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Abstract Since the seminal work of Ford and Fulkerson in the 1950s, network flow
theory is one of the most important and most active areas of research in combinatorial
optimization. Coming from the classical maximum flow problem, we introduce and
study an apparently basic but new flow problem that features a couple of interesting
peculiarities. We derive several results on the complexity and approximability of the
new problem. On the way we also discover two closely related basic covering and
packing problems that are of independent interest.

Starting from an LP formulation of the maximum s-t-flow problem in path vari-
ables, we introduce unit upper bounds on the amount of flow being sent along
each path. The resulting (fractional) flow problem is NP-hard; its integral version
is strongly NP-hard already on very simple classes of graphs. For the fractional
problem we present an FPTAS that is based on solving the k shortest paths prob-
lem iteratively. We show that the integral problem is hard to approximate and give
an interesting O(logm)-approximation algorithm, where m is the number of arcs in
the considered graph. For the multicommodity version of the problem there is an
O(
√

m)-approximation algorithm. We argue that this performance guarantee is best
possible, unless P = NP.
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1 Introduction

Problem definition and notation The classical maximum s-t-flow problem has been
studied from many different points of view. Numerous algorithms are known to solve
the problem in polynomial time (see, e.g., Ahuja et al. 1993; Schrijver 2003). Ford
and Fulkerson (1956) proved already in the 1950s that there always exists an integral
optimal solution to the maximum s-t-flow problem provided that all arc capacities
are integral. This follows for example from the fact that the constraint matrix of the
natural LP formulation in arc variables is totally unimodular. It is also well known
that any s-t-flow can be decomposed into flow along paths and cycles. Omitting flow
along cycles (which does not contribute to the flow value) yields an alternative LP
formulation of the problem in path variables.

In this paper we study a new network flow problem in which the flow on any path
is bounded by 1. In other words, we add box constraints to the LP formulation of the
maximum flow problem in path variables. We call the resulting problem the maximum
one-flow problem. Our motivation for studying this problem is mainly academic but,
from a more practical point of view, the problem is well motivated when we think
of applications in transportation or communication networks where every single path
might be unreliable. In such situations it is reasonable to diversify a commodity or
information among several different paths. This can be accomplished by forbidding
to send more than a fixed amount of flow along a single path.

A more formal definition of the problem is as follows: We are given a net-
work (digraph) D = (V ,A) with arc capacities u : A→ R+ and two distinguished
nodes s, t ∈ V . We assume that u(a) ≥ 1, for all a ∈ A. If not stated other-
wise, m := |A| denotes the number of arcs in the network. Let P be the set of simple
directed s-t-paths in D. Then the maximum one-flow problem (max-1FP) can be for-
mulated as follows, where the path variable xP denotes the amount of flow sent along
path P ∈ P :

max
∑

P∈P
xP

s.t.
∑

P%a

xP ≤ u(a) ∀a ∈A (1)

0≤ xP ≤ 1 ∀P ∈ P (2)

Notice that omitting the constraints xP ≤ 1 yields the classical maximum s-t-flow
problem. An s-t-flow fulfilling (1) and (2) is called a one-flow. In an integral one-
flow each s-t-path sends either 0 or 1 unit of flow. To emphasize that a certain one-
flow is not necessarily integral, we sometimes call it fractional. Note that in general
the encoding size of a maximum one-flow is not polynomial in the input size of
the problem since one might want to send flow along exponentially many s-t-paths.
Therefore, the best one can expect in terms of complexity are algorithms with running
time polynomially bounded in the input plus output size.
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We also consider the dual of the max-1FP which is given as follows:

min
∑

a∈A

u(a)ya +
∑

P∈P
zP

s.t. zP +
∑

a∈P

ya ≥ 1 ∀P ∈ P

zP , ya ≥ 0 ∀a ∈A, P ∈ P

The integer version of the dual can be interpreted as a special minimum cut problem,
where each s-t-path must be destroyed and this can be done by deleting either a
single arc on the path or the path itself. The deletion of an arc a is in general more
expensive than that of a whole path (u(a) instead of 1), but can also destroy more
than one path simultaneously. The dual separation problem of the classical maximum
s-t-flow problem is a shortest path problem. It is not difficult to observe that the dual
separation problem of the max-1FP can be solved by computing the k shortest s-t-
paths with respect to the dual arc lengths ya , where k is the number of paths P ∈ P
with zP > 0 plus 1. The k shortest paths problem also plays an important role in
solving the Lagrange relaxation of the max-1FP that is obtained by penalizing the
violation of capacity constraints (1) in the objective function. We discuss this issue in
more detail later on.

Related results from the literature To the best of our knowledge, the one-flow prob-
lem (1FP) is studied for the first time in this paper. But there is some literature dealing
with problems related to it. The problem to compute the number of different (simple)
s-t-paths in a network is a special case of the max-1FP. (Consider the case when all
arc capacities are infinite.) Valiant (1979) shows that this problem is #P-complete un-
der polynomial-time reductions. Some work has been done on counting the number
of paths in grids. E.g., Lucas (1983) shows the relationship between Pascal’s triangle
and the “space” grid or Gessel (1993) counts paths in the so called Young’s lattice.
More general results were, e.g., obtained by Bartholdi (1999) and Stanley (1996).

Similar to the problem of counting paths in a graph is the edge-disjoint paths
problem (EDP) which is the same as the integral multicommodity 1FP when we fix
all capacities in the considered network to 1. Kleinberg (1996) gives an extensive
overview of the EDP. Further interesting results were, e.g., obtained by Guruswami et
al. (1999). They prove that the maximum EDP is hard to approximate within a factor
O(m1/2−ε), for any ε > 0, and give an O(

√
m)-approximation algorithm. More re-

cent results for the EDP were, e.g., found by Andrews and Zhang (2007) or Chekuri
and Khanna (2007). Considering the EDP as a special packing problem, there are
more results by Baveja and Srinivasan (2000) and Kolliopoulos and Stein (2004).
Recently, Kolliopoulos (2007) presented an extensive survey on edge-disjoint paths.

Also for more general packing problems many results have been obtained dur-
ing the last years. Among the most interesting results for the present paper are the
ones obtained by Plotkin et al. (1995) who introduce new approximation algorithms
for the problem. Together with Grigoriadis and Khachiyan (1995a, 1995b, 1996a,
1996b), they adapt techniques for solving multicommodity flow problems (see, e.g.,
Shahrokhi and Matula 1990; Klein et al. 1994; Leighton et al. 1995; Garg and Köne-
mann 1998; Fleischer 2000) to a general class of packing and covering problems.
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Other results on mixed packing and covering problems were, e.g., obtained by Young
(2001).

In Martens and Skutella (2006) the authors have already considered a type of net-
work flow problems with path capacities. They study the k-splittable flow problem
with path capacities. Here the flow of any commodity is restricted to at most k paths
whose flow values may not exceed given bounds (capacities).

As mentioned above, the k shortest paths problem (for a single source and a sin-
gle sink) is of great interest for the problem considered in this paper. To solve the
Lagrange relaxation of the max-1FP that is obtained by penalizing the violation of
arc capacities in the objective function, we make use of a result by Lawler (1972)
who shows how to compute k shortest (simple) paths in O(kn3) time. This im-
proves the runtime of an algorithm by Yen (1971) by a factor n. Eppstein (1998)
considers the problem to compute k shortest s-t-paths allowing cycles and presents
an algorithm running in O(m + n logn + k) time. Fox (1975) presents a method
for the problem allowing cycles that is based on Dijkstra’s (1959) algorithm and
runs in O(m + kn logn) time. Using improvements in Dijkstra’s (1959) algorithm
the runtime in Lawler (1972) can be decreased to O(kn(m + n logn)). Dreyfus
(1969) and Eppstein (1998) also consider the problem to compute k shortest paths
(allowing cycles) from a given source to each other vertex. The running times
they obtain are O(kn2) and O(m + n logn + kn) respectively. Roditty (2007) pre-
sented an approximation algorithm that computes k simple paths from a source s

to a sink t such that the length of the ith path is at most 3/2 times the length
of the ith shortest simple s-t-path. This algorithm runs in O(k

√
n(m + n logn))

time.

Contribution of this paper As mentioned above, the problem of computing the num-
ber of different simple s-t-paths in a network is #P-complete and a special case of the
max-1FP. It therefore follows immediately that computing the maximum one-flow
value is NP-hard. This holds for the fractional as well as for the integral one-flow
problem. We prove that the integral max-1FP is strongly NP-hard already on very
simple acyclic networks consisting of a chain of parallel arcs. Even worse, the inte-
gral max-1FP is APX-hard, even in networks where the number of s-t-paths is poly-
nomially bounded in the size of the network. One interesting consequence of these
hardness results is the following: It is NP-hard to decide whether a given integral s-t-
flow has an integral path decomposition such that each path carries at most one unit
of flow.

In Sect. 2 we establish a close relation between two interesting new combinatorial
problems and the special case of the max-1FP on networks consisting of a chain of
parallel arcs. The first problem is to cover the edges of a complete graph by cuts of
bounded size where the size of a cut is the cardinality of the smaller of the two vertex
subsets. The second problem is a packing problem: Consider a set where each element
has a given integral weight and find a pre-specified number of different subsets such
that the number of subsets containing an element is bounded by the element’s weight.
The two problems are equivalent and, maybe surprisingly, strongly NP-hard. This
also yields the strong NP-hardness of the integral max-1FP on chains of parallel arcs.
To keep Sect. 2 well arranged, we present all NP-hardness results in Sect. 3. In Sect. 2,
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however, we also show that already on a chain of parallel arcs of length 3 the max-
1FP has an integrality gap. We also prove that it might happen that each arc in a
network carries an integral amount of flow in a maximum one-flow but no maximum
one-flow is integral.

In Sect. 4 we show that the approach of Plotkin et al. (1995) yields an FPTAS for
the fractional max-1FP. The core of the algorithm consists of iteratively solving k

shortest paths problems on the given network with varying arc lengths. In Sect. 5 we
derive several approximation algorithms for the integral max-1FP. Our main result is
a randomized approximation algorithm with performance ratio O(logm).

Finally, in Sect. 6 we study multicommodity versions of the one-flow problem. We
show that the FPTAS from Sect. 4 can be generalized to the fractional multicommod-
ity one-flow problem. For the integral maximum multicommodity one-flow problem
we present a randomized O(

√
m)-approximation algorithm and show that, unless

P = NP, no better approximation is possible. Moreover, we present an O(logm)-
approximation algorithm for the problem to find an integral multicommodity one-
flow with minimum congestion.

2 Interesting related problems

In this section we study the max-1FP on a restricted class of networks that are given
by chains of parallel arcs. In order to obtain a better understanding of the max-1FP
on this particular class of networks we consider two equivalent combinatorial op-
timization problems, one of which is a covering and the other a packing problem.
Although these two problems are easy to formulate and seem quite natural, they have
not appeared in the literature before to the best of our knowledge.

We consider networks that consist of n + 1 vertices v0, v1, . . . , vn and 2n arcs
(n ∈ N) such that there are two parallel arcs from vi−1 to vi , for i = 1, . . . , n. Ver-
tex v0 is the source and vn is the sink. We call one arc of each pair of parallel arcs
the upper and the other one the lower arc. All lower arcs have infinite capacity. The
capacity of the ith upper arc is ci ∈ N, for i = 1, . . . , n. We call such a capacitated
network a chain of parallel arcs; see Fig. 1 for an example.

An integral one-flow is given by a set of s-t-paths that are pairwise distinct. Notice
that two s-t-paths in the considered network are different if and only if there is a pair
of arcs where one path uses the upper arc and the other path uses the lower arc. In
particular, the ith pair of arcs can distinguish a subset of at most ci paths from all
other paths. This motivates the following problem.

Bounded Cut Cover Problem
GIVEN: k numbers c1, . . . , ck ∈N and a number q ∈N.
TASK: Find k subsets M1, . . . ,Mk ⊆ {1, . . . , q} with |Mi | ≤ ci , for i =
1, . . . , k, such that for any pair j, " ∈ {1, . . . , q} with j *= " there is some
i ∈ {1, . . . , k} with |Mi ∩ {j, "}| = 1; or decide that no such family of subsets
exists.

The name that we choose for this problem stems from the following graph-theoretic
interpretation: Consider a complete undirected graph with vertex set {1, . . . , q}. The
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Fig. 1 On the left: A chain of parallel arcs. All upper arcs have capacity 2 while the lower arcs have infinite
capacity. On the right: A solution to the bounded cut cover problem for q = 5, k = 3, and c1 = c2 = c3 = 2.
Every vertex of the bounded cut cover instance can be interpreted as an s-t -path in the chain of parallel
arcs carrying one unit of flow. The three cuts on the right, each of size 2, guarantee that on the left three
pairs of parallel arcs, with the upper arcs having capacity 2, suffice to route five units of flow feasibly:
Since every two vertices on the right are separated by cut(s), one can choose flow carrying paths on the left
such that every two paths differ at exactly those pairs of parallel arcs that correspond to the separating cuts

question is whether the edges of the complete graph can be covered by k cuts where,
for i = 1, . . . , k, the ith cut partitions the vertex set into two subsets the smaller of
which has cardinality at most ci . In Fig. 1 we give an example. The solution to the
instance of the bounded cut cover problem depicted there represents a one-flow of
value 5 in the corresponding chain of parallel arcs (also shown in Fig. 1).

Observation 2.1 The bounded cut cover problem has a solution if and only if there
exists an integral one-flow of value q in a chain of parallel arcs of length k where the
capacities of the upper arcs are c1, . . . , ck .

Next we consider the following fractional relaxation of the bounded cut cover
problem.

Fractional Bounded Cut Cover Problem
GIVEN: k numbers c1, . . . , ck ∈N and a number q ∈R+.
TASK: For some r ≥ q , find weights x1, . . . , xr ∈ [0,1] with

∑r
j=1 xj = q

and determine k subsets M1, . . . ,Mk ⊆ {1, . . . , r} with
∑

j∈Mi
xj ≤ ci , for i =

1, . . . , k, such that for any pair j, " ∈ {1, . . . , r} with j *= " there is some i ∈
{1, . . . , k} with |Mi ∩ {j, "}| = 1; or decide that this is not possible.

There is again a graph-theoretic interpretation of the problem. The task is to find a
complete graph with weights on the vertices such that the weight xi of every vertex i

is between 0 and 1 and the weights sum up to q . Moreover, the edges of the complete
graph must be covered by k cuts such that the ith cut partitions the vertex set into
two subsets the lighter of which has total weight at most ci . Associating the weighted
nodes of the complete graph with s-t-paths of corresponding flow value yields the
following observation.

Observation 2.2 The fractional bounded cut cover problem has a solution if and
only if there exists a (fractional) one-flow of value q in a chain of parallel arcs of
length k where the capacities of the upper arcs are c1, . . . , ck .
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It is natural to ask whether the fractional bounded cut cover problem allows for
larger values of q with feasible solutions than the non-fractional version. By Observa-
tions 2.1 and 2.2, this is equivalent to the question whether for chains of parallel arcs
there always exists a maximum one-flow that is integral. In the fractional bounded cut
cover problem the price of the additional degree of freedom given by the possibility
to assign fractional weights to the nodes is an increase in the number of nodes (since
the node weights still have to sum up to q). On the one hand, a larger number of
nodes makes it more difficult to cover all edges of the complete graph. On the other
hand, fractional weights on the vertices allow for more balanced cuts that contain
more edges. We show below that there exist instances with a larger feasible value
of q in the fractional version of the problem than in the integral version. Before we
discuss this issue in more detail, we present another equivalent packing problem.

In a chain of parallel arcs, every s-t-path is uniquely determined by the subset
of upper arcs contained in the path. Therefore, computing an integral one-flow of
value q corresponds to finding a family of q pairwise distinct subsets of {1, . . . , k}
such that i ∈ {1, . . . , k} is contained in at most ci of these subsets.

Capacitated Set Packing Problem
GIVEN: k numbers c1, . . . , ck ∈N and a number q ∈N.
TASK: Find q pairwise distinct subsets of {1, . . . , k} such that element i ∈
{1, . . . , k} is contained in at most ci of these subsets, for i = 1, . . . , k; or decide
that no such family of subsets exists.

We also consider the following fractional relaxation of the capacitated set packing
problem.

Fractional Capacitated Set Packing Problem
GIVEN: k numbers c1, . . . , ck ∈N and a number q ∈R+.
TASK: For some r ≥ q , find pairwise distinct subsets N1, . . . ,Nr of {1, . . . , k}
with weights x1, . . . , xr ∈ [0,1] such that

∑r
j=1 xj = q and

∑
j :i∈Nj

xj ≤ ci ,
for i = 1, . . . , k; or decide that this is not possible.

Observation 2.3 The (fractional) capacitated set packing problem has a solution if
and only if there exists an integral (fractional) one-flow of value q in a chain of par-
allel arcs of length k where the capacities of the upper arcs are c1, . . . , ck . In partic-
ular, the (fractional) capacitated set packing problem is equivalent to the (fractional)
bounded cut cover problem.

The following instance shows that the fractional capacitated set packing problem
in general allows for strictly larger values of q with feasible solutions than the non-
fractional version. Due to Observation 2.3, the same holds for the bounded cut cover
problem. Let k = 3 and c1 = c2 = c3 = 2. It is not difficult to check that q = 5 is the
largest value of q with a feasible solution to the non-fractional version of the problem:
Choose for example the subsets ∅, {1}, {2}, {3}, and {1,2,3}. However, there is a
solution to the fractional version of the problem with q = 5.5: Choose subsets ∅, {1},
{2}, and {3} all with weight 1. In addition choose subsets {1,2}, {1,3}, and {2,3} all
with weight 1/2. The corresponding instance of the max-1FP is depicted in Fig. 1.
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Observation 2.4 The instance of the max-1FP depicted in Fig. 1 has an integrality
gap of 11/10.

The instance depicted in Fig. 1 also shows that in general there is no integral opti-
mal solution to the dual problem of the max-1FP. An optimal dual solution destroys
the path using all lower arcs and half of each path that uses exactly one upper arc;
further, one half of each upper arc is deleted. The following result underlines the
discrepancy between the fractional and the integral one-flow problem even more.

Proposition 2.5 The existence of a maximum one-flow where the flow value on each
arc is integral does in general not imply the existence of an integral path decomposi-
tion where each path carries at most one unit of flow.

Proof We show that a one-flow sending an integral amount of flow along each arc is
not necessarily integral in the sense that each path routes either 0 or 1 unit of flow.
Figure 2 shows an instance of the max-1FP in which the maximum flow yields an
integral flow value on all arcs, although it is fractional. A similar network is used in
Baier et al. (2006) to prove the discrepancy of arc-wise and path-wise integrality for
the length-bounded flow problem.

The idea is to double the network in Fig. 1. Then we can send 5.5 units from s
to v along different paths on either chain of parallel arcs (see also the discussion
before Observation 2.4). These 11 units of flow are routed from v to t along the arc
of capacity 11. Another unit of flow can be gained by sending half a unit of flow
along each s-t-path using only arcs of capacity 4 from s to v plus the arc (v, t) of
capacity 1.

It remains to show that there does not exist an integral path decomposition of this
flow of value 12. In an integral path decomposition, all paths but one use the upper arc
(v, t) of capacity 11. By symmetry we can assume that the path containing the lower
arc (v, t) of capacity 1 uses the lower chain of parallel arcs from s to v. Thus there are
6 paths using the upper chain of parallel arcs from s to v and the upper arc (v, t) of
capacity 11. This yields a contradiction to the discussion before Observation 2.4. !

We conclude this section with an open problem. The instance of the capacitated
set packing problem discussed after Observation 2.3 has an additive integrality gap
of 1/2. Do there exist instances with additive integrality gap 1 or larger? This question
is also interesting in view of the Bounded Cut Cover Problem.

Fig. 2 A network with a
maximum one-flow that is
arcwise integral, but pathwise
fractional
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3 Hardness results

We first return to the capacitated set packing problem. In contrast to the classical set
packing problem and many similar problems known from the literature, the capaci-
tated set packing problem allows to choose arbitrary subsets, i.e., they do not have to
belong to a given family of subsets. This might make the problem seem to be easier.
However, we can prove the following somewhat surprising theorem.

Theorem 3.1 The capacitated set packing problem is strongly NP-hard. If q is poly-
nomially bounded in k, the problem is strongly NP-complete.

Proof We use the notion r-subset to describe a subset of cardinality r ∈N of a given
ground set.

To prove the NP-hardness of the capacitated set packing problem, we use a reduc-
tion of the strongly NP-complete 3-PARTITION problem.

3-PARTITION
GIVEN: An integer B ∈ N and k = 3" weights s1, . . . , sk ∈ N ∩ (B/4,B/2),
for some " ∈N, such that

∑k
i=1 si = "B .

TASK: Find a partition A1, . . . ,A" of {1, . . . , k} such that
∑

i∈Aj
si = B for all

j = 1, . . . , "; or decide that no such partition exists. (Note that |Aj | = 3, for all
j = 1, . . . , ", since si ∈ (B/4,B/2) for i = 1, . . . , k.)

Consider any instance of 3-PARTITION. We construct an instance of the ca-
pacitated set packing problem as follows. Let B<

3 contain exactly the 3-subsets of
{1, . . . , k} for which the elements’ weights sum up to less than B , i.e., B<

3 := {M ⊆
{1, . . . , k} | |M| = 3,

∑
i∈M si < B}. For i = 1, . . . , k, let B<

3 (i) be the sets in B<
3

that contain i. Then the capacity of i is given as ci := |B<
3 (i)| + k + 1. The integer q

is set to q := |B<
3 | +

(k
2

)
+ k + "+ 1.

Note that all numbers here are computable in time polynomial in the size of
the 3-PARTITION instance, since there are only

(k
3

)
= O(k3) different 3-subsets of

{1, . . . , k}. Further, all numbers ci and q are polynomial in k.
Now we show that a feasible partition for the instance of 3-PARTITION exists if

and only if there is a feasible family of subsets for the instance of the capacitated set
packing problem.

Let us start with the forward implication and assume that for the considered in-
stance of 3-PARTITION there is a feasible partition. Then we can choose q subsets
of {1, . . . , k} as follows. First choose the empty set, all 1-subsets, all 2-subsets, and
all sets in B<

3 . Further, choose the sets A1, . . . ,A" of a 3-Partition. Then we have a
total number of 1 + k +

(k
2

)
+ |B<

3 | + " = q subsets. Any i ∈ {1, . . . , k} appears in
1 + (k− 1)+|B<

3 (i)|+ 1 = ci of the chosen subsets. Thus, we have a feasible family
of subsets for the considered instance of the capacitated set packing problem.

Now let us turn to the backward implication and assume that for the constructed
instance of the capacitated set packing problem there exists a feasible family of sub-
sets. Then there exists a family S of q pairwise distinct subsets of {1, . . . , k} such that
each i ∈ {1, . . . , k} appears in at most ci of the subsets in S. We show by contradiction
that the empty set as well as all 1-subsets of {1, . . . , k}, all 2-subsets of {1, . . . , k}, and
all sets in B<

3 must be in S.
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1. ∅ ∈ S.
Assume that ∅ /∈ S. Since we have q subsets in S, it holds that

∑

M∈S

|M| ≥ k + 2
(

k

2

)
+ 3(|B<

3 | + "+ 1),

because the first sum is smallest, if we use all k of the 1-subsets of {1, . . . , k},
all

(k
2

)
of the 2-subsets of {1, . . . , k}, and no subsets of {1, . . . , k} with more than

three elements. From the group of 3-subsets we have to pick at least |B<
3 | + "+ 1

to end up with a total number of q subsets.
The total capacity of elements in {1, . . . , k} is

∑k
i=1 ci = 3|B<

3 |+2
(k

2

)
+2k which

is less than
∑

M∈S |M|—a contradiction.
2. All 1-subsets have to be in S.

Assume that there is a 1-subset which is not in S. By an argument analogous to
the one above, it follows that

∑

M∈S

|M| ≥ (k − 1) + 2
(

k

2

)
+ 3(|B<

3 | + "+ 1),

because the first sum is smallest, if we use the empty set, which does not appear in
the latter sum, the k− 1 remaining 1-subsets of {1, . . . , k}, all

(k
2

)
of the 2-subsets

of {1, . . . , k}, and no subsets of {1, . . . , k} with more than three elements.
Again the sum of elements used in total is larger than the total capacity of elements
in {1, . . . , k}.

3. All 2-subsets have to be in S.
Assume that there is a 2-subset which is not in S. Here it holds that

∑

M∈S

|M| ≥ k + 2
((

k

2

)
− 1

)
+ 3(|B<

3 | + "+ 1),

which is again larger than the total capacity of elements in {1, . . . , k}.
4. All sets in B<

3 have to be in S.
Assume that there are r ≥ 1 subsets in B<

3 \ S. To obtain a total number of q
subsets in S, the selection must contain r + " subsets of {1, . . . , k} whose respec-
tive sum of elements is greater or equal to B . Let the family of these subsets be
denoted by T .
Since we know that all 1-subsets of {1, . . . , k} and all 2-subsets of {1, . . . , k} are in
S, an element i ∈ {1, . . . , k} may be used by at most ci−1− (k−1) = |B<

3 (i)|+1
other subsets. The total weigth of elements that may be used is therefore at most

k∑

i=1

si(|B<
3 (i)| + 1) = "B +

k∑

i=1

si |B<
3 (i)| = "B +

∑

M∈B<
3

∑

i∈M
si .

The total weigth of elements that is needed by T and the |B<
3 |−r sets from B<

3 ∩S
is given by

∑

M∈T

∑

i∈M
si +

∑

M∈B<
3 ∩S

∑

i∈M
si .
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It follows that
∑

M∈T

∑

i∈M
si +

∑

M∈B<
3 ∩S

∑

i∈M
si ≤ "B +

∑

M∈B<
3

∑

i∈M
si .

This implies

("+ r)B ≤
∑

M∈T

∑

i∈M
si ≤ "B +

∑

M∈B<
3 \S

∑

i∈M
si < "B + rB,

which yields a contradiction.

Hence, we know that the empty set, all 1-subsets of {1, . . . , k}, all 2-subsets of
{1, . . . , k}, and all sets in B<

3 must be in S. Then, for each i ∈ {1, . . . , k}, we have a
remaining capacity of ci − 1− (k − 1)− |B<

3 (i)| = 1. Since S contains q subsets,
it uses q − 1− k −

(k
2

)
− |B<

3 | = " subsets in addition to the ones mentioned. These
subsets must be 3-subsets, since we have only 3" elements and all subsets with less
than three elements are already used. Thus, they form a partition of {1, . . . , k}. Fur-
ther, the respective sum of weigths of the elements in the subsets must be greater or
equal to B , since all sets in B<

3 are also already used. But now it follows immediately
that for each of these subsets its total sum equals B , because

∑k
i=1 si = "B and if

any subset had a total weigth of more than B , another subset would have to have one
of less than B .

These arguments show that for the considered instance of 3-PARTITION a feasible
partition exists if there is a feasible family of subsets for the constructed instance of
the capacitated set packing problem.

As already mentioned, in this reduction all numbers (in particular q) are polyno-
mial in k. This proves that the capacitated set packing problem is strongly NP-hard
even if q is polynomially bounded in k. For any instance to this restricted problem,
it can be checked in time polynomial in its encoding size whether a given family of
subsets is a solution for this instance. !

The following is an immediate implication of the reduction shown in the preceding
proof.

Corollary 3.2 For an integral one-flow given in arc variables, it is NP-hard to com-
pute an integral path decomposition.

A reduction to 3-SAT proves that the situation is even worse: The integral max-
1FP is APX-hard, even in networks where the number of s-t-paths is polynomially
bounded in the size of the network.

Theorem 3.3 The integral max-1FP is APX-hard, even if we restrict it to networks
in which the number of s-t-paths is polynomially bounded in the size of the network.
(Thus, unless P = NP, there does not exist a PTAS that runs in time polynomial in
input plus output size.)
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Proof We use a reduction of MAX 3SAT-3—a special version of MAX 3SAT. In
contrast to the usual 3SAT problem, MAX 3SAT-3 has the additional constraint on
the input that each variable appears in at most three clauses. MAX 3SAT-3 is APX-
hard (Papadimitriou 1994).

Let the considered 3SAT instance consist of clauses Ci , for i = 1, . . . ,m. We say
that a variable appears purely if it turns up unnegated. We assume that no variable
appears only in exactly one clause or appears either only purely or only negated. This
can be assumed without loss of generality, because the values of such variables can
be set in a preprocessing step.

The corresponding instance of the max-1FP is constructed as follows. First insert
a source s, a sink t , and nodes ci with arcs (s, ci) for all clauses Ci (i = 1, . . . ,m).
We need to distinguish three types of variables:

1. Variables that appear exactly twice, once purely and once negated.
2. Variables that appear purely once and negated twice.
3. Variables that appear purely twice and negated once.

For each variable of the first type we insert a node v, an arc (v, t) and arcs (ci, v) for
both i ∈ {1, . . . ,m} for which Ci contains the considered variable. In the following
let V1 be the set of nodes in the constructed graph resulting from these variables.

For each variable x of the second type we insert the following gadget (see also
Fig. 3): The gadget consists of six nodes v, v1, v2, v3, v4, and w and the arcs (v1, v2),
(v2, v3), (v3, v4), (v, v1), (v2, v), (v4, v), (w,v1), (w,v3), and (v4,w). It is connected
to s and t by the arcs (w, t) and (v, t), an arc (ci, v) for i ∈ {1, . . . ,m} for which
Ci contains x, and arcs (cj ,w) for both j ∈ {1, . . . ,m} for which Cj contains ¬x.
The described gadget is also denoted by the shortcut given in Fig. 3. The important
property of this gadget is that—given arc capacities equal to 1—it can either route
one unit of flow from v to w or one or two units of flow from w to v, but not both.

For each variable x of the third type we insert the same gadget as above, but
connect it to the rest of the network the other way around. For the clause Ci which
contains ¬x we insert an arc (ci, v), for the clauses Cj and Ck containing x we add
arcs (cj ,w) and (ck,w). Additionally, we add again arcs (w, t) and (v, t).

The arc capacities are given as follows: Each arc in a gadget and all arcs
(v, t), (ci, v) resulting from variables of the first type have capacity 1. All other arcs
(ci, v), (ci,w) have capacity 2 and all other arcs (v, t), (w, t) capacity 3. The capac-
ity of an arc (s, ci) equals the number of arcs of capacity 2 leaving ci plus 1. (See
Fig. 4 for an example of the reduction.)

Now let D = (V ,A) with capacities u : A→ R+ be the reduction network for
the considered instance C = ∧m

i=1 Ci of MAX 3SAT-3. Let C∗ be the set of clauses

Fig. 3 Gadget for the reduction
of 3SAT to max-1FP with
shortcut notation on the right
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Fig. 4 Reduction network for
the SAT-instance
(¬x1 ∨¬x2 ∨ x3)∧
(x1 ∨¬x2 ∨¬x3)∧ (x2 ∨ x3).
All arcs entering or leaving a
gadget are incident to the
corresponding v or w
respectively

that are satisfied in an optimal solution to this instance. Further, let L3 be the set of
variables that appear in C exactly three times.

Claim The value of a maximum integral one-flow in D with capacity function u is
exactly 3|L3| + |C∗|.

We first show that there exists an integral one-flow in D having value 3|L3|+|C∗|.
Assume that we have an assignment for the variables in C that satisfies the clauses
in C∗. Then send one unit of flow along each s-t-path not using arcs in a gadget or a
node in V1. This gives us 3|L3| units of flow, because for each variable x in L3 there
are exactly three s-t-paths using v and w in the gadget of x, but no arc of it. Due to
our construction of the gadgets we can additionally send one unit of flow for each
satisfied clause through the gadget (or the node from V1 respectively) that belongs to
one of the variables by which the clause is satisfied. Since this gives us another |C∗|
units of flow, it follows that there exists an integral one-flow of value 3|L3| + |C∗|.

It remains to show that there cannot be an integral one-flow of value greater than
3|L3| + |C∗|. Assume that we have an integral one-flow f of value 3|L3| + k, for
some k ∈ N. We show that then there must exist an assignment for the variables in
C such that at least k clauses of C are satisfied. We know that f can send at most
3|L3| units of flow that traverse neither a gadget nor a node from V1. This implies
immediately that at least k units of flow must be routed through gadgets or V1. It
remains to show that there are at least k clauses for which a unit of flow is routed
from its corresponding node to t by traversing a gadget or a node in V1. Then the
flow defines an assignment for the variables in C as follows: A variable is set TRUE
if the inflow in the corresponding gadget (or in the node from V1) comes from a clause
in which it appears purely and FALSE otherwise. The number of satisfied clauses is
then k.

If f routes at most one unit of flow for any clause from its corresponding node to
t by traversing a gadget or a node in V1, we are done. Thus, let us assume that there is
a clause for which f routes "≥ 2 units of flow in such a way. Due to the capacities of
the arcs (s, ci), for i = 1, . . . ,m, it follows that at most 3|L3| − ("− 1) units of flow
can be sent without using gadgets or V1, which means for the remaining clauses that
they must send k− 1 units of flow through gadgets or V1. By induction it follows that
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there must be at least k clauses for which at least one unit of flow is routed through a
gadget or V1.

Thus, we showed that the value of a maximum integral one-flow in D is at least
3|L3| + |C∗| and that for any integral one-flow of value 3|L3| + k we can find an
assignment for the variables in C such that k clauses in C are satisfied. This implies
that 3|L3| + |C∗| is the value of any maximum integral one-flow and thus proves the
claim.

Since the assignment of values to the variables in C can immediately be taken
from the computed one-flow (see above), it only remains to prove that the number
of paths in D is polynomially bounded in the size of D. Let X be the number of
variables in C, then this follows immediately from the fact that 10X yields an upper
bound for the number of paths in D. We can bound the number of paths in D by 10X,
because at each structure representing a clause (either a gadget or a node in V1) we
have at most three entering arcs. An arc entering a node in V1 results in only one path
to t . Arcs entering a node v of a gadget result in two paths to t—one through the
gadget and a “direct” one. And arcs entering a node w of a gadget result in four paths
to t—three through the gadget and a “direct” one. Since there is only one possibility
to reach either of the considered arcs from s and three arcs (only two of the same
type) enter a gadget, we have at most ten paths per variable. !

Note that it follows from the strong NP-hardness of the decision problem 3SAT-3
that it is even strongly NP-hard to compute only the value of a maximum integral
one-flow in networks. This result even holds if we restrict to networks in which the
number of s-t-paths is polynomially bounded in the size of the network.

As an immediate consequence of Theorem 3.1 we can state the following hardness
results.

Theorem 3.4

(i) The bounded cut cover problem is strongly NP-hard. If q is polynomially bounded
in k, then the problem is strongly NP-complete.

(ii) The problem of finding an integral one-flow of maximum value for a chain of
parallel arcs is strongly NP-hard, even if the maximum flow value is polynomially
bounded in the size of the network (i.e., number of vertices).

It follows that, in contrast to the problem to count the number of s-t-paths in
a digraph, the integral max-1FP is already strongly NP-hard in acyclic networks.
Further, the strong NP-hardness of the capacitated set packing problem immediately
implies that it is even strongly NP-hard to compute only the value of a maximum
integral one-flow in those networks. Note that in the integral one-flow problem the
flow value bounds the number of paths that are used to route a flow. Thus, we can
derive the following from Theorem 3.4(ii).

Corollary 3.5 Unless P = NP, there is no algorithm for the integral max-1FP on
chains of parallel arcs whose runtime is pseudo-polynomial in input plus output size.

Another consequence of our considerations made so far is the following.



286 J Comb Optim (2009) 18: 272–293

Theorem 3.6 It is NP-hard to decide whether a given (integral) s-t-flow can be de-
composed into integral flows along paths and cycles such that no path carries more
than one unit of flow.

4 An FPTAS for the fractional max-1FP

Theorem 4.1 For any ε > 0 and any instance of the max-1FP with maximum flow
value F ∗, it is possible to compute a one-flow of value (1− ε)F ∗ in time polynomial
in the input size, ε−1, and F ∗.

First we show how to compute a one-flow of a given value F that does not violate
any arc capacity by more than a factor (1+ ε), for some ε > 0, or decide that no valid
flow of value F exists. A flow violating all arc capacities by at most a factor (1 + ε)

is called (1 + ε)-approximate.
Plotkin et al. (1995) developed an appropriate algorithm for the general fractional

set packing problem. In that problem sets of capacitated elements are given and the
task is to search for a packing, i.e., a selection of sets such that each element is con-
tained in at most as many sets as its capacity permits. To compute (1+ε)-approximate
packings of a given size, Plotkin et al. use a Lagrange relaxation that penalizes the
violation of the capacity constraints in the objective function. Iteratively, they choose
reasonable Lagrange multipliers, compute a solution to the relaxed problem, and
combine this with the current solution. This algorithm runs in time polynomial in
the input size and ε−1.

The approach in Plotkin et al. (1995) can be adapted to the fractional 1FP. Details
about this can be found in Martens (2007). However, we also want to provide the
main ideas of the methods here: For given Lagrange multipliers λ : A→ R+ and
λP := ∑

a∈P λ(a) for all s-t-paths P ∈ P , the adjusted Lagrange relaxation is the
following.

min
∑

P∈P
λP xP

s.t.
∑

P∈P xP ≥ F

0≤ xP ≤ 1 ∀P ∈ P

This problem can be solved in time polynomial in the input size and 0F 1 by comput-
ing the 0F 1 shortest paths according to the length function λ (see, e.g., Lawler 1972).
The 2F 3 shortest paths must carry one unit of flow (xP = 1) and the (2F 3 + 1)-
shortest path gets a flow value of F − 2F 3.

We assume without loss of generality that ε < 1. To obtain a one-flow that obeys
all arc capacities and approximates the maximum flow value F ∗ within a factor
(1− ε), we embed the algorithm by Plotkin et al. in a binary search to find a value F̄

with F̄ ≤ F ∗ ≤ (1 + ε̃)F̄ , for ε̃ = (1− ε)−1/2 − 1. Then the desired flow is obtained
by computing a (1+ ε̃)-approximate one-flow of value F̄ and dividing all its flow val-
ues by (1 + ε̃). The resulting flow has value (1 + ε̃)−1F̄ ≥ (1 + ε̃)−2F ∗ = (1− ε)F ∗.
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The binary search works as follows. For increasing values " ∈ N (starting with
" = 0) we use the algorithm by Plotkin et al. to compute a 2-approximate one-flow
of value 2" or decide that no feasible one-flow of this value exists. We stop with the
first value "̄ for " for which the answer is that no feasible one-flow of value F̄ := 2"̄

exists. This takes O(logF ∗) steps. It follows that F̄ /4 ≤ F ∗ < F̄ . Using geometric
binary search now, we obtain F̄ with F̄ ≤ F ∗ ≤ (1 + ε̃)F̄ within O(log(1/ε̃)) =
O(log(1/ε)) steps. Thus, we have O(logF ∗ + log(1/ε)) steps in total.

The algorithm is polynomial in input plus output size and ε−1. Note that there are
O(logF ∗ + log(1/ε)) steps in which we compute an approximate one-flow. Comput-
ing 02"1 shortest paths takes O(F ∗) time in each step. And we need at least (1−ε)F ∗

paths to present a one-flow of value (1− ε)F ∗.

5 Approximating the integral max-1FP

We assume that all arc capacities are integral and start by proving that, for the integral
max-1FP, the additive integrality gap is at most m. This result follows from basic
linear programming theory.

Proposition 5.1 The difference of the value F ∗F of a maximum fractional one-flow
and the value F ∗I of a maximum integral one-flow is less than m.

Proof Consider an optimal basic solution x to the maximum one-flow LP given in
Sect. 1. Then x is a maximum fractional one-flow of value F ∗F . In a basic solution to
an LP, the number of constraints that are tight is at least equal to the dimension, i.e.,
the number of variables. Since there are m capacity constraints (1), at least |P | −m

constraints in (2) are tight. In particular, all but at most m paths P ∈ P carry zero or
one unit of flow. Removing the flow on those ≤m paths decreases the flow value by
less than m and thus yields an integral one-flow of value greater than F ∗F −m. !

Combining this result with the FPTAS from the previous section we can prove the
following in a similar manner.

Corollary 5.2 For any ε > 0, an integral one-flow of value at least (1− ε)F ∗F −m

can be computed in time polynomial in the input size and F ∗I .

Proof By Theorem 4.1 we can compute a fractional one-flow (x̄P )P∈P of value at
least (1− ε)F ∗F for some constant ε > 0 in time polynomial in the input size and F ∗F .
Using this flow we compute another one-flow of the same or larger value as follows.
Let P̄ := {P ∈ P | x̄P > 0} be the set of paths with positive flow values in x̄. Then
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the size of the system
∑

P∈P̄

xP ≥
∑

P∈P̄

x̄P

∑

P∈P̄ :
a∈P

xP ≤ u(a) ∀a ∈A

0≤ xP ≤ 1 ∀P ∈ P̄

is polynomial in the input size of the original problem and F ∗F . It follows that a basic
solution to this system can be computed in polynomial time. The flow value of this
solution is at least (1− ε)F ∗F . For the fractional part of this basic solution, we can
argue like in the proof of Proposition 5.1 that there are at most m paths carrying a
fractional amount of flow. (Note that all vectors now have an additional 1 in the first
entry.) Thus, we obtain an integral one-flow of value at least (1− ε)F ∗F −m when
dropping the fractional part of the considered basic solution. Since F ∗F ≤ F ∗I +m, the
described procedure can be implemented to run in time polynomial in the input size
and F ∗I . !

As an immediate consequence of Corollary 5.2, we obtain the following approxi-
mation result.

Theorem 5.3 There exists a constant factor approximation algorithm for the inte-
gral max-1FP with runtime polynomial in input plus output size when we restrict to
instances with maximum fractional flow value greater than or equal to some constant
c > 1 times its number of arcs.

In the remainder of this section we develop a randomized O(logm)-approximation
algorithm for the integral max-1FP that works for arbitrary instances. We start with a
simple observation.

Observation 5.4 Applying Raghavan and Thompson’s (1987) randomized rounding
method to a fractional solution computed by the FPTAS from Sect. 4, we obtain a
randomized constant factor approximation algorithm for the integral max-1FP if the
minimum arc capacity is at least $(logm).

The algorithm starts with an approximate fractional one-flow x and selects a
path P ∈ P for the integral one-flow with probability γ ·xP , for some constant γ < 1.
The resulting one-flow obeys arc capacities with some constant positive probability
that depends on the choice of γ . (The analysis is similar to the one given by Kleinberg
1996, more details can be found in Martens 2007.)

In order to obtain a randomized O(logm)-approximation algorithm for arbitrary
instances of the integral max-1FP, we compute an approximate maximum integral
one-flow in a modified network by giving a special treatment to arcs whose capacity is
smaller than logm. We call such arcs thin, whereas an arc with capacity at least logm
is called thick. A path is called thick if all its arcs are thick; otherwise it is called thin.
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For a given instance of the max-1FP, we compute an approximate solution to the
fractional problem using the FPTAS from Sect. 4 for some constant ε > 0. If the to-
tal flow value along thick paths is at least half of the total flow value (and thus at
least a constant fraction of the maximum integral flow value), we can use random-
ized rounding as explained above in order to obtain a constant factor approximation.
Otherwise we can use the algorithm described in the following which computes an
O(logm)-approximation from the flow that is routed along thin paths.

The algorithm works as follows. First we delete the flow routed along thick paths.
From now on we consider only the part of the underlying graph which is used by
thin paths. For each thin arc (v,w) insert a new node ṽ, delete the arc (v,w), insert
the arcs (v, ṽ) and (ṽ,w) and assign the capacity of (v,w) to either one. (The flow
is adjusted adequately using arcs (v, ṽ) and (ṽ,w) instead of (v,w).) The resulting
network is denoted by D = (V ,A), the set of newly inserted nodes by U ⊆ V . Next,
we make a copy D′ = (V ′,A′) of D. From each node in U we insert an arc to its
copy in D′. The resulting graph is denoted by D̄ = (V̄ , Ā).

We define v′ to be the clone of v ∈ V in V ′ and a′ to be the clone of a ∈A in A′.
An arc connecting a node u ∈ U with u′ ∈ V ′ is denoted by au. For any u ∈ U that
was inserted to divide an arc a of the original digraph, the capacity of au is set to be
the same as that of a.

We modify the considered fractional flow by rerouting all its paths from D to D′

along the last thin arc at which a rerouting is possible. More precisely, this works
as follows. Consider any path P that is used in the original fractional flow and let
(v,w) ∈ P be the last thin arc on P . (This arc does not exist in D.) Then the analogon
to P in D̄ uses the adjusted path P in D until it reaches v, then uses (v, ṽ) and is
rerouted to D′ along aṽ . In D′ the new path uses the arc from ṽ′ to w′ and then the arcs
corresponding to the ones P used in D after (v,w). (See Fig. 5 for an illustration.)

Let the resulting s-t ′-flow be denoted by x̄. Note that the value |x̄| of x̄ is still only
some constant factor smaller than the value of a maximum one-flow in the original
network. We choose integral capacities u(a) and u(a′) for a thick arc a ∈ A and its
clone a′ as follows. If 0x̄(a)1 + 0x̄(a′)1 is not larger than the original capacity of a,
we set u(a) = 0x̄(a)1 and u(a′) = 0x̄(a′)1. Otherwise, we choose the capacities by
rounding the smaller flow value up and the larger one down. (The sum of the resulting

Fig. 5 Rerouting of the original flow on the left in the 2-layer graph on the right. Gray arcs are not used
by the final flow
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values is not larger than the original capacity of a, because this was assumed to be
integral.) For all thin arcs a ∈ Ā, the capacity u(a) is set to 1. It is easy to prove that
u(a) > x̄(a)/ logm, for all a ∈ Ā.

Lemma 5.5 For each arc a ∈ Ā, it holds that u(a) > x̄(a)/ logm.

Proof First let a ∈A be a thick arc. If 0x̄(a)1+0x̄(a′)1 is not larger than the original
capacity of a, it obviously holds that u(a) ≥ x̄(a) and u(a′) ≥ x̄(a′). For the other
case, we assume without loss of generality that x̄(a)≤ x̄(a′). Then, u(a) = 0x̄(a)1 ≥
x̄(a) and u(a′) = 2x̄(a′)3 with x̄(a′) ≥ 1, because otherwise 0x̄(a)1 + 0x̄(a′)1 < 2
which is less than the original capacity of a. It follows that u(a′) > x̄(a′)/2.

Now let a ∈ Ā be a thin arc. Then, u(a) = 1 > x̄(a)/ logm, because the original
capacity of a was less than logm. !

It follows immediately that a(n ordinary) maximum s-t ′-flow in D̄ with capacities
u has flow value at least |x̄|/ logm, because x̄/ logm is a feasible s-t ′-flow in that
network. By network flow theory, an integral maximum s-t ′-flow can be computed in
polynomial time. Since the value of this flow is at least |x̄|/ logm, it is only by a factor
O(logm) smaller than the value of a maximum one-flow in the original network. If
we reroute this flow to D, i.e., do not let it pass over from D to D′ and let it use the
corresponding arcs in D instead, it is still feasible, because the sum of arc capacities
u(a) and u(a′) is at most the original capacity of a ∈ A. Further, the resulting flow
does not send more than one unit of flow along each path, because each path uses at
least one thin arc (otherwise it would not have been able to get from D to D′) whose
capacity is now 1. This gives us the following result.

Theorem 5.6 There exists a randomized O(logm)-approximation algorithm for the
integral max-1FP with runtime polynomial in input plus output size.

It follows immediately that the (multiplicative) integrality gap of the max-1FP is
O(logm), because we have always compared the value of our integral solution to that
of an optimal fractional solution.

6 Multicommodity one-flows

In this section we consider the multicommodity version of the one-flow problem in
that we have several source-sink-pairs. As before we have a digraph D = (V ,A) with
arc capacities u : A→R+. Instead of a single source-sink-pair we now have requests
(si , ti ) ∈ V × V for i = 1, . . . ,K , where K ∈ N denotes the total number of such
pairs. We also call (si , ti ) the ith commodity.

Different optimization problems for multicommodity flows have been considered
in the literature. Among them are the maximization of the total flow sent through
a network and the minimization of the congestion of a flow that satisfies a given
demand for each commodity. (The congestion measures the relative overload on an
arc—a detailed definition follows later.) We consider both such optimization prob-
lems in the context of one-flows and show for either one that the FPTAS from Sect. 4
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can be generalized to its needs. For the integral maximization problem we present an
O(
√

m)-approximation algorithm in Sect. 6.1. A result by Guruswami et al. (1999)
shows that it is NP-hard to approximate the problem within a factor O(m1/2−ε), for
any ε > 0. For the integral minimum congestion problem we present an O(logm)-
algorithm in Sect. 6.2.

In the following we use Pi to denote the set of si -ti -paths in D, for all i =
1, . . . ,K , and P := ⋃K

i=1 Pi .

6.1 Maximum multicommodity one-flows

With the definitions given above we can describe the maximum multicommodity one-
flow problem (max-mc-1FP) by the linear program in Sect. 1. Since solving the min-
cost LP from Sect. 4 can be adapted to the new situation easily by computing the 0F 1
shortest paths for each commodity and then choosing the 0F 1 overall shortest paths,
the FPTAS can be used for the max-mc-1FP without any changes.

Theorem 6.1 For any ε > 0 and any instance of the max-mc-1FP with maximum flow
value F ∗, it is possible to compute a multicommodity one-flow of value (1− ε)F ∗ in
time polynomial in the input size, ε−1, and F ∗.

We turn to integral multicommodity one-flows. A result by Guruswami et
al. (1999) shows that it is NP-hard to approximate the problem within a factor
O(m1/2−ε), for any ε > 0. On the other hand, randomized rounding yields an
O(
√

m)-approximation algorithm for the considered problem. This can be proven
using a more detailed analysis of the randomized rounding method given by Baveja
and Srinivasan (2000).

Theorem 6.2 There exists a randomized O(
√

m)-approximation algorithm for the
integral max-mc-1FP with runtime polynomial in input plus output size.

Even in the multicommodity case Proposition 5.1 holds. This gives us a constant
factor approximation algorithm with runtime polynomial in input plus output size
when we restrict the problem to instances with maximum fractional flow value greater
than or equal to some constant γ > 1 times the number of arcs.

6.2 Minimizing congestion

Here, each request (si , ti ) (i = 1, . . . ,K) has a corresponding positive demand di that
has to be satisfied by a one-flow. We look for a solution of minimum congestion. The
congestion of a flow (xP )P∈P is the minimum µ such that

∑
P%a xP ≤ µu(a), for all

a ∈A.
Again, the FPTAS from Sect. 4 can be adapted to the new situation. We obtain the

following result.

Theorem 6.3 For any ε > 0 and any instance of the min-cong-1FP with minimum
congestion µ∗, it is possible to compute a multicommodity one-flow of congestion at
most (1 + ε)µ∗ in time polynomial in the input size, ε−1, and dmax := maxi di .
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It remains to give an approximation for the integral min-cong-1FP. For this case
we again apply Raghavan and Thompson’s (1987) randomized rounding method to
an approximate optimal fractional solution and obtain an O(logm)-approximation
algorithm. In the congestion case we do not need any restrictions on the arc capac-
ities and the rounding can even be derandomized using the method of conditional
probabilities.

Theorem 6.4 Applying randomized rounding to a nearly optimal fractional one-flow
yields an O(logm)-approximation to the integral min-cong-1FP.
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