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ABSTRACT
In mechanical engineering, especially in metal sheet forming, the compensation of 
form  errors  caused  by  springback  is  usually  handled  by  numeric  simulation  or 
repeated refinement  of  a workpiece.  But since the simulation of  springback  can 
generally only approximate the real process, costly refinements cannot be avoided. 
Thus, different means of detecting and compensating deformations in manufactured 
workpieces at the earliest stage in the production chain are required to keep the 
manufacturing process as efficient  as possible.  A detailed analysis can assist  in 
generating  appropriate  rules  for  error  compensation  by  modifying  the  tool  or 
changing  relevant  process  parameters. This  article  presents  a  new  approach 
combining  traditional  methods  from  the  fields  of  production  and  discrete 
mathematics to locate and identify form errors.

KEYWORDS: form error, springback, CAD, best fit

1. INTRODUCTION

Free-form metal sheet forming often requires tools with high shape accuracy and long lifetime. 
Coated tools may meet these requirements but the design, manufacturing, and use of these 
tools pose a big challenge. On the one hand, processes in the manufacturing chain like milling, 
coating, or grinding may cause errors, which accumulate to a form error of the tool. On the 
other hand, springback in the forming process can cause strong deformations of the workpiece. 
The usual way to handle this problem is the trial-and-error  method,  in which the workpiece 
geometry is adapted to the target geometry. Thus, it is necessary to develop rules for an error 
compensation and an optimization of the whole manufacturing process. Thereby, the numerical 
simulation of the manufacturing processes can be used to remove the typical trial-and-error 
iterations  and reduce the manufacturing  costs.  The process  of  form  error  compensation  is 
shown in Figure 1. 

Figure 1: The process of form error compensation.

The analysis of the deformations and the generation of form error descriptions play a major role 
therein. To detect and describe the deformations, methods have to be found to compare the 



actual shape of the workpiece with the desired geometry. In this paper the common method of 
comparison by the global registration /1,2,3/ is presented as well a new approach using multiple 
local best fits.
The production setup consists of a CAD model in IGES-format and a manufactured component. 
The latter can be the result  of  a production process like deep drawing or milling.  It  is then 
scanned by a tactile or an optical scanning device like a laser scanner. A generic and always 
available output of the scanning process is a point set.  In most cases it is also possible to 
obtain  a  triangulation  from  the  scanning  device  although  this  depends  on  the  particular 
commercial software, which is provided with the scanning device. However, in the presence of 
undercuts, it is impossible to generate a triangulation at all. Thus, the main focus will be on 
point  sets  as  input  data  for  the  deformation  analysis,  but  we will  also  discuss  the  use  of 
triangulations where appropriate.
In section 2 the pre-processing of the model and the digitized data is discussed, followed by a 
description of the applied global best-fit algorithms in the next section. However, the output of 
these algorithms is only the first step required in the analysis of the form error. Thus, a new 
approach of local best fits is described in section 4, and the construction of a deformation field 
is detailed in section 5. Finally, the article ends with a discussion of remaining questions.

2. PRE-PROCESSING 

Before the start of the discussion of the data reduction, it should be noted that most best-fit 
algorithms are working on two point sets, and it is required to extract the shape points from the 
given CAD model. This can be achieved by scanning the individual surfaces evenly. Depending 
on the accuracy of the scanning process, the digitized data volume can be very large. This may 
pose a problem for the algorithms used for the analysis of the form with regard to running time 
or memory resources. Thus, the data needs to be prepared for further processing, i.e., it has to 
be reduced without losing relevant information. 
In case of a triangulation as input data, a mesh reduction /4/ can be used to reduce the size of 
the  data  set  without  losing  too  much  curvature  information.  The  user  specifies  a  level  of 
approximation to the original geometry by setting up a decimation criterion. A common criterion 
is the distance of a vertex to its average plane, which is defined by the adjacent vertices. The 
average plane of a point set has the least square distance to all points from the set and can be 
calculated by the least square method /5/.  Vertices with a smaller distance than the preset 
threshold are deleted in conjunction with their adjacent triangles followed by a re-triangulation to 
fill the resulting hole /6/. In the reduced mesh, planes and smooth areas consist of only large 
triangles and a small  number of  points,  whereas regions of  high curvature consist  of  many 
small  triangles  and  a  large  number  of  data  points.  By  imposing  restrictions  on  boundary 
vertices, the output of the mesh reduction comprises a data set with vertices along the contour 
of the object and points within the characteristic, curved areas of the shape. 
However,  a problem,  which may occur,  is  the poor  quality  of  the initial  triangulation mesh. 
Depending  on the triangulation method /7/  used by the scanner  software  or  by a software 
working directly on point clouds, long and narrow triangles might be generated in regions where 
the  shape has  a  sharp  edge.  This  could  result  in  a  poor  reduction  because the  proximity 
information is not correct. Thus, the mesh has to be optimized in such critical areas by a re-
triangulation before the reduction can be applied. The triangulation of points and a subsequent 
mesh optimization are quite expensive in terms of computation time. Therefore, an alternative 
reduction method, which is working directly on the point set, is used.
If  the point clouds are to be reduced using this type of reduction, a method to extract these 
important points has to be developed since a simple point set contains less information about 
the shape than a triangulation. It lacks the necessary information about the shape contour as 
well as the proximity relation between points and the normal vectors across the shape, which 
are required for  a computation of  the curvature information in the decimation process.  The 
normal vector and the curvature at each point have to be calculated before the reduction can be 
applied to a point  set.  The normal  vector  of  a point  can be set  to the normal  vector  of  its 
average plane, which is determined by the points from the proximity where the proximity of a 



point can be defined by a fixed number of  nearest  neighbors or by the radius of  a sphere 
around the point.
Next, the curvature of the points is calculated and every point, whose curvature is smaller than 
a  fixed value  minC,  which can  be set  by the  user,  is  removed.  Since the  exact  curvature 
calculation for discrete points is impossible, an approximate measure C(p) for the curvature of a 
point p is defined:

∑
−

= +
×=

1

0 1
1)(

m

i i

i

q
qn

m
pC ,

where n is the normal vector of p, qi is the normalized vector from p to its i-th neighbor and m is 
the size of the neighborhood of  p. It is difficult to choose the right value for  m since for small 
values there may not be enough points for a proper approximation whereas for big values the 
sphere of influence may be too large, and, therefore, the calculation imprecise. Thus, m can be 
set to a fixed value, e.g., 10, or a fixed radius can be set for the sphere of proximity. In the 
second case, the radius must be selected in such a way that the neighborhood of each point 
contains at least 3 neighbors. The result of a reduction with minimal curvature minC=0.015 is 
shown in Figure 2.

(a) original points (b) points with high curvature

Figure 2: Point reduction via curvature computation.

This method is working very efficiently because a special data structure can be used for the 
nearest-neighbor search. Geometry libraries like the Visualizations Tool Kit (VTK1) or CGAL2 

provide the required structure, e.g., an octree or grid structure, which allows fast initialization 
and access.  
A  disadvantage  of  the  latter  reduction  method  is  that  all  points  from the  plane areas  and 
boundaries  might  be removed and,  thus,  some shape details  might  be lost  resulting  in an 
inexact  comparison  of  those  shapes.  Another  problem  are  the  deformations  of the 
manufactured workpiece and the output of scanning devices, which can be noisy or suffer from 
a lack of density. Both cases impede a comparable reduction of model and digitized data. Thus, 
another method is used in addition to the one described, which samples points from both data 
sets with a similar density across the whole shape to obtain similarly reduced data sets. This is 
also necessary for the computation of the deformation field, which is discussed in section 5. 
The approach used is the following: either a user-defined amount of points from both data sets 
or a user-defined threshold for the maximal distance a removed point should have to a point, 
which is kept in the reduced data set, can be chosen. This notion is captured by a problem 
known in discrete mathematics as the  k-Center problem. The problem can be conceived as 
finding the best place for a preset number of fire brigades such that every house in a city can 
be reached as fast as possible.
Consider a point set P with points from 3R  for each pair of points (p,q) from P, their distance d 
can be computed using the Euclidean distance. The goal is to find a subset  C of  P of size k, 
such  that  the  maximal  distance w is  minimized,  i.e.,  ( )cpdw cp ,minmax CP ∈∈= , which  is 

1 http://www.vtk.org/
2 http://www.cgal.org/



obtained by measuring the distance each point p from P has to its nearest center c from C and 
taking the maximum over all these distances.
For the computation of  the centers,  a simple method called Plesnik's  algorithm /8/  is used, 
which will iteratively add points to the set of centers C until the preset number k is reached. In 
each iteration the algorithm adds the point to the output data set which is farthest to the last-
added point, starting with an arbitrary point. After the algorithm has terminated, the weight w is 
known, which gives the maximal distance a point P∈p  has to its nearest center  C∈c . The 
algorithm can be adapted to the case that a user sets the weight w as a threshold. In that case, 
the algorithm starts with an arbitrary point and adds the point farthest to the last point added to 
C as long as the current distance does not fall below the given threshold. The output of both 
variants is a subset C of points from the original set P, which is used as the reduced data set.

(a) data points      (b) model points

Figure 3: K-Center reduction applied to the profile with weight 10.

For  the  computation  of  the  deformation  field  as  described  in  section  5,  the  k-Center 
computation is used with a preset threshold w for  both, model and digitized data (compare 
Figure 3 for an example with weight 10). The model point input consists of 16,230 points and is 
reduced to 594 points whereas the digitized data consists of 25,406 points and is reduced to 
604 points. If the number of neighbors within distance w is counted for each of the remaining 
neighbors, it can be observed that the algorithm creates a similar point distribution in both sets, 
compare  Figure  4.  The  difference  between  both  sets  results  from  the  fact  that  the 
manufactured workpiece might consist of some additional material from the specific production 
process. This means that the size of the reduced data set differs.

Figure 4: Histogram of the k-Center reduction with weight 10 applied.



Although  this  reduction  does not  use information  about  the  implicitly  underlying  surface  or 
additional information about other characteristic areas, the algorithm is successful in solving the 
correspondence problem described in section 5. Additionally, it can be easily combined with any 
other reduction technique by providing a base sample of points from the input to which more 
specialized information can then be added.

3. GLOBAL REGISTRATION

The global registration (best fit) is the first step in the comparison of the digitized data with the 
CAD model.  At  this  point,  both  data  sets  have to  be  transformed  to  the  same coordinate 
system, and the best alignment between model and data has to be found. This problem poses 
a great challenge, especially in case of deformed objects. This means that the digitized shape 
differs from the target geometrical shape given by the CAD model, and it is thus very difficult to 
find the optimal  alignment.  As a first  step a transformation for  the digitized data has to be 
calculated, which minimizes the error metric based on the distance between data and model. 
Given a mapping between points of model and date, the average square distance E between 
two point clouds P and Q can be defined as the normalized sum of square distances between 
corresponding points (Euclidian metric):
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where n is the number of corresponding pairs and (pi,qi) is the i-th pair.
Thus, the first goal is to find the corresponding point in the model for every data point. The 
usual way is the mapping of each data point to its closest model point. In the next step, for a 
given set of corresponding points a rigid transformation can be computed, which minimizes the 
distance between the shapes with respect to the error metric.  This popular algorithm is also 
known as ICP algorithm (Iterative Closest Point) /1,2/. It is an iterative process, which exhibits 
linear  convergence  in  the  general  case  /9/.  The  termination  condition  can  be  given  by  a 
convergence criterion like the error or an error reduction, or by the number of iterations. There 
are two types of ICP. The fist  version uses the point-to-point metric of Besl and McKay /1/, 
which minimizes the Euclidian distance between corresponding points. The other version is the 
point-to-plane ICP,  which uses the  metric  of  Chen and Medioni  /2/  based on the  distance 
between a point and the tangential plane of the corresponding point.
The  disadvantage  of  the  ICP  is  that  it  does  not  guarantee  to  find  the  global  optimum. 
Depending on the initial position, the ICP may only find a local optimum. Therefore, it is only 
useful if the data is already close to the model. This is generally not the case and, thus, it is 
necessary to first move the data close to the model, i.e., find a good initial alignment. For this 
purpose an algorithm is used, which is based on the principal component analysis (PCA) /10/. 
The main principle of this method is to transform the data so that the principal components and 
the centroids of both shapes correspond. To calculate the principal components of a 3D point 
cloud,  the  shape  first  has  to  be  translated  to  the  origin.  The  principal  components  of  the 
centered point cloud are the eigenvectors of the covariance matrix  C=AAT.  A is a 3×n-matrix, 
where n is the number of points, and the i-th column vector contains the coordinates of the i-th 
point. The covariance matrix C is a symmetric, positive definite 3×3-matrix and the eigenvectors 
can be easily calculated by the Jacobi-Davidson method /11/.
Let P and Q be 3×3-matrices, which contain the coordinates of the principal components of the 
data and the model, respectively. The rotation R, which transforms P into Q, can be calculated 
by using  R*P=Q and  R=Q*P-1 since  P and  Q are orthogonal. Thus, the data is rotated by  R 
followed by translating it to the centroid of the model. The results of this transformation are 
shown in Figure 5. 



Figure 5: Result of registration based on principal component analysis.

The  distance  between data  and model,  i.e.,  the  error,  is  given by the  point-to-point  metric 
defined in equation (1). In this example, it was reduced from 417.951 to 36.289366. After this, 
10 iterations of point-to-point ICP are used to improve the alignments. The final result of the 
global registration is shown in Figure 6a. 

(a) (b)

Figure 6: Final result of the global registration and analysis of the error reduction.

The progression of the error reduction is shown in Figure 6b. The quotient E(i)/E(i-1) is close to 
1.0 starting with the second iteration, i.e.,  there were no relevant changes during the last 8 
iterations and so the error did not improve. Due to strong deformations of the workpiece, it is 
difficult to find a better registration, which minimizes the distance E defined in (1). In this case it 
is also exceedingly difficult to compare both shapes and to classify the deformations. From the 
error  and the computed transformation,  it  could be deduced that  the whole workpiece was 
deformed. In fact, the cause for the deformations in this example is a bending at the rounded 
edges. Thus, some subareas of the workpiece are rotated, and it is impossible to fit  all the 
subsets of data at the same time. The global registration minimizes the total error between the 
entire shapes, and this can entail that the corresponding subareas cannot be matched even 
though the local deformations of these areas are not strong. In this case, we obtain no relevant 
information about the cause for the form error.
If the springback is not strong, the global best fit is more successful and simple form errors like 
overmeasure can be deduced from the following visualization: the distance of data points to the 
model can be encoded by color. Thus, points, which are located below or above the model, 
become visible. Therefore, it can be deduced that there are deformations in the colored areas. 
An  example  of  such  deformations  is  shown  in  Figure  7.  The  transformation  of  data  was 
calculated by principal component analysis followed by 40 iterations of ICP. The progression of 
the error  reduction is also shown in Figure 7.  To get  more information about the kind and 
measure  of  deformation,  the  technique  of  multiple  local  best  fits  is  used,  which  will  be 
introduced in next section.



Figure 7: Global registration and coloring of the points with respect to distance.

4. LOCAL REGISTRATION

The  results  of  the  global  registration  cannot  always  be  used  to  detect  and  describe  the 
deformations of a workpiece. Especially in case of strong deformations, it is impossible to align 
all subareas of the data to corresponding subareas of the model by using the ICP technique of 
nearest neighbours. Thus, this matching delivers no information about the kind of deformation, 
but rather a measure of the form deviation. Nevertheless, the global registration transforms the 
data as close to the model as possible and establishes a good basis for further analysis. 
In the next step, subareas of the workpiece are analyzed in order to get more information about 
local deformations in these areas and relative transformations between adjacent subareas. The 
user is able to select a subset of data points and fit these points locally to the model by using 
the ICP algorithm. Thus, the local registration computes a transformation, which minimizes the 
distance between a selected subset of the data and the entire model. The advantage of this 
method is that the subset will be fit to the model in the best possible way without considering 
the alignment of other data parts.  Thus, local deformations inside the subareas will become 
apparent. 
The described method can be used to detect the rotation or bending between two subsets of 
the workpiece. Let A and B be two adjacent subsets of data (see Figure 8). The angle between 
these  subsets  in  the  model  is  90°.  Now,  the  corresponding  angle  in  the  data  shall  be 
determined, i.e., the rotation axis and rotation angle of one subset relative to the other shall be 
calculated. First,  A is fitted into model. In  Figure 8a, it can be seen that there are no strong 
deformations in this part  and the match is almost exact. In the next step, a best fit  for  the 
subset B is computed (see Figure 8b), which also fits well into the model. The local errors for 
the subareas  A and  B are 1.9724 and 2.42,  respectively. The rotation matrix  R of  the last 
transformation (from a to b)  describes the displacement  of  B relative to  A.  The eigenvalue 
decomposition of  R yields the rotation axis  v.  It  is the eigenvector to the eigenvalue of  1.0. 
Since R is a rotation matrix, it has always only the one eigenvalue of 1.0.  The rotation angle α 
is given by:
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where w is a vector perpendicular to the rotation axis and ,  denotes the scalar product of two 
vectors.



(a) best fit in subarea A (b) best fit in subarea B

Figure 8: Local best fits.

In Figure 8 the rotation from (a) to (b) is given by the rotation axis v=( -0.2614, 0.1958, 0.9452) 
and the angle α=8.8448°, which means that the angle between the subsets A and B in the data 
is 8.8448° smaller then in the model. Similarly, the other subset can be tested for the relative 
rotations. A disadvantage of this method is that the user has to select the subsets manually, 
and it is not necessarily evident which subset should be selected. But the global registration 
and coloring of the data points according to the distance to the model may ease the selection of 
subsets. With local best fits, the local deformations in discrete subareas can be analyzed more 
precisely. The correspondences computed by the local best fits are also more precise than the 
ones  obtained  by  global  registration.  The  improved  mapping  can  be  used  to  set  up  a 
deformation  field  across  the  model,  which  describes  the  workpiece  deformation.  This  is 
presented in the next section.

5. DEFORMATION FIELD 

The deformation field is a common method to describe the deformations of a workpiece. It is 
composed of a set of vectors across the model shape, which represents the transformations of 
discrete model points. The information gained from this can be used to change parameters of a 
numerical simulation or to adapt the NC program of a milling process. The field can be built up 
by the correspondences of the best-fit algorithms. In the presented case the alignments of the 
last ICP iteration from the global registration are used. But since the ICP assigns a point on the 
model shape with the smallest distance to every data point, it cannot be guaranteed that the 
entire model shape will be covered by this deformation field. In Figure 9a it can be seen that 
there are subareas on the model with undefined deformation vectors. 

(a) (b)

Figure 9:  Nearest-Neighbour  matching (a) and matching by the bipartite  weighted matching 
method (b) applied to the profile.

This problem can in general not be avoided although it is possible to obtain a complete cover of 
the model by assigning each sampling point of the model to its nearest neighbor from the data. 
However,  the  correspondences  could  be  incorrect  and  some  points  of  the  data  are  not 
matched. The computation of the correspondence pairs by the nearest-neighbor relation is, due 
to  its  greedy nature of  taking the nearest  neighbor,  not  capable to  match points on edges 
correctly.



One  possibility  is  to  use  the  information  from  the  local  best  fits.  The  mapping  of  the 
corresponding points, which is calculated for the subareas, is more exact than the mapping 
obtained by global registration. Therefore, these local sets of correspondences are combined 
into  one  total  set.  For  the  areas  of  the  model  shape  between  the  subareas,  the 
correspondences can be interpolated. The disadvantage of this method is that it is a manual 
and very complex procedure. Furthermore, the interpolation may also cause errors.
In general, the goal is a computation of the correspondence pairs such as to establish a one-to-
one relation between points from both data sets. Thus, a method is needed, which can take all 
such pairs into account at the same time and choose the best global matching as opposed to a 
successive pairing with the nearest-neighbor method.
Such an approach is known as weighted bipartite matching in discrete mathematics. Given two 
point sets  P and  Q,  with the size of  P being less or equal to the size of  Q.  The  distances 
between  every  two  points  from  these  sets  are  known  and  in  this  case  are  given  as  the 
Euclidean distance. The goal is to find a one-to-one mapping from the points in P to points in Q 
such that each point from P has a neighbor and each point from Q has at most one neighbor 
from the  point  set  P.  Among  all  possible  bipartite  matchings,  the  cheapest  one should be 
computed, i.e., the one which minimizes the sum of squared Euclidean distances:
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where for a given point pi point qi is the corresponding point from Q given by the matching. An 
implementation from the LEDA library /12/ was used for the presented computations.
The algorithm is used only after both data sets have been reduced by the k-Center method with 
a specific weight set by the user. It is important that the data points follow a similar distribution 
since this gives the necessary constraints over the entire shape. This allows mapping features 
like edges correctly. If one data set is much larger than the other set, the computation of the 
cheapest weighted bipartite matching resembles the nearest-neighbor computation, which does 
not always work. In  Figure 9 a correspondence computation by the nearest-neighbor and the 
weighted bipartite matching is shown. In order to better illustrate the success, two-dimensional 
data instead of three-dimensional data is used. The result of the weighted bipartite matching 
approach applied to the profile data sets, which have been reduced by the k-Center algorithm 
with weight 10, is presented in Figure 10.

Figure 10: Correspondences computed by a bipartite weighted matching algorithm.

The bending-up deformation is visualized by the correspondence relation, which is computed by 
the weighted bipartite matching. Moreover, points located on the edges of both sets have been 
correctly matched to each other.  With this approach,  it  is also possible to perform a visual 
deformation  analysis,  as  has  been  shown in  section  3  and  Figure  7.  A  more  automated 
deformation analysis is obviously needed, which will be discussed in the final section of this 
article.

6. CONCLUSIONS AND OUTLOOK



In this article a new approach for the analysis of the deformation of manufactured workpieces 
has been described. The approach consists of several steps ranging from a pre-processing of 
the data and using a global best fit for an initial alignment to the application of multiple local 
best fits and the computation of a deformation field. Ideas from computer graphics and discrete 
mathematics  are  brought  together  in  the  preprocessing  step  and  for  the  computation  of  a 
deformation field. Especially the idea to compute an improved deformation field has proven to 
be very successful for mapping features between the digitized data and the model. Moreover, 
the use of multiple local best fits for the deformation analysis has never been tried before. It 
was possible to successfully derive the local bending-up of the profile.
However, several open issues remain.  The possibility to apply multiple local best fits  to the 
workpiece, which has been used in Section 4, shows that it is possible to gain new information 
on the deformations in an automated computation step. Although the automation of the analysis 
has not  yet been obtained with the weighted bipartite matching approach from section 4,  it 
should  be  possible  to  automate  the  computation  of  multiple  local  best  fits  by  using  the 
information gained from the deformation field. This step will then lead directly to an approach 
for the automated analysis of deformations of a workpiece. Another open issue, which remains, 
is the exploitation of triangulations in the deformation analysis. This approach will open up new 
possibilities to compute a global best fit on the one hand. On the other hand it will help with the 
segmentation  of  the digitized data into components that  can be mapped to features  in the 
model. This in turn will lead to new methods of a deformation analysis.
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