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times the size of the arriving job. This constant is called the migration factor. For small migration factors, we obtain several
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is, a family of online algorithms with competitive ratio arbitrarily close to 1 and constant migration factor.
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1. Introduction. One of the most fundamental scheduling problems asks for an assignment of jobs to
m identical parallel machines so as to minimize the makespan. (The makespan is the completion time of the
last job that finishes in the schedule; it also equals the maximum machine load.) In the standard classification
scheme of Graham et al. [16], this scheduling problem is denoted by P "Cmax and it is well known to be strongly
NP-hard (Garey and Johnson [13]).

The offline variant of this problem assumes that all jobs are known in advance, whereas in the online variant
the jobs are incrementally revealed by an adversary, and the online algorithm can only choose the machine for
the new job without being allowed to move other jobs. Note that dropping this radical constraint on the online
algorithm yields the offline situation.
We study a natural generalization of both offline and online problems. Jobs arrive incrementally, but upon

arrival of a new job j , we are allowed to migrate some previous jobs to other machines. The total size of the
migrated jobs, however, must be bounded by !pj where pj is the size of the new job. For migration factor
!= 0 we get the online setting, and for !=# we get the offline setting.
For an offline optimization problem, an approximation algorithm efficiently (in polynomial time) constructs

schedules whose values are within a constant factor " of the optimum solution value. The number " is called
performance guarantee or performance ratio of the approximation algorithm. A family of polynomial time
approximation algorithms with performance guarantee 1 + # for all fixed # > 0 is called a polynomial time
approximation scheme (PTAS).
In a similar way, competitive analysis evaluates solutions computed in the online setting. An online algorithm

achieves competitive ratio " if it always maintains solutions whose objective values are within a factor " of the
offline optimum. Here, in contrast to offline approximation results, the achievable values " are not determined
by limited computing power, but by the apparent lack of information about parts of the input that will only be
revealed in the future. As a consequence, for all interesting classical online problems, it is rather easy to come
up with lower bounds that create a gap between the best possible competitive ratio " and 1. In particular, it is
usually impossible to construct a family of $1+ #%-competitive online algorithms for such problems.

Related work. For the online machine-scheduling problem, Graham’s list-scheduling algorithm keeps the
makespan within a factor 2−1/m of the offline optimum (Graham [14]): Schedule a newly arriving job on a least
loaded machine. It can also easily be seen that this bound is tight. For the offline setting, Graham [15] shows that
sorting the jobs in the order of nonincreasing size before feeding them to the list-scheduling algorithm yields
an approximation algorithm with performance ratio 4/3− 1/$3m%. Later, exploiting the relationship between
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the machine-scheduling problem under consideration and the bin-packing problem, algorithms with improved
approximation ratios have been obtained in a series of works (Coffman et al. [9], Friesen [12], Langston [20]).

Finally, PTASes for a constant number of machines and for an arbitrary number of machines are given in
Graham [15], Sahni [25], and by Hochbaum and Shmoys [18], respectively. The latter PTAS partitions jobs into
large and small jobs. The sizes of large jobs are rounded such that an optimum schedule for the rounded jobs can
be obtained via dynamic programming. The small jobs are then added greedily, using Graham’s list-scheduling
algorithm. This approach can be refined to an algorithm with linear running time (see, e.g., Hochbaum [17]):
Replace the dynamic program with an integer linear program on a fixed number of variables and constraints that
can be solved in constant time (Lenstra [21]).
In a series of papers, increasingly complicated online algorithms with better and better competitive ratios

beating the Graham bound 2 have been developed (Bartal et al. [6], Karger et al. [19], Albers [2]). The best result
known to date is a 1&9201-competitive algorithm due to Fleischer and Wahl [11]. The best lower bound 1&88 on the
competitive ratio of any deterministic online algorithm currently known is due to Rudin and Chandrasekaran [24]
(see also Rudin [23]). For randomized online algorithms there is a lower bound of e/$e− 1% ≈ 1&58 (Chen
et al. [8], Sgall [29]). For more results on online algorithms for scheduling, we refer to the recent survey articles
by Albers [3] and Sgall [30].

Strategies that reassign jobs were studied in the context of online load balancing where jobs arrive in and depart
from a system of m machines online and the scheduler has to assign each incoming job to one of the machines.
Deviating from the usual approach of comparing against the optimal peak load seen so far, Westbrook [32]
introduced the notion of competitiveness against current load: An algorithm is "-competitive if after every round
the makespan is within " factor of the optimal makespan for the current set of jobs. Each incoming job j has
size pj and reassignment cost cj . For a job, the reassignment cost has to be paid for its initial assignment and
then every time it is reassigned. Observe that the optimal strategy has to pay this cost once for each job for its
initial assignment. Thus, the optimal (re)assignment cost S is simply the sum of reassignment costs of all jobs
scheduled till now. Westbrook showed a 6-competitive strategy for identical machines with reassignment cost
3S for proportional reassignments, i.e., cj is proportional to pj , and 2S for unit reassignments, i.e., cj = 1 for all
jobs. Later Andrews et al. [4] improved it to competitive ratio 3&5981 with the same reassignment factors. They
also showed $3+ #%- and $2+ #%-competitive strategies for the proportional and unit case, respectively, where
the reassignment factor depends only on #. For arbitrary reassignment costs they achieve 3&5981-competitiveness
with 6&8285 reassignment factor. They also present a 32-competitive strategy with constant reassignment factor
for related machines.

Our contribution. We consider the online setting where jobs arrive incrementally but there are no job
departures. In §3 we describe a simple online algorithm that achieves approximation ratio 3

2 using a moderate
migration factor ! = 2. Notice that this result already beats the lower bound 1&88 (1&58) on the competitive
ratio of any classical (randomized) online algorithm without migration. Using a more sophisticated analysis, the
migration factor can be decreased to 4

3 while maintaining competitive ratio 3
2 . This result is tight because we can

show that any robust1 scheduling strategy with competitive ratio 3
2 has migration factor of at least 4

3 . We also
show another tightness result: The algorithms considered in §3 have the nice property that they work locally,
i.e., they only migrate jobs from the machine to which the new job is being assigned. We prove that any robust
local strategy has competitive ratio of at least 3

2 . In §4 we present a more sophisticated algorithm with migration
factor 5

2 and competitive ratio 4
3 . For the special case of two machines, it is shown in §5 that we can achieve

competitive ratio 7
6 with a migration factor of 1. Moreover, this ratio is tight for migration factor 1.

In §6 we present a family of online algorithms with competitive ratio 1+ # and constant migration factor
!$#%, for any fixed # > 0. On the negative side, no constant migration factor suffices to maintain competitive
ratio 1, i.e., optimality. We provide interpretations of these results in several different contexts:

(i) Online algorithms. Online scheduling with bounded job migration is a relaxation of the classical online
paradigm. Obviously, there is a trade-off between the desire for high-quality solutions and the requirement to
compute them online, that is, to deal with a lack of information. Our result can be interpreted in terms of the
corresponding trade-off curve: Any desired quality can be guaranteed while relaxing the online paradigm only
moderately by allowing for a constant migration factor.

(ii) Sensitivity analysis. Given an optimum solution to an instance of an optimization problem and a slightly
modified instance, can the given solution be turned into an optimum solution for the modified instance without
changing the solution too much? This is the compelling question in sensitivity analysis. As indicated above, for

1 We give a precise definition of robustness in §3 after the proof of Theorem 3.2.
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the scheduling problem under consideration one has to answer in the negative. Already, one additional job can
change the entire structure of an optimum schedule. However, our result implies that the answer is positive if
we only require near-optimum solutions.
(iii) Approximation results. Our result yields a new PTAS for the scheduling problem under consideration.

Due to its online background, this PTAS constructs the solution incrementally. That is, it reads the input little by
little, always maintaining a $1+ #%-approximate solution. Indeed, it follows from the analysis of the algorithm
that every update only takes constant time. In particular, the overall running time is linear and thus matches the
previously best known approximation result.
We believe that each of these interpretations constitutes an interesting motivation for results like the one we

present here in its own right and can therefore lead to interesting results for many other optimization problems.
After reading a preliminary version of this paper (Sanders et al. [27]), Epstein and Levin [10] came up with
similar results for the bin-packing problem.
Our results can also be interpreted within the framework of online load balancing (see the discussion above,

Westbrook [32], and Andrews et al. [4]), with proportional reassignments and without job deletions. However,
our requirements are stronger in the sense that a strategy with reassignment factor ! ensures that when a new
job j arrives, the total reassignment cost incurred (for scheduling it) is at most !cj . This is different from the
more relaxed constraint that after t rounds, the total reassignment cost incurred is at most !

∑

cj (summing
over all jobs seen until round t). Moreover, almost all of our scheduling strategies are robust, i.e., they convert
any "-competitive schedule to an "-competitive schedule after assigning the newly arrived job, whereas in
Westbrook [32] and Andrews et al. [4] it is required that the schedule so far is carefully constructed in order to
ensure the competitiveness after assigning/deleting a job in the next round.
The underlying details of the presented online approximation scheme have the same roots as the original

PTAS by Hochbaum and Shmoys [18] and its refinements (Hochbaum [17]). We distinguish between small and
large jobs; a job is called large if its size is of the same order of magnitude as the optimum makespan. Because
this optimum can change when a new job arrives, the classification of jobs must be updated dynamically. The
size of every large job is rounded such that the problem of computing an optimum schedule for the subset of
large jobs can be formulated as an integer linear program of constant size. A newly arriving job causes a small
change in the right-hand side of this program. This enables us to use results from sensitivity analysis of integer
programs in order to prove that the schedule of large jobs needs to be changed only slightly. Our PTAS is very
simple, it uses only this structural result and does not use any algorithms from integer programming theory.
In §7 we discuss an application of bounded migration to configuring storage servers. This was the original

motivation for our work. In this application, the objective is to maximize the minimum machine load. It is
well known (Azar and Epstein [5]) that any online deterministic algorithm for this machine-covering problem
has competitive ratio at least m (the number of machines). There is also a lower bound of '$

√
m% for any

randomized online algorithm. We develop a simple deterministic online strategy that is 2-competitive already
for migration factor != 1.
A preliminary version of this work appeared in proceedings of ICALP 2004 (Sanders et al. [27]).

2. Preliminaries. We consider the problem of scheduling a set of jobs (1) & & & )n* on a set of m identical
parallel machines M = (1) & & & )m*. Job j ∈ (1) & & & )n* has a positive processing time or size pj and arrives in
round j . The number of jobs is unknown in advance and the processing time of job j is only revealed in round j .
For a subset of jobs N ⊆ (1) & & & )n*, the total processing time of jobs in N is p$N % +=∑

j∈N pj ; moreover, let
pmax$N % +=maxj∈N pj denote the maximum processing time of a job in N .
A schedule S for a subset of jobs N is an assignment of the jobs in N to the set of machines M , i.e.,

S+ N →M . We denote the set of jobs scheduled on (i.e., assigned to) machine i ∈M by S−1$i%⊆N . The load
of machine i is p$S−1$i%% and the makespan of schedule S is the maximum machine load maxi∈M p$S−1$i%%. We
say that machine i ∈M is a least loaded machine with respect to schedule S if p$S−1$i%%=mini′∈M p$S−1$i′%%.
For a subset of jobs N , let opt$N % denote the minimal makespan of a schedule for N . The following well-known
facts are due to Graham [14].
Observation 2.1. Let N be a set of jobs.
(i) The value lb$N % +=max(p$N %/m)pmax$N %* is a lower bound on opt$N % satisfying

lb$N %≤ opt$N %< 2lb$N %& (1)

(ii) Consider an arbitrary schedule for N with makespan ,. Assigning a new job j ,∈ N to a least loaded
machine yields a schedule for N ∪ (j* with makespan at most

max(,)opt$N ∪ (j*%+ $1− 1/m%pj*&
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In the following sections we often consider the subset of jobs N = (1) & & & ) j− 1* that have arrived in the first
j − 1 rounds and a newly arrived job j . If N and j are clear from the context, we sometimes use the shorter
notation opt += opt$N % and opt′ += opt$N ∪ (j*%.

We conclude this section by stating an easy but important corollary of observation 2.1(ii).

Corollary 2.1. Given an "-approximate schedule for the jobs in N , assigning a new job of size at most
$1+ 1/$m− 1%%$"− 1%opt′ to a least loaded machine yields an "-approximate schedule for N ∪ (j*.

3. Simple strategies with small migration factors. We start by presenting a very simple $3/2− 1/$2m%%-
competitive algorithm with migration factor 2. The algorithm is based on the following procedure.

Procedure 1.
Input: A schedule for a set of jobs N and a new job j ,∈N .
Output: A schedule for N ∪ (j*.
Choose one of the following two options that minimizes the resulting makespan:
Option 0: Assign job j to a least loaded machine.
Option 1: Let i be the machine minimizing the maximum job size. Repeatedly remove jobs from this machine

(in any order); stop before the total size of removed jobs exceeds 2pj . Assign job j to machine i. Assign the
removed jobs successively to a least loaded machine.

Theorem 3.1. Given a $3/2 − 1/$2m%%-approximate schedule for N and a new job j ,∈ N , Procedure 1
outputs a $3/2− 1/$2m%%-approximate schedule for N ∪ (j*. The migration factor is bounded by 2.

Proof. From the description of Procedure 1, it is clear that the migration factor is at most 2. We call a job
small if its processing time is at most 1

2opt
′; otherwise, it is called large. If the new job j is small, option 0

yields makespan of at most $3/2− 1/$2m%%opt′ by Corollary 2.1. Thus, we can assume from now on that j is
large.
Because there are at most m large jobs in N ∪ (j*, all jobs on machine i chosen in option 1 are small. Thus,

after removing jobs from machine i as described above, machine i is either empty or the total size of removed
jobs exceeds the size of the large job j . In both cases, assigning job j to machine i cannot increase its load above
$3/2−1/$2m%%opt′. Thus, using the same argument as above, assigning the removed small jobs successively to
a least loaded machine yields a $3/2− 1/$2m%%-approximate schedule for the set of jobs N ∪ (j*. !

Corollary 3.1. Scheduling every newly arriving job according to Procedure 1 is a $3/2 − 1/$2m%%-
competitive algorithm with migration factor 2.

Next we show that the migration factor can be decreased to 4
3 without increasing the competitive ratio above 3

2 .
This result is achieved by carefully modifying Procedure 1.

Procedure 2.
Input: A schedule for a set of jobs N and a new job j ,∈N .
Output: A schedule for N ∪ (j*.
Choose one of the following m+ 1 options that minimizes the resulting makespan. (Break ties in favor of

option 0.)
Option 0: Assign job j to a least loaded machine.
Option i [for i ∈ (1) & & & )m*]: Ignoring the largest job on machine i, consider the remaining jobs on machine i

in order of nonincreasing size and remove a job unless the total size of removed jobs will exceed 4
3pj . Assign

job j to machine i. Assign the removed jobs successively to a least loaded machine.

In the analysis of Procedure 2, we make use of the following structural property of a schedule. A schedule
for a set of jobs N has property $∗% if the load on any machine excluding its largest job is at most opt$N %. For
example, a schedule constructed by list-scheduling always has property $∗%. We show that Procedure 2 maintains
property $∗%.
Lemma 3.1. Given a schedule for N satisfying property $∗% and a new job j ,∈ N , Procedure 2 outputs a

schedule for N ∪ (j* satisfying property $∗%.
Proof. Let M ′ ⊆M be the subset of machines touched by Procedure 2 for scheduling job j . It suffices to

argue that the total load on machine i ∈M ′ excluding the job j ′ that entered the machine last is at most opt′.
Except for the very last case considered below, we will prove this stronger property for machine i ∈M ′.



Sanders, Sivadasan, and Skutella: Online Scheduling with Bounded Migration
Mathematics of Operations Research 34(2), pp. 481–498, © 2009 INFORMS 485

If j ′ ,= j , then j ′ was assigned as part of the redistribution phase. Because redistribution is always performed
on a currently least loaded machine, the load on this machine excluding this last job is at most opt′.

It remains to consider the case j ′ = j . If option 0 is chosen and assigns j to machine i, then machine i is a
least loaded machine of the initial schedule; in particular, its load excluding j is at most opt≤ opt′. Otherwise,
j is assigned to machine i by option i, which we assume from now on. Because we always break ties in favor
of option 0, the makespan of the schedule produced in option i is strictly smaller than the makespan of the
schedule obtained in option 0. We distinguish two cases.

Case 1. The makespan of the schedule obtained by assigning j to a least loaded machine i′ (option 0) is
determined by machine i′. As the makespan obtained by option i is strictly smaller than the makespan obtained
by option 0, the load of machine i minus the size of j is at most the makespan of a least loaded machine i′ in
the initial schedule, and thus at most opt≤ opt′.
Case 2. The makespan of the schedule obtained by assigning j to a least loaded machine i′ (Option 0) is

not determined by machine i′. In this case, it must be determined by machine i ,= i′ because this is the only
machine whose makespan can possibly be decreased by choosing option i. Remember that we break ties in favor
of option 0. Thus, the makespan of machine i must have been decreased in option i. Because we did not touch
the largest job on machine i, it still has the desired property. !

Theorem 3.2. Given a 3
2 -approximate schedule for N satisfying property $∗% and a new job j ,∈ N , Proce-

dure 2 outputs a 3
2 -approximate schedule for N ∪ (j* satisfying property $∗%. The migration factor is bounded

by 4
3 .

Proof. The bound on the migration factor is clear from the description of Procedure 2. Moreover, it follows
from Lemma 3.1 that the computed schedule for N ∪ (j* has property $∗%. To show the approximation result,
we distinguish three cases depending on the size of job j .
Case 1. If pj ≤ 1

2opt
′, option 0 yields a schedule of makespan at most 3

2opt
′ by Corollary 2.1.

Case 2. If pj ≥ 3
4opt

′, then 4
3pj ≥ opt so that for any machine i it is feasible to migrate all but the largest

job due to property $∗%. Because there are at most m−1 jobs in N of size larger than 1
2opt

′, there is a machine
i that only contains jobs of size at most 1

2opt
′. Then option i yields a schedule with makespan at most 3

2opt
′.

(Apply the same argument as in Case 1 for the reassignment of removed jobs.)
Case 3. It remains to consider the situation when pj = 1

2opt
′ + - for some 0< -< 1

4opt
′. In the following

a job in N is called huge if its size is strictly larger than opt′ − - and tiny if its size is strictly smaller than -.
The subsets of huge and tiny jobs are denoted by NH and NT, respectively. Notice that in an optimal schedule
for N a huge job can only share a machine with tiny jobs.

Claim. In the given schedule S for N there exists a machine i that does not contain huge jobs and
p$S−1$i%\NT%≤ opt.

In an optimal schedule for N the jobs in N\$NH ∪NT% are scheduled on the m− !NH! machines that do not
contain a huge job. This yields p$N\$NH ∪NT%%≤ $m− !NH!%opt. By a simple averaging argument, among the
m− !NH! machines that do not contain a huge job in the given schedule S there is one as claimed above.
It remains to show that option i yields a 3

2 -approximate schedule for N ∪ (j*. Because p$S−1$i%\NT%≤ opt,
there is at most one job of size strictly larger than 1

2opt on machine i. Consequently, every job removed during
option i has size at most 1

2opt, and the reassignment of these jobs does not cause a problem with respect to the
bound 3

2opt
′. We still need to show that the load of machine i after assigning job j does not exceed 3

2opt
′.

If there is a tiny job that is not removed from machine i, then the total size of removed jobs is larger than
4
3pj − -≥ pj , and we are done because the load of machine i in the given schedule S is at most 3

2opt. We can
assume in the following that all tiny jobs are removed from machine i.
If S−1$i%\NT contains only one job, we are done because this job is not huge such that together with job

j it does not exceed the bound 3
2opt

′ on the load of machine i. Finally, if S−1$i%\NT contains more than one
job, then, as already argued above, the second-largest job has size at most 1

2opt≤ 4
3pj and is therefore removed

(remember that the jobs are considered in order of nonincreasing size during the removal phase). Because this
job is not tiny, it has size at least - and the total size of removed jobs is at least -+p$S−1$i%∩NT%. Therefore
the load of machine i after the removal phase is at most p$S−1$i%\NT%−-≤ opt−- and we can afford to assign
job j to machine i. !

In §4 we present a more sophisticated algorithm with migration factor 4 and competitive ratio 4
3 . Moreover,

in §5 we present a specialized algorithm for the case of two machines with migration factor 1 and competitive
ratio 7

6 ; and we also show that this result is tight, i.e., migration factor 1 does not allow for a smaller competitive
ratio.
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Figure 1. An instance with 26 machines and 50 jobs.
Notes. The load of the machines is depicted on the vertical axis. On the right-hand side an optimal schedule with makespan 8 is given. On
the left-hand side there is a 3

2 -approximate schedule-fulfilling property $∗%. If a new job of size 6+ # arrives, jobs of total size of at least 8
have to be moved in order to obtain a schedule that is still 3

2 -approximate.

Robustness. The scheduling strategies for minimizing the makespan discussed in this section (and in §4) are
robust in the following sense. The only invariant that we require in their analyses is that before the arrival of a
new job the current schedule is "-approximate. Job j can then be incorporated, yielding again an "-approximate
schedule. In other words, we do not require that the current schedule is carefully constructed so far, to maintain
the competitiveness in the next round. Only for Procedure 2 must the schedule additionally satisfy that, on any
machine, the load excluding the largest job is at most the optimum makespan. This is a rather mild assumption
because even the simple list-scheduling algorithm and almost all natural scheduling strategies ensure this.

Negative results. Theorems 3.1 and 3.2 raise the question of which migration factor is really necessary to
achieve competitive ratio 3

2 . We can prove that Procedure 2 is optimal in the sense that any robust scheduling
strategy needs a migration factor of at least 4

3 in order to maintain competitive ratio 3
2 .

Lemma 3.2. There exists a 3
2 -approximate schedule-fulfilling property $∗% such that, for any 0< # < 4/21,

upon arrival of a new job, migration factor 4
3 − # is necessary to achieve 3

2 -competitiveness.

Proof. The situation is depicted in Figure 1. There are 26 machines and 50 jobs. A 3
2 -approximate schedule-

fulfilling property $∗% with makespan 12 is given on the left-hand side of the figure whereas an optimal schedule
with makespan 8 is given on the right-hand side. In both schedules, machines 3 to 10 are identically packed and
the same holds for machines 11 to 26. Notice that machine 2 is empty in the optimal schedule. Therefore, upon
arrival of a new job of size 24/$4− 3#%, the optimal makespan remains 8. Notice that 6< 24/$4− 3#%< 7 due
to our choice of #.
To incorporate the new job into the schedule on the left-hand side of Figure 1 without increasing the makespan,

jobs of total size of at least 8 have to be migrated: First of all, notice that it does not make sense to assign the
new job to one of the machines currently containing a job of size 7. If the new job is assigned to one of the
machines currently containing a job of size 6, this job has to be removed from the machine. In order to reassign
it without increasing the makespan, two more jobs of size 1 have to be moved. Finally, in order to schedule the
new job on one of the first two machines, jobs of total size of at least 8 have to be moved.
Thus, the migration factor is at least 8 · $4− 3#%/24= 4/3− #. !

An additional feature of Procedures 1 and 2 is that they are local in the sense that they migrate jobs only
from the machine to which the newly arrived job is assigned.

Lemma 3.3. There is a class of optimal schedules for which, upon arrival of a new job, it is not possible to
achieve a competitive ratio smaller than 3

2 using only local migration (even if an arbitrary migration factor is
allowed).

Proof. The following optimal schedule on m machines, upon the arrival of a new job, enforces a competitive
ratio of at least 3/$2+2/m% for any amount of local migration. This bound converges to 3

2 for large m. Machines
1 and 2 each contain one job of size 1

2 and m/2 jobs of size 1/m (we assume that m is even). All other machines
contain a single job of size 1; see Figure 2. The newly arriving job has size 1. The optimum makespan is
1+ 1/m, and the makespan achievable by any local strategy is 3

2 (by scheduling the new job, e.g., on machine
1 and migrating all small jobs to other machines). !
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1 2 3 m
Optimal initial schedule

1 2 3 m
Optimal final schedule

. . . . . .

Figure 2. An instance where local migration is not better than 3
2 -competitive.

4. A 4
3 -competitive strategy with migration factor 5

2 . Taking up the line of research pursued in §3, we
show that competitive ratio 4

3 can be achieved by a more sophisticated algorithm with migration factor 5
2 . This

result, as well as the algorithm and its proof, have been pointed out by Sgall [31]. The result improves upon an
earlier 4

3 -competitive strategy with migration factor 4 mentioned in Sanders et al. [27].

Procedure 3.
Input: A schedule S for a set of jobs N and a new job j ,∈N .
Output: A schedule for N ∪ (j*.
Among the schedules generated by the following m+1 options, consider only those with migration factor less

than 5
2 and output one with minimum makespan.

Option i [for i ∈ (0) . . . )m*]: Classify the jobs in N ∪ (j* as follows. The i largest jobs are called large; the
next 2$m− i% largest jobs are medium; the remaining jobs are small.

If j is small, then assign it to a least loaded machine.
Otherwise, if j is medium, then find a machine i′ with no large and at most one medium job in schedule S.2

Repeatedly remove small jobs from machine i′ (in arbitrary order) until no small job remains or the total size
of removed jobs exceeds pj . Assign j to i′ and the removed jobs successively to a least loaded machine.

Otherwise, if j is large and if there is a machine i′ with no large or medium job in schedule S, then proceed
with machine i′ as in the last case.

Otherwise, j is large and there are two machines i′ and i′′ containing no large and exactly one medium
job each.3 Let the medium jobs on machines i′ and i′′ be j ′ and j ′′, respectively, and assume that pj ′ ≤ pj ′′ .
Remove job j ′ and the biggest small job (if any) from machine i′. Repeatedly remove further jobs from machine i′

(in arbitrary order) until no job remains or the total size of removed jobs exceeds pj . Assign job j to machine i′.
Repeatedly remove small jobs from machine i′′ (in arbitrary order) until no small job remains or the total size of
removed jobs exceeds pj ′ . Assign job j ′ to machine i′′. Assign the small jobs removed from i′ and i′′ successively
to a least loaded machine.

Theorem 4.1. Given a 4
3 -approximate schedule for N and a new job j ,∈ N , Procedure 3 outputs a

4
3 -approximate schedule for N ∪ (j*. The migration factor is less than 5

2 .

Proof. Let i be the number of jobs in N ∪ (j* with processing time strictly greater than 2
3opt

′. We prove
that the schedule computed in option i has makespan of at most 4

3opt
′, and the total size of migrated jobs is

less than 5
2pj .

By the classification applied in option i, large jobs are exactly those with a processing time greater than 2
3opt

′.
Thus, medium jobs have a size of at most 2

3opt
′. Moreover, we claim that small jobs have size at most 1

3opt
′:

In an optimum schedule for N ∪ (j* with makespan opt′ and i large jobs of size greater than 2
3opt

′, there can
be at most 2$m− i% further jobs of size greater than 1

3opt
′.

2 Because there are exactly i large jobs and 2$m− i%− 1 medium jobs in S, such a machine exists.
3 Each machine contains at least one large or medium job. The total number of large and medium jobs in S is exactly 2m− i− 1. Thus,
there are at least i+ 1 machines that contain exactly one medium or large job. Because there are only i− 1 large jobs in S, the existence of
the two machines i′ and i′′ follows.
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If j is small, no migration occurs and we are done by Corollary 2.1. If j is medium, the migration factor is
at most 2: The total size of jobs removed from machine i′ is less than pj plus the size of one small job. After
removing small jobs from machine i′ and assigning job j to it, the load of machine i′ has either decreased or
there are only two jobs on the machine that are both medium. In any case, the new load of machine i′ is at most
4
3opt

′. Reassigning the removed small jobs does not increase the makespan beyond 4
3opt

′ due to Corollary 2.1.
If j is large and there is a machine i′ with no large or medium job, the migration factor is again at most 2

and the upper bound on the makespan easily follows as well. It remains to consider the case where j is large
and there are two machines i′ and i′′ containing no large and exactly one medium job each. We first argue that
the makespan remains at most 4

3opt
′. After removing jobs and assigning j , the load of machine i′ has either

decreased or job j is the only job on machine i′. In both cases the new load of i′ is at most 4
3opt

′. The same
bound holds for the load of machine i′′ after removing small jobs and assigning j ′ (same argument as in the case
“j is medium” above). Moreover, reassigning the removed small jobs does not increase the makespan beyond
4
3opt

′ due to Corollary 2.1. To prove the bound 5
2 on the migration factor, we distinguish two cases.

Case 1. At most one small job is removed from machine i′. Then the amount removed from i′ is at most
pj ′ + 1

3opt
′. Because pj ′′ ≥ pj ′ and the original load of machine i′′ is at most 4

3opt
′, the amount removed from

i′′ is at most 4
3opt

′ −pj ′′ ≤ 4
3opt

′ −pj ′ . Thus, the total migration is at most 5
3opt

′ = 5
2 · 2

3opt
′ < 5

2pj .
Case 2. At least two small jobs are removed from machine i′. Then the first removed job has size at most

pj − pj ′ and the same holds for all further removed jobs. Therefore, the total size of jobs removed from i′ is
at most pj + $pj −pj ′%. Moreover, the total size of jobs removed from machine i′′ is at most pj ′ plus the size of
one small job. Thus, the total migration is at most 2pj + 1

3opt
′ < 5

2pj . This concludes the proof. !

5. The two-machine case. In this section we present an online algorithm for the two-machine case that
achieves competitive ratio 7

6 with migration factor 1. Before we discuss the algorithm, we first prove that this
result is best possible.

Theorem 5.1. Any online algorithm with migration factor at most 1 has a competitive ratio of at least 7
6 .

Proof. Consider an instance consisting of four jobs with sizes 1
3 ,

1
3 ,

1
2 , and

1
2 . The optimal makespan is

obviously opt= 5
6 . It is easy to verify that the only 7

6 -approximate schedule is the optimal schedule that assigns
one job of size 1

3 and one job of size 1
2 to each machine. After the arrival of a new job j of size pj = 1

3 , the
optimal makespan is opt′ = 1. With migration factor 1, however, one can only achieve makespan 7

6 . !

Before we present our particular online algorithm, we first prove the existence of an online algorithm with
competitive ratio 7

6 and migration factor 1. We even show that there is such an online algorithm that is robust
and uses only local migration; see §3 for the definitions of robustness and local migration.

Lemma 5.1. Consider an arbitrary 7
6 -approximate schedule for a given set of jobs N on two machines and a

newly arriving job j . There is a subset of jobs X of total size p$X%≤ pj residing on one of the two machines so
that scheduling job j on this machine and migrating the jobs in X to the other machine yields a 7

6 -approximate
schedule for N ∪ (j*.

Proof. If pj ≤ 1
3opt

′, it follows from Corollary 2.1 that assigning job j to a least loaded machine yields
the desired schedule, i.e., X can be chosen to be the empty set in this case. In the following we assume that
pj >

1
3opt

′.
Consider an optimal schedule for N ∪ (j* where job j is scheduled on the first machine. We describe the

difference between this optimal schedule and the given schedule for N ; see Figure 3. Let -1 be the subset of jobs
assigned to the first machine in both schedules. Similarly, /2 is the set of jobs assigned to the second machine
in both schedules. The remaining two sets -2 and /1 capture the differences between these two schedules except
for job j , which is only present in the optimal schedule (see Figure 3). In the following we assume without loss
of generality that p$-1%≤ p$-2% (otherwise, exchange the two machines in the given schedule for N ). Because

p$-1%+p$-2%+pj ≤ opt′) (2)

we get p$-1%<
1
3opt

′ as pj >
1
3opt

′. Also notice that

p$/1%+p$/2%≤ opt′& (3)

Without exceeding migration factor 1, we can remove the subset of jobs -1 from the first machine, assign
j to this machine, and then assign all jobs in -1 to the least loaded machine. If pj + p$/1% ≤ 7

6opt
′, we are
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1 2

Given schedule for N

j

1 2

Optimal schedule for N ∪ {j}

OPT′

δ1

δ2

∆2
∆1

δ1

δ2

∆2

∆1

Figure 3. Comparison of given schedule for N and optimal schedule for N ∪ (j* on two machines.

done by Corollary 2.1; set X += -1 or X +=1, depending on which machine has a smaller load after j has been
scheduled. We thus assume from now on that

pj +p$/1%>
7
6opt

′ (4)

and thus, by (3),

pj > p$/2%+ 1
6opt

′& (5)

We distinguish two cases.
Case 1. p$/2% ≤ 1

3opt
′. Because pj + -2 ≤ opt′ by (2), removing the jobs in /2 from the second machine,

assigning job j to this machine, and then assigning all jobs in /2 to the least loaded machine yields the desired
result by Corollary 2.1; set X +=/2 or X +=1, depending on which machine has a smaller load after j has been
scheduled.
Case 2. p$/2% >

1
3opt

′. Then pj >
1
2opt

′ by (5) and thus p$-1%+ p$-2% <
1
2opt

′ by (2). Because p$/1% <
2
3opt

′ by (3), we get

p$/1%+p$-1%+p$-2%<
7
6opt

′& (6)

If pj + p$/2% ≤ 7
6opt

′, then X += -2 is a feasible choice and we are done. Otherwise, pj + p$/2% >
7
6opt

′

together with (4) and (3) implies that pj >
2
3opt

′. As a consequence of (2) we get p$-1%+p$-2%<
1
3opt

′. More-
over, because p$-1%≤ p$-2% we obtain p$-1%<

1
6opt

′. By (3) we get p$/1%+p$/2%+p$-1%<
7
6opt

′. Therefore
X +=/2 is a feasible choice and the proof is complete. !

Of course, the result in Lemma 5.1 can be easily turned into an online algorithm with competitive ratio 7
6

and migration factor 1 using brute force: Simply determine the subset of jobs X by complete enumeration. The
following more-efficient algorithm is based on the intuition that it is sufficient to know those jobs in X whose
size is at least 1

3opt
′. The remaining jobs can be chosen greedily. We call a job in the initial schedule S large

if it is among the three largest jobs on its machine. Otherwise, it is small. Because in a 7
6 -approximate schedule

for N there are at most three jobs of size at least 1
3opt

′ on each machine, we know that small jobs have size
at most 1

3opt
′. For i ∈ (1)2*, we define a family of subsets of N by

!i += (Y ⊆ S−1$i% ! p$Y %≤ pj and Y only contains large jobs*&

Because there are at most three large jobs on machine i in schedule S, the family !i contains at most 23 subsets
of jobs.

Procedure 4.
Input: A schedule S for a set of jobs N and a new job j ,∈N .
Output: A schedule for N ∪ (j*.
We define an option for each i = 1)2 and Y ∈!i. Choose one of these (at most 16) options that minimizes

the resulting makespan.
Option i)Y : Migrate all jobs in Y to the other machine and assign job j to machine i. Consider the small

jobs in S−1$i% in arbitrary order: Migrate a small job unless the total size of migrated jobs will exceed pj or
migrating the job will not lead to an improved makespan.
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Theorem 5.2. Given a 7
6 -approximate schedule for N and a new job j ,∈N , Procedure 4 outputs a 7

6 -approx-
imate schedule for N ∪ (j*. The migration factor is at most 1.

Proof. The bound on the migration factor is clear from the description of Procedure 4. Let i ∈ (1)2* and
X ⊆ S−1$i% be a subset as in Lemma 5.1. Moreover, let Y ⊆X be the subset of large jobs in X. We prove that
option i)Y yields a 7

6 -approximate schedule for N ∪ (j*. We distinguish two cases.
Case 1. X =1. In this case, assigning job j to machine i yields a 7

6 -approximate schedule for N ∪ (j*. In
option i, 1, our algorithm assigns j to machine i and afterwards only migrates small jobs if this decreases the
makespan. Therefore, it also outputs a 7

6 -approximate schedule for N ∪ (j*.
Case 2. X ,=1. In this case we may assume that assigning job j to any of the two machines yields a schedule

with makespan strictly larger than 7
6opt

′ (otherwise we can choose X +=1 and are back in Case 1). In other
words,

p$S−1$1%%> 7
6opt

′ −pj and p$S−1$2%%> 7
6opt

′ −pj & (7)

We refer to machine i in the following as the first machine and to the other machine as the second machine. We
first argue that the load of the second machine in the schedule computed by option i)Y is at most 7

6opt
′. Because

Y ⊆X, migrating the large jobs in Y cannot increase the load of the second machine beyond 7
6opt

′. Thus, before
we start to migrate small jobs, the load of the second machine is at most 7

6opt
′. It follows from Corollary 2.1

that the load of the second machine remains below 7
6opt

′ if we improve the makespan by migrating small jobs
of size at most 1

3opt
′.

It remains to show that the load of the first machine i in the schedule computed by option i)Y is at most
7
6opt

′. We distinguish two subcases.
Case 2a. All small jobs in S−1$i% are migrated to the second machine in option i)Y . In this case we have

migrated all jobs in X, and possibly some more. In particular, the load of machine i in our schedule is at most
the load of machine i in the 7

6 -approximate schedule described in Lemma 5.1.
Case 2b. There is a small job k ∈ S−1$i% that is not migrated in option i)Y . There can be two reasons

for not migrating job k. If k is not migrated because this does not decrease the makespan, then the load of
machine i is at most 7

6opt
′ by Corollary 2.1, and we are done. Otherwise, the total size of jobs that have already

been migrated is larger than pj − pk ≥ pj − 1
3opt

′. Because of (7), the load of the second machine is at least
7
6opt

′ − pj + pj − 1
3opt

′ = 5
6opt

′. Because the total load of the two machines is at most 2opt′, the load of
machine i is at most 7

6opt
′. !

6. An online approximation scheme with constant migration. The results presented in §§3, 4, and 5
raise the question of how far the competitive ratio for online algorithms with a constant migration factor can be
decreased. We first prove that optimality (i.e., competitive ratio 1) cannot be achieved. However, for any fixed
#> 0 we can get down to competitive ratio 1+ #.
The following lemma states that online algorithms with a constant migration factor and competitive ratio 1

do not exist.

Lemma 6.1. Any online algorithm that always maintains an optimal solution has migration factor '$m%.

Proof. Consider a scheduling instance with m machines and 2m − 2 jobs, two of size i/m for all i =
1) & & & )m− 1. Up to permutations of machines, any optimum schedule has the structure depicted in the left part
of Figure 4. The optimum makespan is 1− 1/m. When a new job of size 1 arrives, the optimum makespan
increases to 1. Again, the structure of an optimum schedule for the enlarged instance is unique; see the right-
hand side of Figure 4. From each machine in (2) . . . )m− 1*, at least one of the two jobs has to move. Hence
the total size of jobs that have to be migrated is at least

1
m

m−2
∑

i=1

min(i)m− 1− i*≥ 1
m

2$m−2%/23
∑

i=1

i)

which is in '$m%. !

In the remainder of this section, # > 0 is a fixed constant. (In the following we assume without loss of
generality that # < 1.) We develop an algorithm with competitive ratio 1+O$#% and constant migration fac-
tor !$#%. This algorithm is based on a combination of several techniques known from the area of polynomial
time approximation schemes for machine-scheduling problems. The root of the presented method is the poly-
nomial time approximation scheme by Hochbaum and Shmoys [18] and its refinements (Hochbaum [17]). The
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New
job

Figure 4. An instance where all machine configurations have to change to maintain optimality.

pivotal point of our online approach is to establish a connection to classical sensitivity analysis for integer linear
programming.
The following observation belongs to the folklore in the field of scheduling; see, e.g., Afrati et al. [1].
Observation 6.1. Rounding up each job’s processing time to the nearest integer power of 1+ # increases

the makespan of an arbitrary schedule by at most a factor of 1+ #. In particular, in specifying a $1+O$#%%-
competitive algorithm we can assume that all processing times are integer powers of 1+ #.
Notice that rounding job sizes is not critical with respect to constant migration factors either. In the remainder

of this section we thus consider the situation when all processing times are integer powers of 1+ #. The current
set of jobs is denoted by N and the newly arriving job by j . Moreover, we set N ′ += N ∪ (j*. A job in N ′ is
called large if its processing time is at least # lb$N ′% where, according to Observation 2.1,

lb$N ′% +=max
{

p$N ′%

m
) pmax$N

′%

}

0

otherwise, it is called small. The subsets of large and small jobs in N ′ are denoted by N ′
L and N ′

S, respectively.
Notice that N ′ is the disjoint union of N ′

L and N ′
S. We also define a much finer partition of the jobs in N ′ into

classes of equal-size jobs N ′
i , i ∈", with

N ′
i += (j ′ ∈N ′ ! pj ′ = $1+ #%i*&

Moreover, let NL += N ′
L ∩ N , NS += N ′

S ∩ N , and Ni += N ′
i ∩ N for i ∈ ". Then N is the disjoint union of NL

and NS; also the subsets Ni, i ∈", form a partition of N .
It is a well-known fact from the area of approximation algorithms for machine-scheduling problems that the

crucial skeleton of a schedule is given by the assignment of large jobs. Due to Corollary 2.1, the small jobs
can later be filled in greedily. We start by describing the set of all schedules of large jobs as the set of integral
lattice points of a polyhedron.
Let I += (i ∈" ! # lb$N ′%≤ $1+ #%i ≤ pmax$N

′%* denote the index set of those classes that might contain large
jobs such that N ′

L =
⋃

i∈I N
′
i and NL =

⋃

i∈I Ni. We can bound the number of such job classes as follows.
Observation 6.2. The number !I ! of classes of large jobs is at most O$$1/#% log$1/#%%.
Proof. By definition of I it holds that

!I ! ≤ 1+ log1+#
pmax$N

′%

# lb$N ′%
≤ 1+ log1+#

1
#
≤ 1+ 2

#
log

1
#
∈O

(

1
#
log

1
#

)

&

This concludes the proof. !

Given an assignment of large jobs to machines, we say that a particular machine obeys configuration k+ I →#0
if, for all i ∈ I , exactly k$i% jobs of size $1+ #%i are assigned to this machine. The set of configurations that can
occur in any schedule for N ′

L is denoted by

K += (k+ I →#0 ! k$i%≤ !N ′
i ! for all i ∈ I*&
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Up to permutations of machines and up to permutations of equal-size jobs, an arbitrary schedule for N ′
L can

be described by specifying, for each k ∈K, the number yk of machines that obey configuration k. Conversely,
a vector y ∈#K

0 specifies a feasible m-machine-schedule for N ′
L if and only if

∑

k∈K
yk =m) (8)

i.e., the schedule uses exactly m machines, and
∑

k∈K
k$i%yk = !N ′

i ! for all i ∈ I , (9)

i.e., the set of jobs assigned to the machines is N ′. We denote the set of vectors y ∈#K
0 satisfying (8) and (9)

by S′. Thus, S′ represents the set of all schedules for N ′
L (up to permutations of machines and up to permutations

of equal-size jobs). If we replace !N ′
i ! with !Ni! on the right-hand side of (9), then constraints (8) and (9)

characterize the set S of all schedules for NL.
For a configuration k ∈K, let

load$k% +=
∑

i∈I
$1+ #%i k$i%

denote the load of a machine obeying configuration k. The makespan of a schedule y ∈ S or y ∈ S′ is thus equal
to max(load$k% ! yk > 0*. For 1≥ 0 we denote the set of configurations of load of at most 1 by

K$1% += (k ∈K ! load$k%≤1*&

The subsets of all schedules for NL and N ′
L with makespan at most 1 are denoted by

S$1% += (y ∈ S ! yk = 0 if load$k%>1*

and

S′$1% += (y ∈ S′ ! yk = 0 if load$k%>1*)

respectively.
In the following, we usually interpret a schedule y ∈ S$1% or y ∈ S′$1% as a vector in #K$1%

0 by ignoring all
zero entries corresponding to configurations in K\K$1%. We can thus write

S$1%= (y ∈#K$1%
0 !A$1%y = b*

and

S′$1%= (y ∈#K$1%
0 !A$1%y = b′*)

where A$1% is a matrix in #$1+!I !%×!K$1%!
0 and b, b′ are vectors in #1+!I !

0 . The first row of the linear system
A$1%y = b′ corresponds to constraint (8); the remaining !I ! rows correspond to constraints (9).
The next observation is crucial for applying sensitivity analysis of integer linear programming later.
Observation 6.3. The vectors b and b′ are equal for all but at most one entry, where they differ by one.
Proof. The first entry of both b and b′ is equal to m (see the right-hand side of (8)). The remaining entries are

equal to !Ni! and !N ′
i !, respectively. Notice that !Ni!=!N ′

i ! unless j ∈N ′
i . In the latter case, !N ′

i !=!Ni!+ 1. !

The next lemma contains the key insight for the result presented in this section.

Lemma 6.2. Consider a schedule for NL and denote its makespan by 1. This schedule can be turned into a
schedule for N ′

L with makespan at most max(1)opt$N ′
L%* while touching at most 2O$$1/#% log

2$1/#%% machines.

Proof. Let 1′ +=max(1)opt$N ′
L%*. If NL =N ′

L (i.e., if j is small), there is nothing to be shown. Moreover,
if 1′ ≥ 2opt$N ′

L%, the required schedule can be obtained by simply assigning j to the least loaded machine.
Notice that the load of this machine as well as the size of job j are at most opt$N ′

L%. We can therefore assume
in the following that j ∈N ′

L and 1< 2opt$N ′
L%.

Let y ∈ S$1′% denote the given schedule for NL. Then, y satisfies

A$1′%y = b) y ∈#K$1′%
0 & (10)



Sanders, Sivadasan, and Skutella: Online Scheduling with Bounded Migration
Mathematics of Operations Research 34(2), pp. 481–498, © 2009 INFORMS 493

We are looking for a schedule y′ ∈ S′$1′%, that is, y′ must satisfy

A$1′%y′ = b′) y′ ∈#K$1′%
0 & (11)

By Observation 6.3, the right-hand sides of the systems of linear equations in (10) and (11) are equal for all
but one entry, where they differ by one. Using a sensitivity result from integer linear programming4 there exists
a solution y′ to (11) satisfying

"y− y′"# ≤ 3!K$1′%!/)
where / is an upper bound on the absolute value of any subdeterminant of the matrix A$1′%. The number of
machines whose configurations are different in schedules y and y′ is bounded from above by

"y− y′"1 ≤ !K$1′%! ·" y− y′"# ≤ 3!K$1′%!2/& (12)

To complete the proof, we have to show that the right-hand side of (12) is constant. First we give an upper
bound on the number of configurations !K$1′%!, i.e., on the number of machine configurations with load of
at most 1′. Because each job in N ′

L has a size of at least

# lb$N ′%
(1)
≥ #

2
opt$N ′%≥ #

2
opt$N ′

L%>
#

4
1′)

there are fewer than 4/# jobs in any configuration k ∈K$1′% with load at most 1′; in particular, it holds that
k$i%< 4/# for all i ∈ I . This yields

!K$1′%! ≤
(

4
#

)!I !
= 2!I ! log$4/#% ∈ 2O$$1/#% log

2$1/#%% (13)

by Observation 6.2.
We now turn to /, which must be an upper bound on the absolute value of any subdeterminant of the matrix

A$1′%. The entries in the first row of A$1′% are all 1 (see (8)) and the remaining entries are of the form k$i%< 4/#
(see (9)). The maximum dimension of a square submatrix of A$1′% is at most the number of rows which is
1+ !I !. Hence, the absolute value of any subdeterminant is upper-bounded by

/ += $1+ !I !%!
(

4
#

)!I !
≤
(

$1+ !I !%4
#

)!I !
= 2!I !$log$1+!I !%+log$4/#%% ∈ 2O$$1/#% log

2$1/#%%& (14)

The claimed result follows by plugging the upper bound (13) on !K$1′%! and the upper bound (14) on /
into (12). !

We now return to the complete set of jobs N ′ also including small jobs. Building upon Lemma 6.2, we show
how to incorporate small jobs in the following theorem.

Theorem 6.1. Any $1+ #%-approximate schedule for N can be turned into a $1+ #%-approximate schedule
for N ′ =N ∪ (j* such that the total size of jobs that have to be moved is bounded by a constant !$#% times pj

with !$#% ∈ 2O$$1/#% log
2$1/#%%.

Proof. We distinguish two cases. If the newly arrived job is small, i.e., pj < # lb$N ′%, then j can simply be
assigned to a least loaded machine by Corollary 2.1 and no job in N has to be moved.
It remains to consider the situation when job j is large. The given schedule for N induces a schedule for NL

with makespan 1≤ $1+ #%opt$N %≤ $1+ #%opt$N ′%. By Lemma 6.2, the latter schedule can be turned into a
schedule for N ′

L with makespan of at most

max(1)opt$N ′
L%*≤ $1+ #%opt$N ′%)

by touching only 2O$$1/#% log
2$1/#%% machines. In the following, this subset of machines of constant size is denoted

by M ′. We construct a schedule for N ′ as follows:
(i) Start with the schedule for N ′

L discussed above.
(ii) The small jobs in NS that the given schedule for N assigned to one of the machines in M\M ′ are assigned

to the same machine again.
(iii) The remaining jobs in NS =N ′

S are assigned one after another to a least loaded machine.

4 For the convenience of the reader, we quote the used result: Corollary 17.2a (from Schrijver [28]). Let A be an integral m× n-matrix,
so that each subdeterminant of A is at most / in absolute value, let b′ and b′′ be column m-vectors, and let c be a row n-vector. Suppose
max(cx ! Ax ≤ b′0x integral* and max(cx ! Ax ≤ b′′0x integral* are finite. Then for each optimum solution z′ of the first maximum there
exists an optimum solution z′′ of the second maximum such that "z′ − z′′"# ≤ n/$"b′ − b′′"# + 2%.
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The makespan of the partial schedule constructed in steps (i) and (ii) is bounded by the maximum of the
makespan of the given schedule for N and the optimal makespan of the schedule for N ′

L. It is thus bounded
by $1+ #%opt$N ′%. Assigning small jobs greedily to a least loaded machine in step (iii) therefore results in a
$1+ #%-approximate schedule for N ′ by Corollary 2.1.
Finally, notice that in the whole process, only jobs that have initially been scheduled on machines M ′ are

moved. The total size of these jobs is bounded from above by

2opt$N ′% !M ′!
(1)
≤ 4lb$N ′%!M ′! ≤ pj

4
#
!M ′!&

We can therefore set !$#% += $4/#%!M ′! ∈ 2O$$1/#% log
2$1/#%%. !

Corollary 6.1. Theorem 6.1 can be strengthened by adding the requirement that the schedules for N and
N ′ only differ on constantly many machines.

Proof. In the proof of Theorem 6.1, the only critical step in the construction of the schedule for N ′ is the
reassignment of small jobs. In general, the number of small jobs that need to be reassigned is not constant.
Moreover, in the worst case, every such small job is assigned to a different machine.
This problem can be solved by grouping small jobs into batches of size roughly # lb$N ′%. Each batch can be

treated as one single small job. In this way we can reduce the number of small jobs that need to be reassigned
to a constant. !

We can finally state the main result of this section.

Theorem 6.2. There exists a $1+ #%-competitive online algorithm with constant migration factor !$#% ∈
2O$$1/#% log

2$1/#%% such that the running time for incorporating a newly arrived job is constant. More precisely, the
algorithm maintains and updates a data structure in time 22

O$$1/#% log2$1/#%%
in each iteration.5 From this data structure

a $1+ #%-approximate schedule can be obtained in time linear in the number of jobs (and not depending on #).

Proof. Before we discuss the required data structure in detail, we first give a rough outline and intuition.
We again consider the scheduling strategy described in the proof of Theorem 6.1. In Step (i) we ignore all

small jobs and construct the schedule for the large jobs N ′
L. This schedule is stored as a vector y ∈#K

0 (array) in
our data structure. It follows from the proof of Lemma 6.2 that only a constant number of different possibilities
have to be taken into consideration in order to find this schedule. The schedule for N ′

L in Step (i) can thus be
found in constant time. Step (ii) is trivial; nothing has to be changed on the machines in M\M ′.

We finally turn to Step (iii), where the small jobs that were previously assigned to M ′ are successively
reassigned to a least loaded machine. To perform this step in constant time, we apply the same trick as in the
proof of Corollary 6.1 and assume that small jobs are grouped into batches of size roughly # lb$N ′%. Each batch
can be treated as one single small job such that the number of small jobs that we have to deal with in Step (iii)
is constant. We finally have to argue that we can always find a least loaded machine in constant time. In fact,
because we are only looking for a $1+O$#%%-approximate schedule, it is not really necessary to find a least
loaded machine. It suffices to find a machine whose load differs from the minimum load by at most # lb$N ′%.
We can therefore assume that the machines are assigned to O$1/#% buckets according to their current load where
every bucket contains machines whose load is within a range of at most # lb$N ′%. In Step (iii) it then suffices
to always choose a machine from the nonempty bucket that contains the machines of smallest loads. This can
obviously be done in O$1/#% time.
We now give a detailed description of the data structure. We assume in the following without loss of generality

that #< 1. A $1+ #%-approximate schedule for N can be represented using the following simple data structure.
We assume that initially the schedule is given to us in this form. Later we show how to update it in constant
time while scheduling job j . The machine configurations are represented using structures as shown in Figure 5.
There is an array of Config Heads of dimension !K$4lb$N ′%%! ∈ 2O$$1/#% log

2$1/#%% (notice that 4lb$N ′% ≥
2opt$N ′% >$ 1+ #%opt$N ′%), one for each possible configuration k ∈ K$4lb$N ′%%. Each Config Head corre-
sponding to a configuration k stores the number of machines yk scheduled according to this configuration.
Moreover, each Config Head points to the list of machines (list of Machine Nodes) obeying that configuration.

Each Machine Node points to the list of jobs scheduled on that machine, grouped into batches. Each large
job is put into a batch of its own. The small jobs on a machine are grouped into at most O$1/#% batches of
size at most # lb$N %. Thus there is only a constant number O$1/#% of batches on any machine. Each batch has

5 Here we make the common assumption that operations with numbers of polynomial size take constant time.
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Figure 5. The date structure used to represent a schedule.

a Batch Head that points to the list of jobs (Job Nodes) in the batch. Because these jobs can recursively be
grouped into smaller batches again, the list might also contain Batch Heads. The jobs that are scheduled on a
machine are thus represented by a tree rooted at the Machine Node, whose inner nodes are batches and whose
leaves are the jobs. Because every inner node has at least two child nodes, the size of the tree is linear in the
number of jobs on the machine (i.e., leaf nodes).
Finally, the machines are partitioned into O$1/#% buckets according to their current load. Each bucket contains

machines whose load lies within an interval of size of at most # lb$N ′%.
We next discuss the details of updating the data structure when scheduling job j . If j is small (i.e., pj <

# lb$N ′%), then:
(i) Pick any machine i from the nonempty bucket containing the least loaded machines. Because there are

O$1/#% buckets, this takes O$1/#% time.
(ii) Find a batch of small jobs on machine i of total size at most # lb$N ′% − pj and add job j to this

batch. If no such batch exists, create a new batch for job j . Consider all batches and merge small batches into
larger batches of size at most # lb$N ′%. All this takes O$1/#% time because there are at most O$1/#% batches on
machine i.

(iii) Reassign machine i to a bucket according to its new load. Also, this takes O$1/#% time.
The overall time needed to assign a small job to an approximately least loaded machine is thus O$1/#%. If the
new job j is large (i.e., pj ≥ # lb$N ′%), we proceed as follows:

(iv) Enumerate all 22
O$$1/#% log2$1/#%%

schedules (vectors) y′ ∈ S′ for N ′
L with "y− y′"# ∈ 2O$$1/#% log

2$1/#%%. Choose
one with minimum makespan. This takes 22

O$$1/#% log2$1/#%%
time.

(v) The componentwise difference between y and y′ specifies a subset of configurations and a nonzero
number of machines that should be modified for each such configuration. For each configuration we remove
the required number of machines from the front of the machine list pointed to by the respective Config Head.
Because the total number of required machines is 2O$$1/#% log

2$1/#%% (see Lemma 6.2), this takes 2O$$1/#% log
2$1/#%% time.

(vi) Remove all batches of small jobs from these machines and reschedule the remaining jobs among these
machines to achieve the configurations indicated by y′. Because the number of jobs and batches on each machine
is O$1/#%, this takes 2O$$1/#% log

2$1/#%% time.
(vii) Assign the machines to their new Config Heads and to buckets according to their load. This takes time

2O$$1/#% log
2$1/#%% again.

(viii) Each of the 2O$$1/#% log
2$1/#%% batches of small jobs is being reassigned as in the small job case discussed

above. This takes 2O$$1/#% log
2$1/#%% time.

The running time of the entire procedure is 22
O$$1/#% log2$1/#%%

.
There is one more issue that needs to be discussed. Whenever a new job arrives, the lower bound lb on

the makespan of an optimal schedule might increase so that the classification of large and small jobs has to
be updated. This means that the list of configurations that are currently being used changes. Certain classes of
formerly large jobs are now small, and therefore neglected in the updated configurations. Notice, however, that
machines belonging to the same Config Head before the update still belong to a common Config Head after the
update. It is thus sufficient to update the array of Config Heads, potentially merging several old Config Heads
into a new one without touching all Machine Nodes. This can be done in 2O$$1/#% log

2$1/#%% time.
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Notice that there is no need to assign the jobs that became small immediately to batches of small jobs. On
each machine this is done as soon as the machine is being touched in the future. We always preserve the invariant
that the number of batches of small jobs is O$1/#% on any machine.
Due to the monotonically increasing lower bound lb, we also need to update the bucket structure from time

to time by merging two buckets into one. This can obviously also be done in O$1/#% time.
Notice finally that from the described data structure a corresponding schedule can be obtained in linear time.

For each Machine Node, parse the tree containing the jobs scheduled on the machine. As mentioned above, the
size of the tree is linear in the number of jobs contained in it. This concludes the proof. !

The migration factor !$#% we obtain is exponential in 1/#. This raises the question whether a migration factor
that is polynomially bounded in 1/# is possible. We do not know of an instance proving the converse and leave
the question as an open problem.
As a corollary to Theorem 6.2, we obtain the following known result; see, e.g., Hochbaum [17].

Corollary 6.2. There is a polynomial time approximation scheme with linear running time for the schedul-
ing problem P "Cmax.

7. Maximizing the minimum machine load. An alternative, yet less frequently used, objective for machine
scheduling is to maximize the minimum machine load. We have, however, a concrete application using this
objective function that was the original motivation for our interest in bounded migration: Storage area networks
(SAN) usually connect many disks of different capacity and grow over time. A convenient way to hide the
complexity of a SAN is to treat it as a single big, fault-tolerant disk of huge capacity and throughput (Brinkmann
et al. [7], Sanders [26]). A simple scheme with many nice properties implements this idea if we manage
to partition the SAN into several subservers (Sanders [26]) of about equal size. Mapping to the scheduling
framework, the disks correspond to jobs and the subservers correspond to machines. Each subserver stores the
same amount of data. For example, if we have two subservers, each of them stores all the data to achieve a
fault tolerance comparable to mirroring in ordinary redundant arrays of inexpensive disks (RAID) (Patterson
et al. [22]). More subservers allow for a more flexible trade-off between fault tolerance, redundancy, and access
granularity. In any case, the capacity of the server is determined by the minimum capacity of a subserver.
Moreover, it is not acceptable to completely reconfigure the system when a new disk is added to the system or
when a disk fails. Rather, the user expects a “proportionate response,” i.e., if she adds a disk of x GByte she will
not be astonished if the system moves data of this order of magnitude, but she would complain if much more is
moved. Our theoretical investigation confirms that this “common sense” expectation is indeed reasonable.
We concentrate on the case without job departures (disk failures) and present a 1

2 -competitive online algorithm
with migration factor 1. In order to motivate the scheduling procedure, we first discuss a negative result. The
following lemma shows that it is not possible to start with an arbitrary 1

2 -approximate schedule for N and obtain
a 1

2 -approximate schedule for N ∪ (j* with constant migration factor.

Lemma 7.1. There is a 1
2 -approximate schedule on m machines such that upon the arrival of a new job it is

not possible to obtain a 1
2 -approximate schedule with a migration factor less than m− 2.

Proof. Consider the following m-machine schedule for 3m−1 jobs of unit size. Machine 1 contains 2m jobs
whereas all remaining machines contain only one job. The optimal minimum load for this instance is 2 and the
considered schedule is 1

2 -approximate. When a new job of size 1 arrives, the new optimal minimum load is 3.
But to achieve minimum load greater than 1, any strategy has to move at least m− 2 jobs. !

We show that the following simple strategy, which is very similar to Procedure 1, leads to a 1
2 -competitive

online algorithm with migration factor 1.

Procedure 5.
Input: A schedule for a set of jobs N and a new job j ,∈N .
Output: A schedule for N ∪ (j*.
Repeatedly remove jobs from the least loaded machine in any order; stop before the total size of removed

jobs exceeds pj . Assign job j to this machine. Assign the removed jobs successively to a least loaded machine.

With respect to a given schedule, a machine is called a multijob machine if at least two jobs are assigned
to it. In the analysis of Procedure 5, we make use of a special structural property of schedules. A schedule
for a set of jobs N has property $∗∗% if the load of any multijob machine is at most twice the minimum load.
For example, a schedule constructed by list scheduling in order of nonincreasing processing times always has
property $∗∗%. We show that Procedure 5 maintains property $∗∗%.
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Lemma 7.2. Given a schedule for N satisfying property $∗∗% and a new job j ,∈ N , Procedure 5 outputs a
schedule for N ∪ (j* satisfying property $∗∗%.

Proof. The proof is based on the following claim.

Claim. Given a schedule satisfying property $∗∗% and a new job whose size is at most the minimum machine
load, assigning the new job to a least loaded machine maintains property $∗∗%.
This claim is true because incorporating the new job does not decrease the minimum machine load and the

load of the machine the new job is assigned to increases by at most a factor of 2.
Let Machine i be a least loaded machine in the given schedule S for N . As a consequence of the claim,

reassigning the removed jobs in Procedure 5 successively to a least loaded machine maintains property $∗∗%. It
therefore remains to show that property $∗∗% holds in the intermediate schedule immediately after assigning job j
to machine i (before assigning the removed jobs). Notice that the minimum machine load in this intermediate
schedule is at least the minimum machine load of the given schedule for N . If pj ≤ p$S−1$i%%, then property
$∗∗% obviously holds for the intermediate schedule. Otherwise, if pj > p$S−1$i%%, then all jobs are removed from
machine i such that machine i is not a multijob machine in the intermediate schedule. Thus, property $∗∗% holds
in this case as well. !

Theorem 7.1. For the objective to maximize the minimum machine load, any schedule satisfying property
$∗∗% is 1

2 -approximate. In particular, scheduling every newly arriving job according to Procedure 5 is a 1
2 -

competitive algorithm with migration factor 1 for this objective.

Proof. The proof is based on the following claim.

Claim. Consider an arbitrary schedule. If there is at most one job on every machine, the schedule is optimal.
Otherwise, the maximum load of a multiple-job machine is an upper bound on the optimum.

The first part of the claim is clear. Consider an arbitrary schedule S with at least one machine containing
at least two jobs. Let L denote the maximum load of a multiple-job machine in S. In the following we call a
job large if its size is strictly larger than L. Notice that S schedules each large job on a machine of its own.
Consider an optimum schedule S∗ and modify S∗ as follows. For each machine i: If machine i contains a

large job, then delete machine i and all jobs scheduled on it. The resulting schedule is denoted by 5S∗. We apply
exactly the same procedure to schedule S and denote the resulting schedule by 5S. Notice that 5S∗ schedules a
subset of the jobs scheduled by 5S because each large job occupies a machine of its own in S. Moreover, for
the same reason, 5S∗ uses at least as many machines as 5S. Thus, the minimum machine load in 5S∗ is at most
the maximum machine load in 5S that is equal to L. In particular, there exists a machine in 5S∗, and thus in S∗,
whose load is at most L. This concludes the proof of the claim.
As an immediate consequence of the claim, any schedule satisfying property $∗∗% is 1

2 -approximate. Together
with Lemma 7.2, this yields a bound of 1

2 on the competitiveness. Finally, the bound on the migration factor is
clear from the description of Procedure 5. !

We close this section with an interesting open problem. Woeginger [33] presents a PTAS for the problem
to maximize the minimum machine load on identical parallel machines. This raises the question of whether an
online PTAS with constant migration factor !$#% as in §6 can be obtained for the max-min objective function.
Lemma 7.1 seems to indicate that this is more tricky than for the makespan objective. At least, it is not enough
to only take care of the objective function in each iteration, but also the overall structure of the schedule has to
be “reasonable” such that it can be easily adapted in future iterations without too much migration.
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