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FLOWS OVER TIME WITH LOAD-DEPENDENT TRANSIT TIMES∗

EKKEHARD KÖHLER† AND MARTIN SKUTELLA‡

Abstract. More than forty years ago, Ford and Fulkerson studied maximum s-t-flows over
time (also called “dynamic” flows) in networks with fixed transit times on the arcs and a fixed time
horizon. Here, flow on arcs may change over time and transit times specify the amount of time
it takes for flow to travel through a particular arc. Ford and Fulkerson proved that there always
exists an optimal solution which sends flow on certain s-t-paths at a constant rate as long as there is
enough time left for the flow along a path to arrive at the sink; a flow over time featuring this simple
structure is called “temporally repeated.”

Although this result does not hold for the more general and also more realistic setting where
transit times depend on the current flow situation, we show that there always exists a provably good
temporally repeated solution. Moreover, such a solution can be determined very efficiently by only
one minimum convex cost flow computation. Our results rest upon a new model of flow-dependent
transit times. It is based on two assumption on the pace of flow on a particular arc. First, the pace
of flow on an arc is assumed to be uniform for all flow units on an arc for each point in time. Second,
this uniform pace is for each moment determined by the actual amount of flow on this arc. Finally,
we show that the resulting flow-over-time problem is strongly NP-hard and cannot be approximated
with arbitrary precision in polynomial time, unless P=NP.
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1. Introduction. Flow variation over time is an important feature in network
flow problems arising in various applications such as road or air traffic control, pro-
duction systems, communication networks (e.g., the Internet), and financial flows.
The common characteristic are “dynamic” networks with capacities and transit times
on the arcs. In contrast to static flow problems, flow values on arcs may change with
time in these networks. Moreover, flow does not progress instantaneously but can
only travel at a certain pace through the network, which is determined by transit
times of arcs.

Another crucial phenomenon in many of those applications is the variation of
time taken to traverse an arc with the current (and maybe also past) flow situation
on this arc. Since it is already a highly nontrivial problem to map these two aspects
into an appropriate and tractable mathematical network flow model, there are hardly
any algorithmic techniques known which are capable of providing reasonable solutions
even for networks of rather modest size. The main aim of this paper is to make a
first step in this direction by providing new insights and algorithmic results which will
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hopefully turn out to have the potential to contribute to practically efficient solution
methods.

Problem definition and notation. We consider a directed network G = (V,E)
with node set V and arc set E. There is a source node s ∈ V , a sink t ∈ V ,
and a positive demand value D. Our aim is to find a quickest flow over time which
satisfies demand D within minimal time horizon (or makespan) T while respecting the
following restrictions. Each arc e ∈ E has a positive capacity ue which is interpreted as
an upper bound on the rate of flow entering e, i.e., a capacity per unit time. Moreover,
arc e has an associated positive transit time τe which determines the amount of time
it takes for flow to travel from the tail to the head of that arc. In many real-world
applications, a difficult but crucial aspect is that the amount of time needed to traverse
an arc of the network increases as the arc becomes more congested. Thus, we consider
the case where τe is not necessarily fixed but may depend on the amount of flow
currently sent through arc e.

In the setting of flows over time, flow conservation constraints require that, for
any point θ in time and for any node v ∈ V \ {s}, the total inflow into node v
until time θ is an upper bound on the total outflow out of node v until time θ. In
particular, the fact that the inflow may exceed the outflow means that flow can be
stored in nodes. However, for a flow over time with finite time horizon T we require
that, for any node v ∈ V \ {s, t}, the total inflow into node v until time T is equal
to the total outflow out of node v until time T . In other words, the network must be
empty again at time T , as it was at time 0.

Modeling flow-dependent transit times. The crucial parameter for modeling tem-
poral dynamics of flows is the presumed dependency of the actual transit time τe on
the current (and maybe also past) flow situation on arc e. Unfortunately, there is
a tradeoff between the need of modeling this usually highly complex correlation as
realistically as possible and the requirement of retaining tractability of the resulting
mathematical program.

Due to the latter condition, many models in the literature rely on relatively simple
assumptions. For example, the transit time of an arc is often treated as a function of
only the flow rate at time of entry to the arc; see, e.g., [7]. However, this assumption is
in many cases unrealistic since it does not, for example, preserve the first-in-first-out
property encountered in most applications.

In contrast, a fully realistic model of flow-dependent transit times on arcs must
take density, speed, and flow rate evolving along the arc into consideration [16]. Unfor-
tunately, even the solution of mathematical models relying on simplifying assumptions
is in general still impracticable, i.e., beyond the means of state-of-the-art computers,
for problem instances of realistic size (as those occurring in real-world applications
such as road traffic control).

Existing models and results. In what follows, we discuss some approaches which
can be found in the literature. For a more detailed account and further references we
refer the reader to [2, 8, 19, 24, 29, 31]. The existing approaches can be assigned to four
groups: Simulation-based approaches like, for example, traffic simulation (see, e.g.,
[3, 28]); models based on fluid dynamics (see, e.g., [30]) or variational inequalities (see,
e.g., [9, 10, 15]); and, finally, mathematical programming-based approaches, which we
discuss in more detail below.

While simulation is a powerful tool to evaluate complex flow scenarios, it misses
the optimization potential. On the other hand, fluid models and other models based
on differential equations capture very well the dynamical behavior of flows, but cannot
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currently handle large networks. Mathematical programming and, in particular, net-
work flow theory have the potential to overcome this drawback at the cost of a less
precise modeling of real flow behavior.

Merchant and Nemhauser [26] formulate a nonlinear and nonconvex program
where time is being discretized. In their model, the outflow out of an arc in each
time period solely depends on the amount of flow on that arc at the beginning of
the time period. However, the nonconvexity of their model causes analytical and
computational problems. In [27] and [5], special constraint qualifications are described
which are necessary to guarantee optimality of a solution in this model. Carey [6]
introduces a slight revision of the model of Merchant and Nemhauser which transforms
the nonconvex problem into a convex one.

Carey and Subrahmanian [7] introduce a time-expanded network1 with fixed tran-
sit times on the arcs. However, for each time period there are several copies of an
arc of the underlying “static” network corresponding to different transit times. In
this setting, flow-dependent transit times can implicitly be modeled by introducing
appropriate capacities on the copies of an arc corresponding to different transit times.
More precisely, these arc-capacities approximately model inflow -dependent transit
times, that is, the situation when the transit time on an arc depends only on the cur-
rent rate of flow into the arc. As discussed above, this model provides only a rough
description of flow-dependent transit times in typical real-world situations.

Note that the model of Carey and Subrahmanian is defined for the multicom-
modity case. However, also when restricted to a single commodity, their model re-
quires general linear programming techniques. Köhler, Langkau, and Skutella [23]
present a refined time-expanded model that can be solved by standard network flow
computations. While these algorithmic techniques are typically very efficient, the size
of the time-expanded graph itself causes problems when the number of discrete time
steps gets large. Building upon [7, 23], Hall, Langkau, and Skutella [18] present an
improved analysis of these models which also works for the multicommodity case.

Results for fixed transit times. The problem concerning the size of the time-
expanded graph was already addressed by Ford and Fulkerson [13, 14] when they
studied the “maximal dynamic flow problem”: Given a directed network with capaci-
ties and fixed transit times on the arcs and a fixed time horizon T , send as much flow as
possible from the source vertex s to the sink vertex t within time T . This problem can
be solved by one max-flow computation on the corresponding time-expanded network.
Notice, however, that the size of the time-expanded network is only pseudopolynomial
in the size of the input.

Nevertheless, Ford and Fulkerson were able to show that the problem can be
solved by essentially one min-cost flow computation on the given “static” network,
where transit times of arcs are interpreted as cost coefficients. An optimal solution to
this min-cost flow problem can be turned into a flow over time by decomposing it into
flows on paths. The optimal flow over time starts to send flow on each path at time
zero and repeats each so long as there is enough time left in the T periods for the
flow along the path to arrive at the sink. Such a flow over time is called temporally
repeated.

1Time-expanded networks are often used for computing flows over time with fixed (integral)
transit times on the arcs. Such a time-expanded network contains a copy of the node set of the
underlying network for each discrete time step (building a time layer). Moreover, for each arc with
transit time τ in the given network, there is a copy between each pair of time layers of distance τ in
the time-expanded network.
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In particular, this result of Ford and Fulkerson implies that the quickest s-t-flow
problem with fixed transit times can be solved in polynomial time. Burkard, Dlaska,
and Klinz [4] give a strongly polynomial algorithm for the quickest s-t-flow problem
which is based on the parametric search method of Megiddo [25]. However, if costs
are added the resulting minimum cost quickest flow problem is NP-hard [22]; the
same hardness result holds for the case of multiple commodities, even without costs
[17]. On the other hand, Hoppe [20] and Hoppe and Tardos [21] show that there is
a nontrivial generalization of the result of Ford and Fulkerson to the case of multiple
sources and sinks.

Recently, and prior to this work, Fleischer and Skutella [11] showed that the tech-
nique of Ford and Fulkerson can be generalized to yield approximate solutions to the
NP-hard quickest flow problem with costs and also to the more general quickest mul-
ticommodity flow problem with costs. Their approach is based on the computation
of a static length-bounded flow2 which is then turned into a flow over time, similar
to Ford and Fulkerson’s result. This leads to an approximation algorithm with per-
formance guarantee 2 + ε for the quickest multicommodity flow problem with costs.
Moreover, Fleischer and Skutella [11, 12] introduce the concept of so-called condensed
time-expanded networks. They are obtained by rounding transit times of arcs and
scaling time such that the size of the resulting time-expanded network is polynomi-
ally bounded in the input size. As a consequence, one obtains fully polynomial-time
approximation schemes for the quickest multicommodity flow problem with costs and
for related problems.

New results and models. Our work is inspired by the results of Ford and Fulkerson
[13, 14] and Fleischer and Skutella [11] on temporally repeated flows. Although their
techniques cannot directly be translated to the more general setting of flow-dependent
transit times, we can show that a similar approach yields provably good temporally
repeated flows in this setting.

This result is based on the following fairly general model of flow-dependent transit
times. We assume that, at each point in time, the uniform speed on an arc depends
only on the amount of flow or load which is currently on that arc. This assumption
captures, for example, the behavior of road traffic when an arc corresponds to a rather
short street (notice that longer streets can be replaced by a series of short streets);
similar transit time functions are used in standard traffic simulation systems.

For the case of steady state flows which do not vary over time, the constant load
of an arc can be determined by the constant flow rate on the arc, i.e., by the number
of flow units traversing the arc per time unit. Therefore, the transit time of an arc
is a function of its flow rate in this case. Throughout the paper we assume that this
dependency is given by an increasing and convex function. This assumption is satisfied
for many applications; see, e.g., [32] and Figure 1. We propose an algorithm which is
similar to the one of Ford and Fulkerson and thus also very efficient. However, since
the transit times are no longer fixed, the linear min-cost flow problem considered by
Ford and Fulkerson now turns into a convex cost flow problem. Under the assumptions
on the transit time functions τe stated above, the resulting optimal static flow can
be turned into a temporally repeated flow which needs at most twice as long as a
quickest flow over time.

2A static (multicommodity) flow is called length-bounded if it can be decomposed into flows on
paths whose transit times are bounded from above by a given value.
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Fig. 1. a) For the case of static road traffic, the U.S. Bureau of Public Roads developed a
simplified function describing the dependency of the transit time on the flow. This function is given
by τe = τ0

e (1+0.15(xe/u′
e)

4), where τ0
e is the free-flow transit time, xe is the flow rate, and u′

e is the
“practical capacity” of arc e. It follows from the given equation that the practical capacity of an arc
is the flow rate at which the transit time is 15% higher than the free-flow transit time. b) Davidson
proposed a function describing the transit time based on queuing theory considerations: τe = τ0

e (1 +
Jxe/(ue − xe)). Again, τ0

e is the free-flow transit time (i.e., the transit time at zero flow), xe is the
flow rate, ue is the capacity of the arc, and J is a parameter of the model. We depict the function
for various choices of J. In contrast to the function depicted in a), Davidson’s function is obviously
asymptotic to the capacity ue of the arc. More details can be found in [32].

Finally, we show that the quickest flow problem under consideration is strongly
NP-hard and even cannot be approximated with arbitrary precision in polynomial
time, unless P=NP. We give reductions from the NP-hard problems Partition and
Satisfiability. Notice that the flow-over-time problem considered by Ford and
Fulkerson is solvable in polynomial time and that the more general problems consid-
ered by Fleischer and Skutella [11, 12] possess fully polynomial-time approximation
schemes and are therefore not strongly NP-hard, unless P=NP.

The paper is organized as follows. In section 2 we discuss the load-dependent
transit time model which our results are based on. Our main result on the existence
and efficient computation of provably good temporally repeated flows is presented in
section 3. Section 4 contains results on the complexity of the quickest flow problem
under consideration.

2. A model for load-dependent transit times. Our research is motivated
by traffic routing problems. In this application, the transit time τe of an arc (street) e
is typically given for the case of static flows, that is, flows which do not vary over
time. We thus interpret τe(xe) as the transit time on arc e for the static flow rate xe,
which is the number of flow units (cars etc.) traversing the arc per time unit; see
Figure 1 for examples.

Unfortunately, for a flow varying over time, the latter model is only of limited use.
First of all, it is not clear how to define the flow rate on an arc at a specific moment
in time; there are several possibilities depending on where exactly it is measured. For
example, the inflow rate is measured at the tail and the outflow rate is measured
at the head of an arc; moreover, a flow rate can also be determined at any other
position on an arc. Second, in real-world applications, it is not reasonable to assume
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that the transit time of an arc depends only on the current flow rate on this arc, no
matter where it is measured. For example, even if the number of cars which currently
enter a street is small compared to the capacity of the street, the transit time might
nevertheless be huge due to traffic congestion caused by a large number of cars which
have entered the street earlier.

2.1. Description of the model. In what follows, we assume that we are given
a network and for every arc of the network there is a function τe which describes the
dependency of the arc’s transit time on the static flow rate. Since we are interested
in the general setting where the flow on an arc may vary over time, we have to come
up with a model which enables us to at least approximately determine transit times
for flows over time. The small example of a congested street discussed above suggests
that the transit time on an arc depends on its current load, which is the amount of
flow (number of cars) currently on that arc. We thus assume in our model that

(i) at each point in time, the entire flow on an arc travels with uniform speed;
(ii) this speed depends only on the current load of that arc.

It is clear that this model is, of course, not able to capture all properties of traffic
flows. One such limitation is, for example, the incapability of mapping tailback effects
properly, i.e., traffic that is delayed on some arc from x to y because of a traffic jam
on some arc going out of y. Including effects like this causes severe complications
and considerably weakens the model’s efficiency in terms of computing good or even
optimal solutions. The approximation algorithm that we propose in section 3 relies
on methods from the area of classical network flow theory. In this context, the in-
dependence of flows on different arcs (apart from flow conservation, of course) is a
crucial feature.

Before we discuss the implications of the above assumptions for flows varying over
time, we first consider the simpler case of static flows. If we let ye denote the load of
arc e and xe its flow rate, it is easy to see that, for a static flow, the following relation
holds:

ye = xe τe(xe).(1)

Observation 2.1. If the function τe is monotonically increasing and convex (as,
e.g., in Figure 1), then, in a static flow, the flow rate xe is a strictly increasing and
concave function of the load ye of arc e.

Proof. Since both τe and the identity are nonnegative, monotonically increasing,
and convex, it follows from (1) that the load is also a nonnegative, strictly increasing,
and convex function of the flow rate xe. Thus, the inverse function exists and is
strictly increasing and concave.

It follows from the proof that Observation 2.1 already holds under the weaker
assumption that the function xe "→ xe τe(xe) is strictly increasing and convex. In the
remainder of the paper we assume that this weaker assumption holds for all arcs e ∈ E.

Assumption 2.2. For all arcs e ∈ E, the function xe "→ xe τe(xe) is nonnegative,
strictly increasing, and convex.

Observation 2.1 yields that, for the case of static flows, the transit time τe can
also be interpreted as a function of the load ye; to avoid ambiguity, it is then denoted
by τ̂e(ye). Notice that

τe(xe) = τ̂e(ye)(2)
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if the flow rate xe and the load ye satisfy (1). The function τ̂e can now be used in
order to model the setting of flows over time with load-dependent transit times.

A flow over time on arc e with time horizon T can be described by its flow rate
fe : (0, T ] → R+. The considerations and results in the remainder of this paper do not
depend on the precise definition of fe but work for all possible types of flow rates (like,
e.g., inflow or outflow rate etc.). In the flow model given by assumptions (1) and (2),
the mutual dependency of the flow rate fe : (0, T ] → R+ and the load $e : (0, T ] → R+

is implicitly given as follows: At any point in time θ, the speed of the flow on arc e
is proportional to the inverse of the “current transit time” τ̂e($e(θ)). This concludes
the precise description of our model of load-dependent transit times on one arc.

An s-t-flow over time with load-dependent transit times is given by flow rate
functions (fe)e∈E satisfying the following constraints:

(i) 0 ! fe(θ) ! ue for all e ∈ E and θ ∈ (0, T ] (capacity constraints);
(ii) for every node v $= s and every point in time θ ∈ (0, T ], the total amount of

flow that has arrived in v until time θ is an upper bound on the total amount of flow
that has left v until time θ (flow conservation constraints);

(iii) equality holds in (ii) for θ = T and all v ∈ V \ {s, t}; moreover, $e(T ) = 0
for all e ∈ E (i.e., all flow must have arrived at the sink at time T ).
Notice that it is a nontrivial task to check whether flow conservation constraints (ii)
are fulfilled for given inflow rate functions (fe)e∈E ; the outflow rate of an arc is not
a simple function of its inflow rate. Flow entering arc e at time ν arrives at the head
of e at time

inf

{
ξ

∣∣∣∣
∫ ξ

ν

1

τ̂e($e(θ))
dθ " 1

}
.(3)

This follows since, by definition of our flow model, 1/τ̂e($e(θ)) is proportional to the
speed on arc e at time θ.

2.2. Basic results and observations. We are interested in two basic charac-
teristics of flows over time on an arc e. The total transit time is the total amount of
time spent by all units of flow on that arc. If we think of cars driving along a street,
it is the sum of the individual transit times of all cars. Formally, the total transit
time is the integral of the load of arc e over time. Thus every unit of flow accounts to
that particular arc as long as it contributes to the load of this arc. This is given by

∫ T

0
$e(θ) dθ.

The total amount of flow shipped through arc e is the integral over the flow rate fe(θ),
0 < θ ! T . This value can also be written in terms of the load $e(θ):

∫ T

0
fe(θ) dθ =

∫ T

0

$e(θ)

τ̂e($e(θ))
dθ.(4)

We give an intuitive interpretation of (4): If fe(θ) denotes the inflow rate into arc e
at time θ, the left-hand side simply counts the number of cars entering the street e
over time. In contrast, the right-hand side counts at every point in time the number
of cars currently traveling on e weighted by the inverse of the “current transit time”
on e. In particular, the overall contribution of every car to the right-hand side is one
which yields the claimed equation.
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Notice, however, that (4) does not hold pointwise (with the integrals removed)
since the load $e(θ0) at some point in time θ0 does not only depend on the current
flow rate fe(θ0) but also on the whole history fe(θ), 0 < θ ! θ0.

For an arbitrary flow over time on arc e with time horizon T and flow rate fe(θ),
for θ ∈ (0, T ], we define a corresponding static flow with flow rate

xe :=
1

T

∫ T

0
fe(θ) dθ(5)

and load ye := xe τe(xe) according to (1). We refer to this static flow as the average
rate flow corresponding to the flow over time given by fe (or $e).

Lemma 2.3. If the function τe is monotonically increasing and convex, the total
transit time of a flow over time with time horizon T , flow rate fe, and load $e is
at least as big as the total transit time of the corresponding static average rate flow
over T time units, that is,

∫ T

0
$e(θ) dθ " T ye.(6)

Proof. The left-hand side of (6) motivates the consideration of another static flow
with load

ỹe :=
1

T

∫ T

0
$e(θ) dθ

and flow rate

x̃e :=
ỹe

τ̂e(ỹe)
.

We refer to this static flow as the average load flow corresponding to the flow over
time given by fe (or $e). Thus, (6) can now be rewritten as ỹe " ye. Since the load of
a static flow is a monotonically increasing function of its flow rate, it suffices to show
that x̃e " xe. Using (4) and (5), this inequality can be rewritten as

ỹe
τ̂e(ỹe)

" 1

T

∫ T

0

$e(θ)

τ̂e($e(θ))
dθ.(7)

It follows from Observation 2.1 that the function ξ "→ ξ/τ̂e(ξ) is concave. Thus,
inequality (7) is a result of Jensen’s inequality. This concludes the proof.

In other words, Lemma 2.3 says that, for an arbitrary flow over time on arc e, the
corresponding average load flow has a higher value than the corresponding average
rate flow.

3. An approximation algorithm.

3.1. A related static flow problem. In order to determine a flow over time
which satisfies demand D in close to optimal time, we consider the following static
maximum flow problem with bounded convex cost. In this problem, the cost of flow xe

on arc e is xe τe(xe) and the total cost must not exceed D. More formally, the problem
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can be written as follows:

max
∑

e∈δ−(t)

xe −
∑

e∈δ+(t)

xe

s. t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t},

∑

e∈E

xe τe(xe) ! D,

0 ! xe ! ue for all e ∈ E.

Here, δ+(v) and δ−(v) denote the set of arcs leaving and entering node v, respectively.
Lemma 3.1. If there exists a flow over time f with load-dependent transit times

which sends D units of flow from s to t within time T , then there exists a static flow x
of value at least D/T for the static flow problem stated above.

Proof. Consider the static average rate flow x = (xe)e∈E as defined in (5) which
corresponds to the given flow over time with flow rate (fe)e∈E and load ($e)e∈E . By
the assumption on the amount of flow sent, the value of the static flow x is D/T .
Moreover, since the given flow over time obeys capacity constraints, the same is true
for the average rate flow x. It thus remains to show that the cost of x is bounded
by D.

Since in the flow over time f every unit of flow needs at most time T to travel
through the network from s to t, the corresponding total transit time is bounded
by DT , that is,

∑

e∈E

∫ T

0
$e(θ) dθ ! DT.

By Lemma 2.3 and (1), this concludes the proof.
An optimal integral solution to the static constrained maximum flow problem

stated above can be computed in polynomial time, for example by the capacity scaling
algorithm of Ahuja and Orlin [1]. We argue that the difference between the value
Opt of an optimal fractional flow and the value Opt’ of an optimal integral flow is
at most |E|, i.e., the number of arcs: It is a classical result from network flow theory
that an optimal fractional flow can be decomposed into flows on at most |E| paths.
Rounding down the flow value on all of these paths to the nearest integer decreases the
flow value by at most |E| and yields a feasible integral flow. Thus, Opt−Opt′ ≤ |E|.

By appropriately scaling capacities, flow values, and the demand value D (i.e.,
multiplying all of these parameters by a large enough constant M), we can make sure
that Opt ≥ D/T ≥ |E|/ε, for any given ε > 0. As a consequence, the value of an
optimal integral solution fulfills Opt′ ≥ Opt − |E| ≥ (1 − ε)Opt.

Summarizing, we can compute a static flow x of value at least (1 − ε)Opt and
cost at most D in polynomial time, where Opt is the value of an optimal static flow.

Lemma 3.2. If there is a flow over time with load-dependent transit times which
sends D units of flow from s to t within time T , then a static flow x of value at
least (1 − ε)D/T and cost at most D can be computed in polynomial time.

Proof. The result follows from Lemma 3.1 and the discussion above.

3.2. A 2-approximation algorithm. Although x is a static flow, it contains
some structural information on how to construct a provably good flow over time. We
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decompose x into a sum of static path-flows on a set of s-t-paths P. The flow value
on path P ∈ P is denoted by xP such that, for each arc e ∈ E,

xe =
∑

P∈P : e∈P

xP .(8)

Notice that we can assume without loss of generality that no cycles are needed in
the flow decomposition; otherwise, the solution x can be improved by canceling flow
on those cycles. Moreover, it is well known that the number of paths in P can be
bounded by the number of arcs |E|.

For the case of fixed transit times, a temporally repeated flow over time with
time horizon T ′ can be generated from a path-decomposition of x by starting each
path-flow at time zero, and repeatedly sending flow on each of them, as long as there
is enough time left in the T ′ periods for the flow along the path to arrive at the sink.
In what follows, we argue that basically the same approach can be used in the setting
of load-dependent transit times. Here, however, some care has to be taken in order
to avoid undesirable congestion. If all transit times are fixed, it follows from (8) that
at any point in time the total flow rate on arc e in the temporally repeated flow over
time is bounded by xe. This is no longer true if transit times on arcs may vary over
time. We use the following trick to solve this problem.

As soon as we have computed the static flow x, we assume that the transit time
of every arc e ∈ E in the network is fixed to τe(xe). This assumption is justified
if we can assure that the rate of flow into arc e is always bounded by xe and thus
its load never exceeds xe τe(xe). In this case, we can enforce the constant transit
time τe(xe) by introducing waiting times at the head node v of arc e in order to
compensate for a potentially smaller transit time on that arc. Thereby we emulate
the fixed transit time τe(xe) and, at the same time, make sure that the rate of flow
into every arc e′ ∈ δ+(v) also stays below xe′ . The same technique is used in [11] in
order to round up transit times of arcs.

Under these assumptions, the amount of flow that can be sent within time hori-
zon T ′ over path P ∈ P of length τP :=

∑
e∈P τe(xe) with τP ! T ′ is xP (T ′ − τP ).

Therefore, the total amount of flow which we can send on paths P within time hori-
zon T ′ is

d(T ′) :=
∑

P∈P : τP !T ′

xP (T ′ − τP ).(9)

From this expression one can easily determine the minimal T ′ that is needed to
satisfy demand D: Simply order the paths in the set P by nondecreasing lengths τP1 !
τP2 ! · · · ! τPk and observe that the function d is affine linear and increasing within
every interval [τPi , τPi+1 ], 1 ! i < k.

Theorem 3.3. If there is a flow over time with load-dependent transit times
which sends D units of flow from s to t within time T , then there exists a temporally
repeated flow satisfying demand D within time horizon at most 2T . Moreover, for
every ε > 0, one can compute a temporally repeated flow in polynomial time which
satisfies demand D within time horizon at most (2 + ε)T .

Proof. By Lemma 3.2, we can compute a static flow x of value at least (1 −
ε/3)D/T and cost at most D in polynomial time, for any ε > 0 (in what follows, we
assume that ε ! 1). Moreover, by Lemma 3.1, there even exists such a flow for ε = 0.
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We decompose x into path-flows as discussed above and get

d
(
(2 + ε)T

) (9)
=

∑

P∈P : τP !(2+ε)T

xP

(
(2 + ε)T − τP

)

"
∑

P∈P
xP

(
(2 + ε)T − τP

)

= (2 + ε)T
∑

P∈P
xP −

∑

e∈E

xe τe(xe)

" (2 + ε) (1 − ε/3)D − D

" D.

Since the function d is increasing, this concludes the proof.
The presented analysis of the algorithm is similar to that of the (2 + ε)-approxi-

mation algorithm in [11]. The common underlying idea is to prove that averaging a
flow over time with time horizon T yields a feasible static flow which can then again
be turned into a flow over time with time horizon 2T . However, while Fleischer and
Skutella use the fact that the average static flow is length-bounded by T , it is easy
to observe that this is no longer true if we allow flow-dependent transit times on the
arcs.

3.3. Lower bounds on the performance of the algorithm. It can be shown
that our analysis is tight, even for the case of a network consisting of only one unca-
pacitated arc e from s to t. In this example, the transit time of arc e is given by

τe(xe) :=

{
2 if xe ! 1,

∞ if xe > 1.

From (2) one can determine the corresponding load-dependent function

τ̂(ye) =

{
2 if ye ! 2,

∞ if ye > 2.

Thus, a quickest flow over time sending demand D := 2 from s to t needs exactly 2
time units since it can put the 2 units of flow onto arc e at time 0 such that they
arrive at time 2. However, an optimal solution to the static maximum flow problem
stated at the beginning of this section sets the flow rate xe to 1. Thus, in the resulting
temporally repeated flow the last piece of flow leaves s only at time 2 and therefore
does not arrive before time 4.

In this example, the gap of 2 between the optimal solution and the solution arising
from the static maximum flow problem obviously originates from the incapability of
the static flow problem to capture the possibility of sending flow at a very high flow
rate for a very short period of time.

Although the optimal flow over time is temporally repeated here, a slight modifi-
cation of the instance shows that every temporally repeated flow can be bad compared
to an optimal flow over time. If we double the demand value to D := 4, an optimal
flow over time needs 4 time units since it sends 2 packets of flow, each containing 2
units of flow, at time 0 and time 2, respectively. However, in a temporally repeated
flow, the flow rate cannot be chosen bigger than 1 since otherwise the arc would
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become completely congested as soon as there are more than 2 units of flow on it.
Therefore, every temporally repeated flow needs at least 6 time units and is thus at
least a factor of 3/2 away from the optimal value 4.

3.4. A bicriteria generalization. The results in Theorem 3.3 can be general-
ized in the following direction. One can decrease the factor of 2 in time at the cost
of a decrease of the amount of flow that can be delivered. This leads to the following
bicriteria results.

Corollary 3.4. If there is a flow over time which sends D units of flow from s
to t within time T , then, for every α " 1, there exists a temporally repeated flow
satisfying demand (α−1)D within time horizon at most αT . Moreover, for every ε >
0, one can compute a temporally repeated flow in polynomial time which satisfies
demand (α− 1)D within time horizon at most (α + ε)T .

The proof of Corollary 3.4 is almost identical to the proof of Theorem 3.3 (re-
placing 2 by α).

3.5. An alternative view on the 2-approximation. We close this section
with the following alternative view of the presented approximation result which high-
lights its close relation to the algorithm of Ford and Fulkerson. A temporally repeated
flow with load-dependent transit times and time horizon T can be obtained from a
solution to the following static convex cost flow problem:

max T

(
∑

e∈δ−(t)

xe −
∑

e∈δ+(t)

xe

)
−

∑

e∈E

xe τe(xe)

s. t.
∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0 for all v ∈ V \ {s, t},

0 ! xe ! ue for all e ∈ E.

For the special case of fixed transit times, this is exactly the static flow problem con-
sidered by Ford and Fulkerson. It is easy to observe that the value of the resulting
temporally repeated flow is equal to the value of the objective function (compare (9)).
For the special case of fixed transit times, Ford and Fulkerson showed that this tem-
porally repeated flow over time is maximal.

This is no longer true in the setting with load-dependent transit times. However, it
follows from Lemma 3.1 that for T = 2T ∗ (where T ∗ denotes the makespan of a quick-
est flow) this value is at least D. Thus, we get an alternative (2 + ε)-approximation
algorithm for the quickest flow problem by embedding this approach into a binary
search framework for T . The main drawback of this alternative algorithm is that it
requires more than one convex cost flow computation. Moreover, the simple example
discussed above also shows that its performance guarantee is not better than 2.

4. Complexity results. While the corresponding problem with fixed transit
times can be solved efficiently [4, 13, 14], the quickest s-t-flow problem with load-
dependent transit times is NP-hard. We start with a simple reduction from the
well-known NP-complete Partition problem.

Partition

Given: A set of n items with associated sizes a1, . . . , an ∈ N such
that

∑n
i=1 ai = 2L for some L ∈ N.

Question: Is there a subset I ⊂ {1, . . . , n} with
∑

i∈I ai = L?
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s

e1

ē1

e2

ē2

en

ēn

t

Fig. 2. Reduction of the problem Partition to a flow-over-time problem with load-dependent
transit times.

Given an instance of Partition, we construct a network with load-dependent
transit times as follows. Take a chain of length n where each link i = 1, . . . , n consists
of a pair of two parallel arcs ei and ēi (see Figure 2) with the following transit times:3

τei(x) :=

{
2L if x ! 1/(2L),

∞ if x > 1/(2L),
τ̂ei(y) =

{
2L if y ! 1,

∞ if y > 1,

and

τēi(x) :=

{
2L + ai if x ! 1/(2L + ai),

∞ if x > 1/(2L + ai),
τ̂ēi(y) =

{
2L + ai if y ! 1,

∞ if y > 1.

The task is to send D := 2 units of flow from s to t.
Lemma 4.1. There exists a flow over time which sends two units of flow from s

to t in time (2n + 1)L if and only if the underlying instance of Partition is a
“yes”-instance.

Proof. If: Let I be a subset of {1, . . . , n} such that
∑

i∈I ai = L. The flow is
sent in two packets, each containing one flow unit. The packets use two arc-disjoint
paths of length (transit time) (2n + 1)L that are induced by the subset I and its
complement, respectively.

Only if: It follows from the definition of the transit time functions that there
can never be more than one unit of flow on any arc. Therefore the construction
of the network yields that no arc can be traversed by more than one flow unit un-
less the flow takes at least (2n + 2)L units of time. As a consequence, in a flow
over time with makespan (2n + 1)L, every arc is traversed by exactly one flow unit
and the total transit time is thus

∑n
i=1(2L + 2L + ai) = 2(2n + 1)L. In particular,

an arbitrary piece of flow needs exactly (2n + 1)L units of time to travel from s
to t and the corresponding path therefore induces a subset I ⊂ {1, . . . , n} with∑

i∈I ai = L.
So far we have shown that the problem under consideration is NP-hard in the weak

sense. Next we give a more involved reduction from the NP-complete Satisfiability
problem.

Satisfiability

Given: n Boolean variables z1, . . . , zn and m disjunctive clauses C1, . . . , Cm.

Question: Does there exist a truth-assignment which satisfies all
clauses?

The aim of the following reduction is to create a gap between those instances
of the flow problem corresponding to “yes”-instances of Satisfiability and those

3Notice that the functions τei and τēi are only given to derive the load-dependent functions τ̂ei
and τ̂ēi that are then actually used in our flow model.
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ē1

t

s

ē2

e2e1 e3

ē3

e4

ē4

a4a1 a2 a3

c1 c2

Fig. 3. Reduction of the problem Satisfiability to a flow-over-time problem with load-
dependent transit times. In the depicted example, the instance of Satisfiability contains four
variables z1, z2, z3, and z4 and two clauses C1 = (z1 ∨ ¬z2 ∨ z3) and C2 = (z2 ∨ ¬z3 ∨ ¬z4).

corresponding to “no”-instances. This gap then yields a nonapproximability result
for the flow problem under consideration.

For every variable zi of the Satisfiability instance, we introduce two outgoing
arcs ei and ēi from the source s and one ingoing arc ai to the sink t. Moreover, for
every clause Cj , there is an ingoing arc cj to the sink. There are additional arcs
from the head of ei and ēi to the tail of ai. Finally, for every variable zi occurring
unnegated (negated) in clauseCj , there is an arc from the head of ei (ēi) to the tail of cj .

An illustration of this construction is given in Figure 3. All arcs are uncapacitated
and have the following transit times (let 0 < ε * 1/(9m) be a small constant):

τei(x) := τēi(x) :=

{
1

1−x if x < 1,

∞ if x " 1,
τ̂ei(y) = τ̂ēi(y) = 1 + y,

τai(x) :=

{
2 if x ! 1/2,

∞ if x > 1/2,
τ̂ai(y) =

{
2 if y ! 1,

∞ if y > 1,

τcj (x) :=

{
3 if x ! ε/3,

∞ if x > ε/3,
τ̂cj (y) =

{
3 if y ! ε,

∞ if y > ε.

The transit times of all remaining arcs are fixed to 0.
Lemma 4.2. If the underlying instance of Satisfiability is a “yes”-instance,

then there exists a flow over time which sends n + εm units of flow from s to t in
time 4 + εm. However, if it is a “no”-instance, then every flow over time needs at
least 4 + 1/9 units of time.
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Proof. Given a satisfying truth-assignment for the underlying instance of Satis-
fiability, we construct a flow over time as follows. For every i = 1, . . . , n, if the
variable zi is set to true (false), then we route one unit of flow from s over ēi (ei)
and ai to t. Since this is the only flow routed across these arcs, it will arrive at t at
time 4.

For every clause Cj , j = 1, . . . ,m, we choose a literal $j which is set to true. If $j
is the unnegated (negated) variable zi, then we route ε units of flow from s over ei
(ēi) and cj to t. Since at most εm units of flow are routed across ei (ēi) and exactly ε
units of flow are routed across cj , this flow arrives at t not later than at time 4 + εm.
We have thus constructed a flow over time which sends n + εm units of flow from s
to t in time 4 + εm.

On the other hand, we have to show that the existence of a flow over time with
makespan less than 4 + 1/9 yields a satisfying truth-assignment for the underlying
instance of Satisfiability. We first claim that, in such a flow, exactly one unit of
flow is sent to t across arc ai, for every i = 1, . . . , n, and exactly ε units of flow are
sent over arc cj , for every j = 1, . . . ,m.

Notice that every unit of flow which is sent across ai enters this arc between
time 1 and 2 + 1/9. Since the transit time of ai is at least 2, these flow units can
simultaneously be found on the arc at time 2+1/9. The construction of τ̂ai yields that
the total amount of flow which is sent across ai is bounded by 1. A similar argument
shows that at most ε units of flow can be sent to t across arc cj , for every j = 1, . . . ,m.
Since exactly n + εm units of flow are sent from s to t, these bounds are tight which
proves the claim.

In what follows, we refer to the unit of flow sent across arc ai as commodity i.
For every i = 1, . . . , n, if at most one half of commodity i is sent across ei, we set
variable zi to true; otherwise, we set it to false.4 It remains to show that this is a
satisfying truth-assignment.

Consider some clause Cj and the flow which uses the corresponding arc cj ; we
refer to this flow as commodity j. Moreover, consider an arc e leaving the source s
which is used by commodity j. By construction of the network, e corresponds to a
literal (zi or ¬zi) of clause Cj . It therefore suffices to show that the amount of flow of
commodity i which is sent across arc e is less than 1/2. In this case, the corresponding
literal in clause Cj is set to true such that the clause is fulfilled.

Notice that in order to arrive in time at the sink t, all flow of commodity j using
arc e must arrive at the head of e before time 10/9. In particular, arc e must not be
congested too much in the time interval [0, 10/9); that is, the “speed” 1/τ̂e($e(θ)) has
to be large enough such that flow of commodity j can arrive at the head of e before
time 10/9. More formally, this implies the following condition on the load $e(θ) of
arc e:

∫ 10/9

0

1

τ̂e($e(θ))
dθ " 1.(10)

Notice that flow entering arc e at or after time 0 cannot arrive at the head of e before

time inf{ξ |
∫ ξ
0 1/τ̂e($e(θ)) dθ " 1}, by (3).

By contradiction, we assume that the amount d of flow of commodity i which is
sent across arc e is at least 1/2. In order to arrive in time at the sink t, all flow of

4In fact, as we will show below, we can assume that either ei or ēi carries strictly less than one
half unit of flow.
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commodity i using arc e must arrive at the head of e before time 19/9. This yields

∫ 19/9

0

$e,i(θ)

τ̂e($e(θ))
dθ " d,(11)

where $e,i(θ) denotes the load of commodity i on arc e at time θ (also compare (4)).
Since $e,i(θ) ! min{$e(θ), d}, for all θ, and d " 1/2, we get

∫ 19/9

10/9

$e,i(θ)

τ̂e($e(θ))
dθ !

∫ 19/9

10/9

$e,i(θ)

1 + $e,i(θ)
dθ !

∫ 19/9

10/9

d

1 + d
dθ =

d

1 + d
! 2d

3
.

The second inequality is based on the fact that the function ξ "→ ξ/(1 + ξ) is mono-
tonically increasing in the interval [0,∞).

Together with (11), this yields

∫ 10/9

0

$e,i(θ)

τ̂e($e(θ))
dθ " d

3
.(12)

Putting together (10) and (12), we get the following contradiction:

10

9
=

∫ 10/9

0

$e(θ)

τ̂e($e(θ))
dθ +

∫ 10/9

0

1

τ̂e($e(θ))
dθ

"
∫ 10/9

0

$e,i(θ)

τ̂e($e(θ))
dθ + 1 " d

3
+ 1 " 7

6
.

The first equality follows from the definition τ̂e($e(θ)) = 1+ $e(θ). This concludes the
proof.

As a consequence of Lemma 4.2 we get the following hardness result for the flow
problem under consideration.

Theorem 4.3. The problem of finding a quickest flow over time with load-
dependent transit times is strongly NP-hard and also APX-hard; i.e., there does not
exist a polynomial-time approximation scheme, unless P=NP.

Lemma 4.2 even yields a stronger nonapproximability result.
Corollary 4.4. There does not exist an approximation algorithm with perfor-

mance guarantee better than 37/36, unless P=NP.
Certainly, stronger bounds than the one stated in Corollary 4.4 can be obtained

using the same reduction with a more careful choice of the crucial parameters. How-
ever, we did not pursue this idea further.

Notice that the load-dependent transit times used for the hardness results in this
section and the negative results of the last section are artificial and probably not
very realistic. However, similar results can be obtained for more natural transit time
functions. Unfortunately, the analysis gets much more involved then.

5. Concluding remarks. The following interesting generalization of the quick-
est flow problem under consideration was pointed out by Lisa Fleischer (personal
communication, January 2002). There are k commodities i = 1, . . . , k, each given by
a source-sink pair (si, ti). The aim is to find a quickest multicommodity flow over
time such that the sum of the flow values of all commodities is at least D. The ap-
proximation result described in section 3 can be generalized directly to this setting;
the static flow problem stated at the beginning of section 3 is turned into a maxi-
mum multicommodity flow problem with cost bounded by D. The analysis remains
essentially unchanged.
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A problem closely related to the quickest flow problem is the maximum flow-over-
time problem with fixed time horizon T . Unfortunately, Corollary 3.4 does not yield
any useful result for this variant of the problem. On the other hand, the reduction from
the problem Partition in section 4 shows that the problem cannot be approximated
with performance guarantee strictly better than 1/2, unless P=NP.
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