlike the situation
for the Deadline Problem, we can now repair the violation of the budget caused by round-
ing some durations to the shorter but more expensive alternative 0, if we save money by
rounding durations of other activities to the less expensive alternative kj . We will use this
idea in the next section to get a better approximation result for the 2-DTCT Problem.

5. The approximability of special instances of the Discrete Time-Cost Tradeoff
Problem. We consider the Budget Problem for instances of the 2-DTCT Problem. Hence
we are given a discrete project P with kj √ {0, 1, 2} for each activity j √ J , and a budget
B § 0. By construction of the linear relaxation P̃ the cost functions and coincide˜P Pc cj j

for all feasible durations xj in P . Therefore, to simplify notation, we only use the symbols
cj :Å and c :Å c P̃ throughout this section. For the same reason we denote both functionsP̃c j

tP and t P̃ simply by t .
To compute a provably good, feasible realization of P we first use algorithm LTCT-

Solver in order to find an integral optimal realization x̃ of the linear relaxation P̃ for the
given budget B . Then an algorithm called ReInvest rounds this realization x̃ in a somewhat
more intricate way according to the idea given at the end of the last section in order to
get a good, feasible realization of P . First of all, it fixes the durations of all activities j
that are already feasible to xj :Å x̃j √ {hj , kj}. Now it remains to consider those activities
j with hj Å 0, kj Å 2, and x̃j Å 1. We denote the subset of J consisting of these activities
by J*.

The feasible realization that we get by just setting xj :Å 2 for all j √ J * is a 2-approx-
imation by Theorem 4.4. Notice that this realization does not use an amount of B* :Å B
0 c(x) Å B 0 c( x̃) / (j√J = cj(1) of the budget B . The main idea of the algorithm is to
reinvest this saved amount in order to round some of the durations back from 2 to 1 and
then to the feasible duration 0. In other words, algorithm ReInvest rounds not all but only
some of the jobs in J* from 1 to 2 such that at least B * of the whole budget is left. This1

2

amount suffices to round all other jobs in J* from 1 to 0; the reason is that the amount
saved by rounding a job from 1 to 2 exactly equals the cost that is needed to round it
from 1 to 0; see Figure 1. A more precise argument is given in the proof of Theorem 5.1.
We denote the subset of J * consisting of those activities whose duration is rounded to
0 by J9.

It remains to decide which activities should be rounded from 1 to 2 preserving an
amount of B* with minimum increase in the project duration. This problem can be solved1

2

optimally: We construct another linear project P* where the durations of activities j √ J *
can be chosen out of the interval [1, 2]; see Figure 1, and the durations and costs of all
other activities are fixed, i.e., Å 1, Å 2 for j √ J* and Å Å x̃j for j √ J"J*.P= P= P= P=a b a bj j j j

Note that the realization bP= is the solution found by the 2-approximation algorithm in
Theorem 4.4. Therefore, it is at most twice as long as an optimal realization for the budget
B . Moreover, by definition of B * we get c(bP =)Å B0 B*. We compute an integral optimal
realization x * of P* for the budget B0 B*, i.e., we force the new realization x* to preserve1

2

an amount of B* with minimum increase in the project duration. The convexity of the1
2



919APPROXIMATION ALGORITHMS

/ 3907 no33 Mp 919 Tuesday Dec 01 12:04 PM INF–MOR no33

FIGURE 1. The cost function of an activity j √ J*.

function yields that the duration of x * is (up to integrality) at most the average ofP=Topt

t( x̃) and t(bP=) since its budget is the average of the cost of bP = and the budget B .
Therefore it is within a factor of the optimum (again, up to integrality); see Figure 2.3

2

Finally, as mentioned above, we turn x* into a feasible realization for P by setting the
durations of the remaining activities j √ J 9 ⊆ J* from 1 to 0 using the remaining budget

B*. A formal description of algorithm ReInvest is given in Figure 3.1
2

THEOREM 5.1. Given an instance P of the 2-DTCT Problem and a budget B § 0,
algorithm ReInvest computes a feasible realization x such that c(x) £ B and t(x)
£ The running time of the algorithm is O(ÉJÉ3 logÉJÉ) .3 P T (B) .opt2

PROOF. By construction of the linear project P* its cost functions and cP= coincideP=c j

with respectively c P̃ for all feasible durations; see Figure 1. Therefore, we also use theP̃c j

notation cj , c , and t for the project P*.
First of all we show that the realization x of P does not violate the given budget B .

Since xj Å for all j √ J"J9, we getx*j

c(x) 0 c(x*) Å (c (0) 0 c (1)) by step 4,∑ j j

j√J0

Å (c (1) 0 c (2)) by linearity of c ; see Figure 1,∑ j j j

j√J0

P= P=Å c(x*) 0 c(b ) by definition of b .

Since c(x *) £ B 0 B* and c(bP =) Å B 0 B*, we get1
2

P=c(x) Å 2c(x*) 0 c(b ) £ B .

Now we want to show that t(x) £ We know from the last section that3 P T (B) .opt2

t(bP=) £ 2t( x̃) . Considering x̃ as a realization of P* yields £ t( x̃) because c( x̃)P=T (B)opt

£ B . Since t( x̃) £ by Lemma 4.1(b) , we getPT (B)opt

P= P P= PT (B) £ T (B) and t(b ) £ 2T (B) .(5.1) opt opt opt

The remaining part of the proof is described in Figure 2. Since the budget for the integral



920 M. SKUTELLA

/ 3907 no33 Mp 920 Tuesday Dec 01 12:04 PM INF–MOR no33

FIGURE 2. The convexity of yields t(x *) £P= PT (3/2)T (B) .opt opt

Input : instance P of the 2-DTCT Problem, budget B § 0;
Output : feasible realization x of P .
(1) compute an integral optimal realization x̃ of the linear relaxation P̃ of P for
the budget B;
(2) construct a new linear project P*:

• let (P*, ≥) :Å (P , ≥) Å ( P̃ , ≥) ;
• if x̃j √ {hj , kj} for j √ J then set :Å :Å x̃j and :Å cj( x̃j) ;P= P= P= P=a b c (a )j j j j

• if {hj , kj} Å {0, 2} and x̃j Å 1 for j√ J ( i.e., j √ J *) , then set :Å 1,
:Å 2,

P= P=a bj j

:Å cj(1) , and :Å cj(2);P= P=c (1) c (2)j j

(3) compute an integral optimal realization x* of P* for the budget B 0 B* ;1
2

(4) set xj :Å for all j√ J and return x .= =x if x √{h ,k },j j j j
={0 if x Å1 and j√J=,j

FIGURE 3. Algorithm ReInvest.

optimal realization x* of P* is the average of the budget B and the cost B 0 B* of the
realization bP = , the convexity of the function yields that t(x *) is up to integrality atP=Topt

most the average of and t(bP=) which can be bounded by (5.1) . Putting theseP=T (B)opt

results together, we get

1P= P=t(x*) Å  T ( (B / c(b ))) by Lemma 4.1(b) ,opt 2

1 P= P= P=£  (T (B) / T (c(b ))) by Lemma 2.1,opt opt2

1 P= P= P=Å  (T (B) / t(b )) by optimality of b ,opt2

3 P£  T (B) by (5.1) .opt2

Since xj £ for all j √ J , the result follows by Lemma 3.3(a) .x*j



921APPROXIMATION ALGORITHMS

/ 3907 no33 Mp 921 Tuesday Dec 01 12:04 PM INF–MOR no33

Steps 2 and 4 of algorithm ReInvest can be done in linear time. Its running time is
therefore dominated by the two calls of algorithm LTCT-Solver in steps 1 and 3. Since
t(bP̃) 0 t(aP̃) £ 2ÉJÉ and t(bP=) 0 t(aP=) £ ÉJÉ by Lemma 3.3(b) , the overall running
time is O(ÉJÉ3 logÉJÉ) by Lemma 2.2. h

In the next section we make use of the following slightly stronger result.

COROLLARY 5.2. The duration t(x) of the realization x computed by algorithm Re-
Invest can be bounded from above by ˜3 P T (B)  .opt2

PROOF. Lemma 4.1(b) yields t( x̃) Å Thus we can replace byP̃ PT (B) . T (B)opt opt

in (5.1) . The result now follows using the same arguments as in the proof ofP̃T (B)opt

Theorem 5.1. h

Finally, we want to show that there can be no better approximation algorithm for the
Budget Problem of the 2-DTCT Problem, unless P Å NP .

THEOREM 5.3. There is no polynomial-time algorithm computing a realization x for
arbitrary instances P of the 2-DTCT Problem and for arbitrary budgets B § 0, such that
c(x) £ B and t(x) õ unless P Å NP .3 PT (B) ,opt2

PROOF. De et al. (1997) show that the following decision problem is NP-complete.
Given an instance of the 2-DTCT Problem and a fixed budget, does there exist a realization
x obeying the budget, such that t(x) £ 2? If there was a polynomial-time approximation
algorithm for the Budget Problem with performance guarantee 0 e for some e ú 0, it3

2

would find optimal realizations for all instances P with £ 2, and could thereforePT (B)opt

solve the NP-complete decision problem. h

The statement of Theorem 5.3 may be of little relevance in some sense since we have
only shown it to be tight for instances with optimal value 2. Thus, like for the edge-
coloring problem, it could be the case that the Budget Problem can be approximated within
an additive constant of 1 for instances of the 2-DTCT Problem. Unfortunately, there does
not seem to be the possibility to carry over the nonapproximability result directly to
instances of the 2-DTCT Problem with arbitrarily large optimal value. On the one hand,
the problem lacks a straightforward scaling property. On the other hand, a simple serial
concatenation of several copies of a project whose duration is NP-hard to approximate
within a factor of 0 e does not necessarily lead to a longer project with the same3

2

nonapproximability property; the reason is that we cannot force a fixed distribution of the
given budget among those copies.

However, the statement of Theorem 5.3 is certainly of relevance in the context of
arbitrary discrete projects. There can always be a sub-project of a given discrete project
which dominates both time and cost and is up to rescaling an instance of the 2-DTCT
Problem. Therefore, for arbitrary discrete projects the Budget Problem cannot be approx-
imated within a constant 0 e for e ú 0, even if the optimal duration of such a project3

2

is large.

6. Improved approximation algorithms for the Budget Problem. In this section we
consider instances P of the l-DTCT Problem and present approximation algorithms with
performance guarantee O( log l) for the Budget Problem. The algorithms even work for
the more general class of discrete projects where the ratio of the maximum feasible du-
ration of any activity to the minimum allowed nonzero duration of any activity is bounded
by l . Using the representation of discrete projects described in §3.1 and rescaling all
durations by the inverse of the minimum allowed nonzero duration of any activity as in
the proof of Corollary 4.2, those instances can be described by discrete projects with at
most two possible durations hj £ kj where hj √ {0, kj} and kj √ {0} < [1, l] for each
activity j √ J . To simplify notation we set l :Å  log2 l in this section.



922 M. SKUTELLA

/ 3907 no33 Mp 922 Tuesday Dec 01 12:04 PM INF–MOR no33

Input : discrete project P , budget B § 0;
Output : feasible realization xP of P;
(1) construct the sub-projects P0 , . . . , Pl as defined in (6.1);
(2) for 0 £ i £ l compute and corresponding optimal realizations of Pi ;PiB opt

(3) compute the minimum deadline T satisfying £ B;l Pi( B (T )iÅ0 opt

(4) combine optimal realizations of P0 , . . . , Pl for the deadline T to a realization
xP of P as defined in (6.2) and return xP .

FIGURE 4. Algorithm Partition.

6.1. Partitioning a project into sub-projects. The main idea of the O(l)-approxi-
mation algorithm, which is called Partition and is formally described in Figure 4, is to
divide the project P into l / 1 sub-projects. We first cover the interval [1, l] with l / 1
intervals [2 i , 2 i/1) , 0 £ i £ l, of geometrically increasing size. Then the activities of P
are partitioned according to their maximum duration kj : For 0£ i£ l let Ji :Å { j√ JÉ2 i

£ kj õ 2 i/1}. Each subset Ji of J induces a sub-project Pi of P which is given by (Ji ,
Here denotes the restriction of the partial order≥ of J to the subset Ji . Notice≥É ) . ≥ÉJ Ji i

that we did not take activities j with kj Å 0 into account since they are dummy activities
and thus part of the partial order.

All sub-projects Pi of P have the nice property that the maximum durations kj of activ-
ities j √ Ji have up to a factor of 2 the same value 2 i . In the approximation algorithm we
want to compute optimal realizations for all sub-projects of P . Thus, in view of Corollary
4.2, we round those durations for activities of sub-projects Pi uniformly to 2 i , i.e., we set
for j √ Ji ,

P i P P P Pi i ik :Å 2 , c (k ) :Å c (k ) Å 0,(6.1) j j j j j

P0 if h Å 0,j
P P P P Pi i ih :Å c (h ) :Å c (h ) .j j j j jH

i2 otherwise,

The main idea underlying algorithm Partition is to combine optimal realizations of the
sub-projects to a provably good realization of project P . For every tuple . . . , ofP P0 lx , x
feasible realizations for the sub-projects P0 , . . . , Pl we can construct a corresponding
feasible realization xP of P and vice versa: Given realizations . . . , we set for 0P P0 lx , x
£ i £ l and j √ Ji ,

P P Pi ih if x Å h ,j j j
Px :Å(6.2) j H

Pk otherwise.j

This defines a bijection between realizations for P and tuples of realizations for
P0 , . . . , Pl .

In order to decide which optimal realizations of sub-projects should be combined to a
realization of P , algorithm Partition computes the minimum deadline T such that all sub-
projects can be finished at time T and the sum of the corresponding costs does not exceed
the budget B , i.e., £ B . Note that such a deadline T always exists andl Pi( B (T )iÅ0 opt

maxi is an upper bound on it. In the proof of Theorem 6.1 we will show that TP Pi it (k )
is a lower bound on the optimal value Algorithm Partition computes optimalPT (B) .opt



923APPROXIMATION ALGORITHMS

/ 3907 no33 Mp 923 Tuesday Dec 01 12:04 PM INF–MOR no33

realizations of all sub-projects for this deadline T and combines them to a realization of
P as described in (6.2) .

THEOREM 6.1. Algorithm Partition returns for every discrete project P and budget B
§ 0 a realization x of P satisfying c(x) £ B and t(x) £ 2(l / where lP1)T (B) ,opt

Å  log2 l and l is the ratio of the maximum feasible duration of any activity to the
minimum allowed nonzero duration of any activity . The algorithm can be implemented
to run in strongly polynomial time .

In the proof of Theorem 6.1 we use the fact that the deadline T in step 3 is a lower
bound on If we combine the optimal realizations of sub-projects in step 4 wePT (B) .opt

nearly have to double the durations of activities in the worst case because of the rounding
of in (6.1) . This contributes a factor of two to the performance guarantee of algorithmPik j

Partition. Moreover, in the worst case the durations of the realizations for the l / 1 sub-
projects can add up to the duration of the final realization xP . This yields another factor
of l / 1.

In order to give a more formal proof of Theorem 6.1 we need the following lemma:

LEMMA 6.2. If xP and . . . , are realizations of P and P0 , . . . , Pl as in (6.2) ,P P0 lx , x
the following relations hold :

(a) cP(xP) Å l P Pi i( c (x ) ,iÅ0

(b) tP(xP) £ 2 l P Pi i( t (x ) ,iÅ0

(c) £ tP(xP) for 0 £ i £ l.P Pi it (x )

PROOF. Part (a) of the lemma follows from the definition of sub-projects in (6.1) . In
order to prove part (b) let I ⊆ J be the elements of a longest chain in the partial order of
the set J with respect to xP . Since for any activity j √ Ji the duration is at most twicePx j

as long as the duration by (6.1) and I > Ji is a chain in the partial order of the setPix j

we getPiJ ,

l l l

P P P P P P Pi i it (x ) Å x Å x £ 2x £ 2 t (x ) .∑ ∑ ∑ ∑ ∑ ∑j j j

j√I iÅ0 j√I>J iÅ0 j√I>J iÅ0i i

The last part of the lemma is a direct consequence of the fact that £ for all j √ Ji ,P Pix xj j

0 £ i £ l. h

PROOF OF THEOREM 6.1. Since the realization xP is composed of realizations Pix
with £ T for 0 £ i £ l, Lemma 6.2(b) yields t(xP) £ 2(l / 1)T . Moreover, byPit(x )
Lemma 6.2(a) and the choice of T in step 3 of the algorithm we get c(xP) £ B . Hence
it remains to show that T £ Let x̂ P be an optimal realization of P for the budgetPT (B) .opt

B . By Lemma 6.2(a) the corresponding realizations . . . , of P0 , . . . , Pl satisfyP P0 lxP , xP

l

P P P Pi ic (xP ) Å c (xP ) £ B∑
iÅ0

and £ tP( x̂ P) Å for 0 £ i £ l by Lemma 6.2(c) . Hence we get TP P Pi it (xP ) T (B)opt

£ PT (B) .opt

Finally we want to show that algorithm Partition can be implemented to run in strongly
polynomial time. In the algorithm we only have to consider those sub-projects Pi of P
with Ji x M. Thus their number can be bounded by ÉJÉ. In particular we can implement
all loops and summations over the set of sub-projects to run in strongly polynomial time.

Steps 1 and 4 can obviously be done in linear time. By Corollary 4.2 we can use
algorithm LTCT-Solver to perform step 2 in strongly polynomial time. It remains to show



924 M. SKUTELLA

/ 3907 no33 Mp 924 Tuesday Dec 01 12:04 PM INF–MOR no33

FIGURE 5. A bad instance for algorithm Partition with l Å 1.

that the minimum deadline T in step 3 can be computed in strongly polynomial time. We
replace step 3 by the following subroutine:

( i) set q :Å 0;
( ii ) while ú B do q :Å q / 1;l P P Pi q q( B ( t (k ))iÅ0 opt

( iii ) determine the smallest T √ 2 qN0 with £ T £ satisfyingP P P P lq q q qt (h ) t (k ) ( iÅ0

£ B .PiB (T )opt

Note that there always exists a 0 £ q £ l which terminates the while-loop in step (ii ) :
Consider q with Å maxi then Å 0 £ B . We haveP P P P l P P Pq q i i i q qt (k ) t (k ) , ( B ( t (k ))iÅ0 opt

to make sure that the value T computed by the subroutine equals the minimum deadline
T̂ with £ B . Thus we have to show £ T̂£ and T̂ √ 2 qN0 .l P P P P Pi q q q q

P( B (T ) t (h ) t (k )iÅ0 opt

By construction of q in step (ii ) we know that T̂ ú for 0 £ i õ q and T̂P Pi it (k )
£ Moreover, since is the smallest deadline that can be reached withP P P Pq q q qt (k ) . t (h )
finite cost for the sub-project Pq , we get T̂ § P Pq qt (h ) .

By contradiction we assume that T̂ 2 qN0 . Since for q £ i £ l all feasible durations/√
of activities in Pi are multiples of 2 q , the same holds for the breakpoints of the step
function This yieldsPiB .opt

P Pi i
P PB (T ) Å B (T 0 1)(6.3) opt opt

for q £ i £ l. Moreover, since T̂ ú for 0 £ i õ q , equation (6.3) also holds forP Pi it (k )
these values of i . Hence 0 1) Å £ B in contradiction to thel P l Pi i

P P( B (T ( B (T )iÅ0 opt iÅ0 opt

minimality of T̂ .
Since we only have to consider values for q with Jq xM, step (ii ) can be implemented

to run in strongly polynomial time. In step (iii ) we can simply enumerate all possible
values of T since 0 £ 2 q

ÉJqÉ by Lemma 3.3(b) . hP Pq qt(k ) t(h )
The proven performance guarantee of algorithm Partition is tight: Let l √ N and l

:Å 2l/1 0 e for some small e ú 0 and consider the project P consisting of l / 2 parallel
chains 0, . . . , l / 1 of serial activities. For 0£ i£ l, the i th chain contains 2l0i identical
activities ji with :Å :Å 2 i and its length is thus fixed to 2l . The last chain is theh kj ji i

serial concatenation of all other chains, with the small but crucial difference that we set
:Å 0 and :Å 2 i/1 0 e for all activities of the i th chain now. In Figure 5(a) we giveh kj ji i

an edge diagram of P for the case l Å 1. We choose the budget B such that we can afford
to shorten the last chain to length 0, i.e., B § cP(hP) . Thus we get Å t(hP) Å 2l;PT (B)opt

see Figure 5(a) .
But algorithm Partition performs very poorly on this class of instances. For 0 £ i £ l

sub-project Pi consists of two parallel chains: The i th chain of P with fixed length 2l and



925APPROXIMATION ALGORITHMS

/ 3907 no33 Mp 925 Tuesday Dec 01 12:04 PM INF–MOR no33

Input : discrete project P , budget B § 0;
Output : feasible realization xP of P;
(1*) for 0 £ i £ l /2 construct the sub-project PV i together with Pi and P̃ i;
(2*) for 0 £ i £ l /2 compute and corresponding integral optimal

iP̃B opt

realizations of P̃ i;
(3*) compute the minimum deadline T with £ B;

i˜l /2 P 02 i( B (2 T)iÅ0 opt

(4*) compute for each 0 £ i £ l /2 a realization of Pi satisfying
iPx

£ and £ (3/2)202 iT ;
i i i˜P P 02 i Pc(x ) B (2 T) t(x )opt

for 0 £ i £ l /2 rescale by a factor of 22 i to get a realization
i

VP Pix x
of PV i and combine these realizations to a realization xP of P .

FIGURE 6. Improved variant of algorithm Partition.

a copy of it from the (l / 1)th chain of P with the only difference that Å 0 for allhji

activities; see Figure 5(b) and (c) . Therefore Å Å 2l and the onlyP P P Pi i i it (h ) t (k )
optimal realization of Pi is Hence, algorithm Partition returns the trivial realizationPik .
kP whose length is given by the length of the last chain, i.e.,

l

P l0i i/1 l Pt(k ) Å 2 (2 0 e) Å 2(l / 1 0 e)2 / e Å 2(l / 1 0 e)T (B) / e.∑ opt

iÅ0

6.2. Further improvements. Since the performance ratio of algorithm Partition
mainly depends on the number of sub-projects that have to be considered, it can be
significantly better if some of the sets Ji are empty. If for example kj √ {0, 1, l } for each
activity j √ J , we only have to consider the projects P0 and Pl . Moreover, we do not need
the rounding of durations in this situation and get performance guarantee 2. More generally
we can state the following corollary:

COROLLARY 6.3. For a given project P and budget B algorithm Partition returns a
realization x of P with c(x)£ B and t(x)£ where q is the number of nonemptyP2qT (B) ,opt

sets Ji .
Algorithm Partition can even be slightly improved for general instances by combining

the idea of partitioning P into sub-projects with the rounding technique of algorithm
ReInvest. Remember that the factor l / 1 in the performance guarantee of algorithm
Partition equals the number of sub-projects that have to be combined in step 4. The main
idea for the improved variant of the algorithm (see Figure 6) is to partition project P into
half as many sub-projects as before in order to save a factor 2 in the performance guar-
antee. The new sub-projects are (up to rescaling) instances of the 2-DTCT Problem and
can therefore only be approximated within a factor of an optimal solution. These two3

2

effects together yield an improvement in the performance guarantee of Algorithm Partition
by a factor of .3

4

For 0 £ i £ l /2 we combine sub-projects P2i and P2i/1 to a new sub-project PV i ( if
l is even, Pl/1 is defined to be a trivial project with an empty set of activities Jl/1

:Å M) . The new sub-project PV i consists of the set of activities J2i < J2i/1 together with
the induced partial order. The durations of activities are again rounded as described
in (6.1) .

Thus, up to rescaling by a factor of 202 i , the sub-project PV i is an instance of the 2-
DTCT Problem. We denote the corresponding instance of the 2-DTCT Problem by Pi and
its linear relaxation by PV i . Since it is NP-hard to compute and correspondingVPiB (T )opt

optimal realizations of PV i , we use and integral optimal realizations of P̃ iiP̃ 02 iB (2 T)opt

instead. By construction and Lemma 3.2 we get



926 M. SKUTELLA

/ 3907 no33 Mp 926 Tuesday Dec 01 12:04 PM INF–MOR no33

i i˜ VP 02 i P 02 i PiB (2 T) £ B (2 T) Å B (T ) .opt opt opt

Thus, the same argument as in the proof of Theorem 6.1 yields that the deadline T com-
puted in step 3* is a lower bound on Moreover, using the rounding technique ofPT (B) .opt

algorithm ReInvest, we can construct realizations of the projects Pi , 0 £ i £ l /2 ,
iPx

with £ and £  202 iT by Corollary 5.2. These realizations
i i i˜ 3P P 02 i Pc(x ) B (2 T) t(x )opt 2

can finally be rescaled to realizations of the sub-projects PV i and combined to a realization
xP of P as described in (6.2) .

THEOREM 6.4. The improved variant of algorithm Partition given in Figure 6
achieves performance guarantee l / 3 and can be implemented to run in strongly3

2

polynomial time .
Since the proof of Theorem 6.4 is very similar to the proof of Theorem 6.1 we only

highlight the main differences that lead to the improved performance guarantee. In par-
ticular, we do not give the analysis of the running time.

SKETCH OF PROOF. As mentioned above, the reason for the improved performance
guarantee is that we only have to combine half as many realizations as before and can
therefore save a factor 2. We get an additional factor since we cannot compute optimal3

2

realizations for the sub-projects but use algorithm ReInvest with performance guarantee
essentially instead. Using the same arguments as in the proof of Theorem 6.1 we get3

2

c(xP) £ B and

2 i0 if T õ 2 ,
V V 3P P 02 i 2 ii it (x ) £  2 T 2 £2 H

3 2 i01 2 iT / 2 if T § 2 ,2

for 0 £ i £ l /2 . If l is even we can get a better bound for the case i Å l /2 since
in this case Jl/1 ÅM and PV l /2 is up to rescaling an instance of the 1-DTCT Problem as
in Corollary 4.2. Thus we can find an optimal realization of PV l /2 for the deadlineVPl /2x
T such that £ T . Moreover, since all feasible durations of PV l /2 are multiplesV VP Pl /2 l /2t (x )
of 2l we get Å 0 if T õ 2l . This yieldsV VP Pl /2 l /2t (x )

3 l 0 1 2 i01/ 1 T / 2 if l is odd,∑S D2 2 2ii:T§2

l /2 l /2013 l
V VP P 2 i01 li it (x ) £ / 1 T / 2 if l is even and T § 2 ,∑ ∑S D2 2iÅ0 iÅ05 3 l 2 i01 lT / 2 if l is even and T õ 2 .∑

2 2 2ii:T§2

All right-hand sides can be bounded from above by ( l / 3)T . Thus, an appropriate1 3
2 2

adaption of Lemma 6.2(b) yields

l /2
V V 3P P Pi it(x ) £ 2 t (x ) £ ( l / 3)T .∑ 2

iÅ0

It remains to be shown that T is a lower bound on and that T can be computedPT (B)opt

in strongly polynomial time. This can be done using the same ideas that have already been
described in the proof of Theorem 6.1. h



927APPROXIMATION ALGORITHMS

/ 3907 no33 Mp 927 Tuesday Dec 01 12:04 PM INF–MOR no33

7. Bicriteria results. From a practical point of view the results in §§4 and 6 are
certainly of minor interest. On the one hand, the proven performance guarantee l for the
Deadline Problem and O( log l) for the Budget Problem are somewhat weak. On the other
hand, in many situations it may not be realistic to assume a hard given deadline or budget.
Thus, it could be a better idea to treat both time and cost as parameters having equal
rights. This means that we allow some restricted tolerance in both directions. More pre-
cisely, we consider the following problem: We are given a discrete project P together
with a deadline T (or budget B) which implicitly defines an optimal time-cost pair (T , B)
where B Å (respectively T Å We are looking for a realization x of PP PB (T ) T (B)) .opt opt

such that t(x) £ kT and c(x) £ lB for given parameters k, l § 1 which define the
allowed tolerance for the project duration and cost. Algorithms that compute such solu-
tions in polynomial time are called bicriteria approximation algorithms or pseudo ap-
proximation algorithms .

The main idea for getting bicriteria approximation results for the Discrete Time-Cost
Tradeoff Problem is again to start with an optimal solution to the linear relaxation and to
round this solution to a feasible realization of the discrete project. Thus, in the following
we will always assume that x̃ is an optimal realization of the linear relaxation for the given
deadline or budget. As described in §2, x̃ can be computed in polynomial time.

In contrast to our considerations in §4, we may now round the duration of an activity
in both directions depending on which feasible duration is closer in some sense. In our
rounding procedure called Bicriteria-Rounding(m) we partition for each activity j the
interval [0, kj] into two parts [0, mkj) and [mkj , kj] depending on a parameter 0 õ m õ 1.
If the duration x̃j of activity j is within the interval [0, mkj) , we round it to xj :Å 0, otherwise
to xj :Å kj . In the first case, the cost of the solution is increased by a factor less than 1/
(1 0 m) , in the second case, the duration of j is increased by 1/m in the worst case. Thus
we get a realization x of the discrete project P with c(x)õ c( x̃) / (10 m) and t(x)£ t( x̃) /
m by Lemma 3.3(a) . Thus, as a consequence of Lemma 3.2 we get the following theorem.

THEOREM 7.1. For a given deadline T (or budget B) and a fixed parameter 0 õ m
õ 1, Bicriteria-Rounding(m) computes a realization x such that c(x) õ B / (1 0 m) and
t(x) £ T /m, where B Å (respectively T ÅP PB (T ) T (B)) .opt opt

If we choose mÅ for example, we get a realization which is at most twice as expensive1
2

and twice as long as an optimal realization for the given deadline or budget. Our analysis
is tight: Consider a project P consisting of two parallel activities 1 and 2, where h1 Å h2

Å 0, k1 Å 1, k2 Å 1 / e, c1(0) Å e, and c2(0) Å 1 for some e ú 0. An optimal realization
x̃ of the linear relaxation P̃ of P for the deadline m is obviously given by x̃1 Å x̃2 Å m such
that t( x̃) Å m and c( x̃) Å (1 0 m)e / 1 0 m/ (1 / e) . Bicriteria-Rounding(m) leads to
the realization x of P with x1 Å 1, x2 Å 0, t(x) Å 1, and c(x) Å 1. This yields t(x) / t( x̃)
Å 1/m and c(x) /c( x̃) r 1/(1 0 m) when e goes to 0.

We get another kind of bicriteria result if we allow our algorithm to use randomness.
The motivation to consider randomized algorithms in this context is that for a given project
P and a fixed realization x̃ not all possible choices of m can lead to an increase in cost by
a factor 1/(1 0 m) . Notice that we have constructed different worst case examples for
different values of m in the last paragraph. By choosing m randomly we can avoid the
worst case behavior of Bicriteria-Rounding(m) that can occur in the deterministic case,
and improve the expected performance of our algorithm. This idea has already proven
useful in other contexts; see, e.g., Bertsimas et al. (1996), Chekuri et al. (1997), Goemans
(1997), Shmoys et al. (1997), Schulz and Skutella (1997), Goemans et al. (1998).

THEOREM 7.2. If the parameter m is drawn at random with uniform distribution from
the interval (g, 1) for some 0 õ g õ 1, Bicriteria-Rounding(m) computes for a given
deadline T (or budget B) a realization x such that the expected duration E( t(x)) is



928 M. SKUTELLA

/ 3907 no33 Mp 928 Tuesday Dec 01 12:04 PM INF–MOR no33

bounded by T·ln(1/g) / (1 0 g) and the expected cost E(c(x)) is bounded by B / (10 g) ,
where B Å (respectively T ÅP PB (T ) T (B)) .opt opt

PROOF. Since E(c(x)) Å (j√J E(cj( xj)) it suffices to show that E(cj( xj)) £ cj( x̃j) /
(1 0 g) for all j √ J . By construction of the algorithm, we get

1 0 x̃ /k c ( x̃ )j j j jE(c ( x )) Å Pr(m ú x̃ /k )·c (0) £ ·c (0) Å .j j j j j j1 0 g 1 0 g

For each fixed choice of m we get t(x) £ t( x̃) /m by Lemma 3.3(a) , and therefore

1 1/m t( x̃)
E( t(x)) £ t( x̃) dm Å ln(1/g) . h* 1 0 g 1 0 gg

Instead of the (2, 2)-approximation by deterministically choosing m Å we can now1
2

randomly compute a realization where both duration and cost are expected to be within
a factor of e / (e 0 1) É 1.58 of an optimal solution; this is done by setting g Å 1/e and
drawing m randomly from (g, 1) as in Theorem 7.2. We should however mention that
such a randomized bicriteria approximation result is in some sense weaker than a deter-
ministic one. We cannot guarantee that there exists a feasible realization which simulta-
neously achieves both bounds. Consider the example with two parallel jobs given above.
In this situation we either have to increase cost or time by a factor of 2.

Acknowledgments. The author would like to thank Andreas S. Schulz for helpful
comments, ideas, discussions, and many useful remarks on the content and presentation
of this paper. Also many thanks to Rolf H. Möhring for helpful comments and ideas and
the encouragement to work on this topic. The author is grateful to the anonymous referees
for many useful comments that helped to improve the presentation of the paper.

References
Bertsimas, D., C. Teo, R. Vohra. 1996. On dependent randomized rounding algorithms. W. H. Cunningham,

S. T. McCormick, and M. Queyranne, eds, Integer Programming and Combinatorial Optimization , Vol-
ume 1084 of Lecture Notes in Computer Science , 330–344. Springer, Berlin.

Chekuri, C. S., R. Motwani, B. Natarajan, C. Stein. 1997. Approximation techniques for average completion
time scheduling. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms ,
609–618.

De, P., E. J. Dunne, J. B. Ghosh, C. E. Wells. 1995. The discrete time-cost tradeoff problem revisited. European
J . Oper . Res . 81 225–238.
, , , . 1997. Complexity of the discrete time-cost tradeoff problem for project
networks. Oper . Res . 45 302–306.

Fulkerson, D. R. 1961. A network flow computation for project cost curves. Management Sci . 7 167–178.
Goemans, M. X. 1997. Improved approximation algorithms for scheduling with release dates. In Proceedings

of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms , 591–598.
, M. Queyranne, A. S. Schulz, M. Skutella, Y. Wang. 1998. Single machine scheduling with release
dates. ( to appear) .

Goldberg, A., R. E. Tarjan. 1988. A new approach to the maximum flow problem. J . Assoc . Comput . Mach .
35 921–940.

Harvey, R. T., J. H. Patterson. 1979. An implicit enumeration algorithm for the time/cost tradeoff problem in
project network analysis. Found . Control Engineering 4 107–117.

Hindelang, T. J., J. F. Muth. 1979. A dynamic programming algorithm for Decision CPM networks. Oper . Res .
27 225–241.

Kelley, J. E. 1961. Critical path planning and scheduling: Mathematical basis. Oper . Res . 9 296–320.
, M. R. Walker. 1959. Critical Path Planning and Scheduling : An Introduction . Mauchly Associates,
Inc., Ambler, Pennsylvania.

Krishnamoorthy, M., N. Deo. 1979. Complexity of the minimum-dummy-activities problem in a PERT network.
Networks 9 189–194.



929APPROXIMATION ALGORITHMS

/ 3907 no33 Mp 929 Tuesday Dec 01 12:04 PM INF–MOR no33

Möhring, R. H., F. J. Radermacher. 1989. The order-theoretic approach to scheduling: The deterministic case.
R. Slowinski and J. Weglarz, eds. Advances in Project Scheduling . Elseviers Science Publ., Amsterdam.
29–66.

Padberg, M. 1995. Linear Optimization and Extensions . Springer, Berlin.
Panagiotakopoulos, D. 1977. A CPM time-cost computational algorithm for arbitrary activity cost functions.

INFOR 15 183–195.
Phillips, S., M. I. Dessouky. 1977. Solving the project time/cost tradeoff problem using the minimal cut concept.

Management Sci . 24 393–400.
Robinson, D. R. 1975. A dynamic programming solution to cost-time tradeoff for CPM. Management Sci . 22

158–166.
Schulz, A. S., M. Skutella. 1997. Random-based scheduling: New approximations and LP lower bounds.

J. Rolim, ed. Randomization and Approximation Techniques in Computer Science . Volume 1269 of
Lecture Notes in Computer Science . Springer, Berlin. 119–133.

Shmoys, D. B., E. Tardos, K. I. Aardal. 1997. Approximation algorithms for facility location problems. Pro-
ceedings of the 29th Annual ACM Symposium on the Theory of Computing . 265–274.

Skutella, M. 1998. Approximation and randomization in scheduling. Ph.D. thesis, Technical University of Berlin,
Germany.

M. Skutella: FB Mathematik, MA 6-1, Technische Universität Berlin, Strasse des 17. Juni 136, D-10623
Berlin, Germany; e-mail: skutella@math.tu-berlin.de


