
SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1600–1630

QUICKEST FLOWS OVER TIME∗

LISA FLEISCHER† AND MARTIN SKUTELLA‡

Abstract. Flows over time (also called dynamic flows) generalize standard network flows by
introducing an element of time. They naturally model problems where travel and transmission are
not instantaneous. Traditionally, flows over time are solved in time-expanded networks that contain
one copy of the original network for each discrete time step. While this method makes available
the whole algorithmic toolbox developed for static flows, its main and often fatal drawback is the
enormous size of the time-expanded network. We present several approaches for coping with this diffi-
culty. First, inspired by the work of Ford and Fulkerson on maximal s-t-flows over time (or “maximal
dynamic s-t-flows”), we show that static length-bounded flows lead to provably good multicommodity
flows over time. Second, we investigate “condensed” time-expanded networks which rely on a rougher
discretization of time. We prove that a solution of arbitrary precision can be computed in polyno-
mial time through an appropriate discretization leading to a condensed time-expanded network of
polynomial size. In particular, our approach yields fully polynomial-time approximation schemes for
the NP-hard quickest min-cost and multicommodity flow problems. For single commodity problems,
we show that storage of flow at intermediate nodes is unnecessary, and our approximation schemes
do not use any.

Key words. network flows, flows over time, dynamic flows, quickest flows, earliest arrival flows,
approximation algorithms

AMS subject classifications. 90B06, 90B10, 90B20, 90C27, 90C35, 90C59, 68Q25, 68W25

DOI. 10.1137/S0097539703427215

1. Introduction. While standard network flows are useful to model a variety of
optimization problems, they fail to capture a crucial element of many routing prob-
lems: routing occurs over time. In their seminal paper on the subject, Ford and
Fulkerson [12, 13] introduced flows with transit times to remedy this and described a
polynomial-time algorithm to solve the maximum flow over time, also called the max-
imum dynamic flow problem.1 In addition to the normal input for classical network
flow problems, each arc also has a transit time. The transit time is the amount of

∗Received by the editors May 7, 2003; accepted for publication (in revised form) July 21, 2006;
published electronically February 20, 2007. Different parts of this work have appeared in a prelimi-
nary form in The quickest multicommodity flow problem, in Integer Programming and Combinatorial
Optimization, Lecture Notes in Comput. Sci. 2337, W. J. Cook and A. S. Schulz, eds., Springer,
Berlin, 2002, pp. 36–53, and in Minimum cost flows over time without intermediate storage, in Pro-
ceedings of the 14th Annual ACM–SIAM Symposium on Discrete Algorithms, Baltimore, MD, 2003,
pp. 66–75.

http://www.siam.org/journals/sicomp/36-6/42721.html
†Department of Computer Science, 6211 Sudikoff, Dartmouth College, Hanover, NH 03755 (lkf@

cs.dartmouth.edu). The work of this author was supported in part by IBM and by the NSF through
grants CCR-0049071 and INT-8902663.

‡Universität Dortmund, Fachbereich Mathematik, 44221 Dortmund, Germany (martin.skutella@
uni-dortmund.de). The work of this author was supported in part by the EU Thematic Networks
APPOL I+II, Approximation and Online Algorithms, IST-1999-14084 and IST-2001-30012, and
by the DFG Focus Program 1126, “Algorithmic Aspects of Large and Complex Networks,” grants
SK 58/4-1 and SK 58/5-3.

1Earlier work on this topic referred to the problems as dynamic flow problems. Recently the
term dynamic has been used in many algorithmic settings to refer to problems with input data that
arrives online or changes over time, and the goal of the algorithms described is to modify the current
solution quickly to handle the slightly modified input. For the problem of dynamic flows, the input
data is available at the start. The solution to the problem involves describing how the optimal flow
changes over time. For these reasons, we use the term “flows over time” instead of “dynamic flows”
to refer to these problems.

1600

QUICKEST FLOWS OVER TIME 1601

time it takes for the flow to travel from the tail to the head of that arc. In contrast
to the classical case of static flows, a flow over time in such a network specifies a flow
rate entering an arc for each point in time. In this setting, the capacity of an arc
limits the rate of flow into the arc at each point in time. In order to get an intuitive
understanding of flows over time, one can associate arcs of the network with pipes in
a pipeline system for transporting some kind of fluid.2 The length of each pipeline
determines the transit time of the corresponding arc while the width determines its
capacity. A precise definition of flows over time is given later in section 2.

Flows over time may be applied to various areas of operations research and have
many real-world applications such as traffic control, evacuation plans, production
systems, communication networks (e.g., the Internet), and financial flows. Examples
and further applications can be found in the survey articles of Aronson [2] and Powell,
Jaillet, and Odoni [33]. However, flows over time are most likely significantly harder
than their standard flow counterparts. For example, both minimum cost flows over
time and fractional multicommodity flows over time are NP-hard [19, 25], even for
very simple series-parallel networks.

1.1. Results from the literature.

Maximum flows over time. Ford and Fulkerson [12, 13] consider the problem
of sending the maximal possible amount of flow from a source node s to a sink node t
within a given time T . This problem can be solved efficiently using one min-cost flow
computation on the given network. Ford and Fulkerson show that an optimal solution
to this min-cost flow problem can be turned into a maximal flow over time by first
decomposing it into flows on paths. The corresponding flow over time starts to send
flow on each path at time zero and continues to send flow on each path so long as
there is enough time left in the T time units for the flow along the path to arrive at
the sink. A flow over time featuring this structure is called temporally repeated.

Quickest flows. A problem closely related to the problem of computing a max-
imal s-t-flow over time is the quickest s-t-flow problem: Send a given amount of flow
from the source to the sink in the shortest possible time. This problem can be solved
in polynomial time by incorporating the algorithm of Ford and Fulkerson in a bi-
nary search framework. Using Megiddo’s method of parametric search [27], Burkard,
Dlaska, and Klinz [3] present a faster algorithm which solves the quickest s-t-flow
problem in strongly polynomial time.

Earliest arrival flows. An earliest arrival flow is an s-t-flow over time which
simultaneously maximizes the amount of flow arriving at the sink before time θ for
all θ ∈ [0, T). Gale [14] observes that these flows exist, and Wilkinson [35] and
Minieka [28] give equivalent pseudo-polynomial-time algorithms to find them. These
algorithms essentially use the successive shortest path algorithm (where the transit
times are interpreted as arc lengths) in order to find a static flow which is then turned
into a flow over time similar to Ford and Fulkerson’s algorithm. The resulting solution
is also a latest departure flow, i.e., a flow over time which simultaneously maximizes
the amount of flow departing from the source after time θ for all θ ∈ [0, T) (subject to
the constraint that the flow is finished by time T). A flow over time which is both an
earliest arrival flow and a latest departure flow is called universally maximal flow over
time. Hoppe and Tardos [23, 22] describe a polynomial-time approximation scheme
for the universally maximal flow problem that routes a 1−ε fraction of the maximum

2We take a purely macroscopic point of view which does not involve any fluid dynamics.

1602 LISA FLEISCHER AND MARTIN SKUTELLA

possible flow that can reach the sink t by time θ for all 0 ≤ θ < T . Problems with
time-dependent arc capacities have been considered by Ogier [29] and Fleischer [10].

Flows over time with costs. Natural generalization of the quickest flows and
maximum flows over time can be defined on networks with costs on the arcs. The
problem can be to find either a minimum cost flow with a given time horizon or a
quickest flow within a given cost budget. Klinz and Woeginger [25] show that the
search for a quickest or a maximum s-t-flow over time with minimal cost cannot be
restricted to the class of temporally repeated flows. In fact, adding costs has also a
considerable impact on the complexity of these problems. Klinz and Woeginger prove
NP-hardness results even for the special case of series parallel graphs. Moreover,
they show that the problem of computing a maximal temporally repeated flow with
minimal cost is strongly NP-hard.

Orlin [30] describes a polynomial-time algorithm to compute an infinite horizon,
minimum cost flow over time that maximizes throughput. The infinite horizon prob-
lem does not have specified demand and is not concerned with computing how a flow
starts and stops, issues that are crucial when flow demands are changing over time.

Quickest transshipments. Another generalization of quickest flows is the quick-
est transshipment problem: Given a vector of supplies and demands at the nodes, the
task is to find a flow over time that satisfies all supplies and demands within minimal
time. Unlike the situation for standard (static) network flow problems, this multi-
ple source, multiple sink, single commodity flow over time problem is not equivalent
to an s-t maximum flow over time problem. Hoppe and Tardos describe the first
polynomial-time algorithm to solve this problem [24, 22]. They introduce the use
of chain decomposable flows which generalize the class of temporally repeated flows
and can also be compactly encoded as a collection of paths. However, in contrast to
temporally repeated flows, these paths may also contain backward arcs. Therefore, a
careful analysis is necessary to show feasibility of the resulting flows over time. More-
over, the algorithm of Hoppe and Tardos is not practical as it requires a submodular
function minimization oracle for a subroutine.

Quickest multicommodity flows over time. In many applications, there are
several commodities that must be routed through the same network. While there is
substantial literature on the static multicommodity flow problem, hardly any results
on multicommodity flows over time are known. Only recently, Hall, Hippler, and
Skutella [19] showed that, already in the setting without costs, multicommodity flows
over time are NP-hard. Indeed, it is not known if there always exists an optimal
solution that can be described in polynomial space.

Discrete vs. continuous time model. All results mentioned so far were orig-
inally developed for a discrete time model, i.e., time is discretized into steps of unit
length. In each step, flow can be sent from a node v through an arc (v, w) to the
adjacent node w, where it arrives τ(v,w) time steps later; here, τ(v,w) denotes the given
integral transit time of arc (v, w). In particular, the time-dependent flow on an arc
is represented by a time-indexed vector in this model. In contrast to this, in the
continuous time model the flow on an arc e is a function fe : R+ → R+. Fleischer and
Tardos [11] point out a strong connection between the two models. They show that
many results and algorithms which have been developed for the discrete time model
can be carried over to the continuous time model. Since in this paper we mainly
concentrate on the continuous time model, we give a more detailed discussion of the
interrelation of the two models in section 4.1.

QUICKEST FLOWS OVER TIME 1603

Time-expanded networks. In the discrete time model, flows over time can be
described and computed in time-expanded networks which were introduced by Ford
and Fulkerson [12, 13]. Here we assume that all transit times are integral. A time-
expanded network contains a copy of the node set of the underlying “static” network
for every discrete time step. Moreover, for every arc e in the static network with
transit time τe, there is a copy between each pair of time layers with distance τe in
the time-expanded network. A precise description of time-expanded networks is given
in section 4.1. Unfortunately, due to the time expansion, the size of the resulting
network grows linearly in T . In the worst case, T is exponential in the input size of
the problem. This difficulty has already been pointed out by Ford and Fulkerson.

On the other hand, the advantage of this approach is that it turns the problem of
determining an optimal flow over time into a classical static network flow problem on
the time-expanded network. This problem can then be solved by well-known network
flow algorithms, an approach which is also used in practice to solve flow over time
problems. Due to the linear dependency of the size of the time-expanded network on T ,
such algorithms are termed “pseudopolynomial” since the run time of the algorithm
depends on T and not log T . In general, the size of these networks makes the problem
solution prohibitively expensive.

1.2. Contributions of this paper. We describe approximation algorithms for
flow over time problems. All of our algorithms approximate the minimum time horizon
of an optimal flow. Thus an α-approximate solution is a flow that solves the original
problem and requires at most α times the optimal time horizon to complete. Different
parts of this work have appeared in a preliminary form in [6, 7].

Temporally repeated solutions. Inspired by the work of Ford and Fulkerson,
we show in section 3 that static, length-bounded flows in the underlying static net-
work lead to provably good multicommodity flows over time that can also be computed
efficiently. The resulting approximation algorithm computes temporally repeated so-
lutions and has performance ratio 2. For the more general problem with bounded
cost, this approach yields a (2 + ε)-approximation algorithm. In this context it is in-
teresting to remember that the problem of computing a quickest temporally repeated
flow with bounded cost is strongly NP-hard [25] and therefore does not allow a fully
polynomial-time approximation scheme (FPTAS), unless P=NP. The same hardness
result holds for quickest multicommodity flows without intermediate node storage and
simple flow paths [19]. Finally, since a temporally repeated flow does not use inter-
mediate node storage, our result implies a bound of 2 on the “power of intermediate
node storage,” i.e., the makespan of a quickest multicommodity flow without inter-
mediate node storage is at most twice as long as the makespan of a quickest flow that
is allowed to store flow at intermediate nodes.

Approximation schemes. Another main contribution of this paper is to show
that problems that can be solved exactly in the time-expanded network can be solved
close to optimally by a static flow computation in a network with polynomial size. A
straightforward idea is to reduce the size of time-expanded networks by replacing the
time steps of unit length by larger steps. In other words, applying a sufficiently rough
discretization of time leads to a condensed time-expanded network of polynomial size.
However, there is a tradeoff between the necessity to reduce the size of the time-
expanded network and the desire to limit the loss of precision of the resulting flow
model since the latter results in a loss of quality of achievable solutions.

In section 4 we show that there is a satisfactory solution to this tradeoff prob-
lem. An appropriate choice of the step length leads to a condensed time-expanded

1604 LISA FLEISCHER AND MARTIN SKUTELLA

network of polynomial size that permits a solution completing within (1 + ε) times
the completion of a comparable flow in the continuous-time model, any ε > 0. More
precisely, a condensed time-expanded network achieving this precision has n/ε2 time
layers where n is the number of nodes in the given network. One can thus say that
the cost of (1 + ε)-approximate temporal dynamics for network flow problems is a
factor of n/ε2 in the size of the network.

This observation has potential applications for many problems involving flows over
time. In particular, it yields an FPTAS for the NP-hard quickest multicommodity
flow problem. Since costs can easily be incorporated into time-expanded networks,
our approach can be generalized to yield FPTASs for quickest multicommodity flow
problems with cost constraints. Notice that already quickest s-t-flows with bounded
cost are NP-hard.

Apart from NP-hard problems, we believe that our result is also of interest for
flow problems, like the quickest transshipment problem, which are known to be solv-
able in polynomial time. While the algorithm of Hoppe and Tardos [24, 22] for the
quickest transshipment problem relies on submodular function minimization, the use
of condensed time-expanded networks leads to an FPTAS which simply consists of a
series of max-flow computations.

No storage. Flows over time raise issues that do not arise in standard network
flows. One issue is storage at intermediate nodes. In most applications (such as,
e.g., traffic routing, evacuation planning, and telecommunications), storage is limited,
undesired, or even prohibited at intermediate nodes. For single commodity prob-
lems, most generally the transportation problem with costs, we prove that storage is
unnecessary, and our FPTAS does not use any.

Earliest arrival flows. Finally, in section 5 we discuss a variant of time-expanded
networks which are suitable for approximating earliest arrival flows. We address the
following problem: Given a set of sources with supplies and a single sink, send the
supplies to the sink so that the amount of flow arriving at the sink by time θ is D∗

t (θ),
the maximum possible, for all 0 ≤ θ. Instead of using a uniform discretization of
time, we introduce “geometrically condensed time-expanded networks” which rely on
geometrically increasing time steps. We use this network to obtain a flow that sends
D∗

t (θ) units of flow to the sink by time θ(1 + ε) for all 0 ≤ θ.

2. Preliminaries. We consider routing problems on a network N = (V,A)
with n := |V | nodes and m := |A| arcs. Each arc e ∈ A has an associated inte-
gral transit time or length τe and a capacity ue. In the setting with costs, each arc e
also has a cost coefficient ce, which determines the per unit cost for sending flow
through the arc. An arc e from node v to node w is sometimes also denoted (v, w);
in this case, we write head(e) = w and tail(e) = v.

2.1. Static flows. We start with the definition of single-commodity flows: Let
S ⊆ V be a set of terminals which can be partitioned into a subset of sources S+ and
sinks S−. Every source node v ∈ S+ has a supply Dv ≥ 0 and every sink v ∈ S− has
a demand Dv ≤ 0 such that

∑
v∈S Dv = 0. We often consider the case with only one

source s ∈ V and one sink t ∈ V . In this case, we let d := Ds = −Dt.
A static flow x on N assigns every arc e a nonnegative flow value xe such that

the flow conservation constraints
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 0 for all v ∈ V \ S

QUICKEST FLOWS OVER TIME 1605

are obeyed. Here, δ+(v) and δ−(v) denote the set of arcs e leaving node v (tail(e) = v)
and entering node v (head(e) = v), respectively. The static flow x satisfies the supplies
and demands if

∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = Dv for all v ∈ S.

For the case of a single source s and a single sink t we also use the term s-t-flow. An
s-t-flow x satisfying supply d = Ds = −Dt has value |x| = d. Finally, a flow x is
called feasible if it obeys the capacity constraints xe ≤ ue for all e ∈ A. The cost of a
static flow x is defined as

c(x) :=
∑

e∈A

ce xe.

In the multiple-commodity setting, there is a set of commodities K = {1, . . . , k},
each of which is defined by a set of terminals Si = S+

i ∪ S−
i ⊆ V and demands and

supplies Dv,i for v ∈ Si and i ∈ K. A static multicommodity flow x on N assigns
every arc-commodity pair (e, i) a nonnegative flow value xi

e such that xi := (xi
e)e∈A is

a single-commodity flow as defined above for all i ∈ K. The multicommodity flow x
satisfies the demands and supplies if xi satisfies the demands and supplies Dv,i for v ∈
Si. Finally, x is called feasible if it obeys the capacity constraints xe :=

∑
i∈K xi

e ≤ ue

for all e ∈ A. In the setting with costs, the cost of a static multicommodity flow x is
defined as

c(x) :=
∑

e∈A

∑

i∈K

ce,i x
i
e,(1)

where ce,i is the cost coefficient associated with arc e and commodity i.

2.2. Flows over time. In many applications of flow problems, static routing of
flow as discussed in section 2.1 does not satisfactorily capture the real structure of
the problem since not only the amount of flow to be transmitted but also the time
needed for the transmission plays an essential role.

A (multicommodity) flow over time f on N with time horizon T is given by
a collection of Lebesgue-measurable functions fe,i : [0, T) → R+, where fe,i(θ) de-
termines the rate of flow (per time unit) of commodity i entering arc e at time θ.
Transit times are fixed throughout so that flow on arc e progresses at a uniform
rate. In particular, the flow fe,i(θ) of commodity i entering arc e at time θ arrives
at head(e) at time θ + τe. Thus, in order to obey the time horizon T , we require
that fe,i(θ) = 0 for θ ∈ [T − τe, T). In order to simplify notation, we sometimes
use fe,i(θ) for θ /∈ [0, T), implicitly assuming that fe,i(θ) = 0 in this case.

With respect to flow conservation, there are two different models of flows over
time. In the model with storage of flow at intermediate nodes, it is possible to hold
inventory at a node which is neither a source nor a sink before sending it onward.
Thus, the flow conservation constraints are integrated over time to prohibit deficit at
any node:

∫ ξ

0

(
∑

e∈δ+(v)

fe,i(θ) −
∑

e∈δ−(v)

fe,i(θ − τe)

)
dθ ≤ 0(2)

for all i ∈ K, ξ ∈ [0, T), v ∈ V \ S+
i . Moreover, we require that equality holds

in (2) for i ∈ K, ξ = T , and v ∈ V \ Si, meaning that no flow should remain in the

1606 LISA FLEISCHER AND MARTIN SKUTELLA

s t

v

τ(s,v) = 3; u(s,v) = 2 τ(v,t) = 2; u(v,t) = 1

Fig. 1. An instance of s-t-flows over time given by a network with transit times and capacities
on the arcs.

network after time T . In the model without storage of flow at intermediate nodes we
additionally require that equality holds in (2) for all i ∈ K, ξ ∈ [0, T), and v ∈ V \Si.

The flow over time f satisfies the supplies and demands if by time T the net flow
out of each terminal v ∈ Si of commodity i equals its supply Dv,i:

∫ T

0

(
∑

e∈δ+(v)

fe,i(θ) −
∑

e∈δ−(v)

fe,i(θ − τe)

)
dθ = Dv,i(3)

for all i ∈ K and v ∈ Si. An s-t-flow over time is a single commodity flow from a single
source s to a single sink t. An s-t-flow over time satisfying supply d = Ds = −Dt has
value |f | = d.

A flow over time f is feasible if it obeys the capacity constraints. Here, capacity ue

is interpreted as an upper bound on the rate of flow entering arc e, i.e., a capacity per
time unit. Thus, the capacity constraints are fe(θ) ≤ ue for all θ ∈ [0, T) and e ∈ A,
where fe(θ) :=

∑
i∈K fe,i(θ) is the total flow into arc e at time θ.

In the setting with costs, the cost of a flow over time f is defined as

c(f) :=
∑

e∈A

∑

i∈K

∫ T

0
ce,i fe,i(θ) dθ.(4)

Notice that we overload notation here since c(x) is already used to denote the cost of
a static flow x. This should not lead to any confusion in the following.

In Figure 1 we give a small illustrating example of s-t-flows over time. In order
to send 2 units of flow from s to t in minimum time in the depicted network, one can
choose between several alternatives. One is to send flow at rate 2 into the first arc
during the time interval [0, 1). Since the transit time of the first arc is 3, the two units
of flow will arrive at the intermediate node v during the time interval [3, 4). Thus, one
can start to send flow at rate 1 into the second arc at time 3, and it will take 2 time
units until time 5 before everything has been sent into the arc. Then, the flow finally
arrives at the sink t within the time interval [5, 7). The optimal time horizon is 7.
Notice that in this solution flow is stored at the intermediate node v. An alternate
solution also with time horizon 7 which avoids storing flow at v can be obtained by
sending flow at rate 1 into the first arc during the time interval [0, 2).

2.3. Maximum flows over time and quickest flows. Ford and Fulkerson [12,
13] show how to compute a maximum s-t-flow over time by reducing this problem to
a static min-cost flow problem. More precisely, one can turn an optimal solution x to
the static s-t-flow problem with objective function3

maxT |x| −
∑

e

τe xe(5)

3The objective function considered by Ford and Fulkerson is slightly different from (5) since T
is replaced by T + 1. In contrast to our work, Ford and Fulkerson consider a discrete time setting
where time horizon T means that flow can be sent at T + 1 discrete points in time 0, 1, 2, . . . , T . For
more details on the relation between the two models we refer to [11].

QUICKEST FLOWS OVER TIME 1607

into a maximal s-t-flow over time: It is a well-known result from network flow theory
that any static flow x in N can be decomposed into a sum of flows xP on simple
paths P ∈ P and flow on cycles. Without loss of generality, flow on cycles is neglected
(i.e., canceled) such that x can be written as a sum of path-flows: xe =

∑
P∈P : e∈P xP

for all e ∈ A. The resulting temporally repeated flow f sends flow at rate xP into each
path P ∈ P during the time interval [0, T − τ(P)), where τ(P) :=

∑
e∈P τe. In other

words, f is the sum of path-flows over time fP with fP (θ) = xP for θ ∈ [0, T − τ(P))
and fP (θ) = 0 otherwise. Feasibility of f immediately follows from feasibility of x.
Moreover, the flow value is

|f | =
∑

P∈P
(T − τ(P))xP = T |x| −

∑

e

τe xe.(6)

The second equality follows since (xP)P∈P is a path-decomposition of x.
For flows over time, a natural objective is to minimize the makespan, also called

time horizon: the time T necessary to satisfy all demands. The quickest s-t-flow prob-
lem asks for an s-t-flow over time with given value d and minimum time horizon T .
This problem can be generalized to the setting with bounded flow cost and multi-
ple sources and sinks (quickest transshipment problem) and to the case of multiple
commodities.

The most general problem that we consider here is the quickest (multicommodity)
transshipment problem (with bounded cost) which is defined as follows.

Quickest multicommodity transshipment problem with bounded cost
Given: A network (digraph) with capacities, costs, and transit times on the arcs;

k commodities, each specified by a set of sources and sinks with supplies
and demands; and a cost budget C.

Task: Find a multicommodity flow over time satisfying all supplies and demands
with cost at most C and with minimal time horizon T .

Since this problem is NP-hard, we will mostly deal with finding approximate quickest
flow. A natural variant of the stated problem is to bound the cost for every single
commodity i by a budget Ci, i.e.,

∑

e∈A

ce,i

∫ T

0
fe,i(θ) dθ ≤ Ci

for all i ∈ K. All of our results also apply to problems with these additional cost
constraints.

A note on time and size bounds. Our time bounds are sometimes expressed
in terms of T ∗, the optimal makespan. Since capacities and transit times are integers,
we can assume that at every moment of time some flow is either progressing towards
a sink or arriving at the sink. Thus, we obtain a gross upper bound on the optimal
makespan: T ∗ ≤

∑
i di +

∑
e τe. As long as the dependency on T ∗ is polylogarithmic,

the resulting bound is polynomial in size of the input.

3. A simple two-approximation algorithm. In this section we generalize the
basic approach of Ford and Fulkerson [12, 13] to the case of multiple commodities (with
multiple sources and sinks each) and costs. However, in contrast to the algorithm
of Ford and Fulkerson which is based on a (static) min-cost flow computation, the
method we propose employs length-bounded static flows.

1608 LISA FLEISCHER AND MARTIN SKUTELLA

3.1. Length-bounded static flows. While static flows are not defined with
reference to transit times, we are interested in static flows that suggest reasonable
routes with respect to transit times. To account for this, we consider decompositions
of static flows into paths. We denote the set of all paths starting at some source of
commodity i and leading to one of its sinks by Pi. A static (multicommodity) flow x is
called T -length-bounded if the flow of each commodity i ∈ K can be decomposed into
the sum of flows xi

P on paths P ∈ Pi such that the length τ(P) of any path P ∈ Pi

with xi
P > 0 is at most T .

While the problem of computing a feasible static flow that satisfies the multicom-
modity demands can be solved efficiently, it is NP-hard to find such a flow which is
in addition T -length-bounded, even for the special case of a single commodity. This
follows by a straightforward reduction from the NP-complete Partition problem.
On the other hand, the length-bounded flow problem can be approximated within
arbitrary precision in polynomial time.

Lemma 3.1. If there exists a feasible T -length-bounded static flow x which satisfies
the multicommodity demands, then for any ε > 0, a feasible (1 + ε)T -length-bounded
static flow x′ of cost c(x′) ≤ c(x) satisfying all demands can be computed in time
polynomial in the input size and 1/ε.

Proof. We first formulate the problem of finding a feasible T -length-bounded
static flow as a linear program in path-variables. We assume without loss of generality
that each commodity i ∈ K has exactly one source si and one sink ti with supply
and demand di := Dsi = −Dti ; the general case with several sources and sinks can be
handled by introducing one supersource and one supersink for each commodity. Let

PT
i := {P ∈ Pi | τ(P) ≤ T} ⊆ Pi

be the set of all si-ti-paths whose lengths are bounded from above by T . The cost
of path P ∈ Pi is defined as ci(P) :=

∑
e∈P ce,i. The length-bounded min-cost flow

problem can then be written as

min
∑

i∈K

∑

P∈PT
i

ci(P)xi
P

s.t.
∑

P∈PT
i

xi
P ≥ di for all i ∈ K,

∑

i∈K

∑

P∈PT
i :e∈P

xi
P ≤ ue for all e ∈ A,

xi
P ≥ 0 for all i ∈ K, P ∈ PT

i .

Unfortunately, the number of paths in PT
i and thus the number of variables in this

linear program are in general exponential in the size of the underlying network N . If
we take the dual of the program we get

max
∑

i∈K

di zi −
∑

e∈A

ue ye

s.t.
∑

e∈P

(ye + ce,i) ≥ zi for all i ∈ K, P ∈ PT
i ,

zi, ye ≥ 0 for all i ∈ K, e ∈ A.

The corresponding separation problem can be formulated as a length-bounded shortest
path problem: Find a shortest si-ti-path P with respect to the arc weights ye + ce,i

QUICKEST FLOWS OVER TIME 1609

whose length τ(P) is at most T , i.e., P ∈ PT
i . While this problem is NP-hard [15], it

can be solved approximately in the following sense: For any ε > 0, one can find in time
polynomial in the size of the network N and 1/ε an si-ti-path P ∈ Pi with τ(P) ≤
(1+ε)T whose length with respect to the arc weights ye+ce,i is bounded from above by
the length of a shortest path in PT

i [21, 26, 31]. Using the equivalence of optimization
and separation [17], this means for our problem that we can find in polynomial time
an optimal solution to a modified dual program which contains additional constraints
corresponding to paths of length at most (1 + ε)T . To be more precise, we find an
optimal solution to a linear program that is more constrained than the above dual:

max
∑

i∈K

di zi −
∑

e∈A

ue ye

s.t.
∑

e∈P

(ye + ce,i) ≥ zi for all i ∈ K, P ∈ P̃i,

zi, ye ≥ 0 for all i ∈ K, e ∈ A,

where PT
i ⊆ P̃i ⊆ P(1+ε)T

i for all i ∈ K. From this dual solution we get a primal
solution that sends flow of commodity i only on paths in P̃i. In particular, since P̃i ⊆
P(1+ε)T
i , this flow is (1 + ε)T -length-bounded.

Notice that the method described in the proof above relies on the ellipsoid method
and is therefore of rather restricted relevance for solving length-bounded flow problems
in practice. However, the FPTASs developed in [8, 16] for multicommodity flow
problems can be generalized to the case of length-bounded flows: Those algorithms
iteratively send flow on shortest paths with respect to some length function. In
order to get a T -length-bounded solution, these shortest path computations must be
replaced by a procedure that computes the (1 + ε)T -length-bounded shortest path.4

3.2. The approximation algorithm. Any feasible flow over time f with time
horizon T and cost at most C naturally induces a feasible static flow x on the under-
lying network N by averaging the flow on every arc over time, i.e.,

xi
e :=

1

T

∫ T

0
fe,i(θ) dθ

for all e ∈ A and i ∈ K. By construction, the static flow x is feasible, and it satisfies
the following three properties, as explained below:

(i) it is T -length-bounded;
(ii) it satisfies a fraction of 1/T of the supplies and demands covered by the flow

over time f ;
(iii) c(x) = c(f)/T .

Due to the fixed time horizon T , flow f can travel only on paths of length at most T .
Thus property (3.2) is fulfilled. Property (3.2) follows from (3). Finally, property (3.2)
is a consequence of (1) and (4).

On the other hand, given an arbitrary feasible static flow x meeting require-
ments (3.2), (3.2), and (3.2), it can easily be turned into a feasible flow over time g

4The algorithms in [8, 16] return a solution of cost at most 1 + ε times the minimum cost, which
obeys capacities and serves at least 1

1+ε fraction of the demand. In the context of the approximation
algorithm described in the next subsection, this approximate result is sufficient to still obtain the 2+ε-
approximation guarantee. This is because flow can be sent just a little longer on the chosen paths
to fulfill all the demand.

1610 LISA FLEISCHER AND MARTIN SKUTELLA

s1 2 s2 0 t1

s3

0 t2 2

t3

Fig. 2. An instance of the quickest multicommodity flow problem containing three commodi-
ties i = 1, 2, 3, each with a single source si and a single sink ti. Commodities 1 and 3 have demand
value 1; commodity 2 has demand value 2. The numbers at the arcs indicate the transit times; all
arcs have unit capacity. Note that an arc with 0 transit time and capacity 1 takes no additional
time to cross but lets only one unit of flow through per unit time. A quickest flow with waiting at
intermediate nodes allowed takes three time units and stores one unit of commodity 2 at the inter-
mediate node t1 = s3 for two time units. However, if flow cannot be stored at intermediate nodes,
an optimal solution takes time 4.

with time horizon 2T , meeting the same supplies and demands at the same cost as f :
For every commodity i ∈ K, pump flow into every path P given by the length-bounded
path decomposition of x at the corresponding flow rate xi

P for T time units; then wait
for at most T additional time units until all flow has arrived at its destination. In
particular, no flow is stored at intermediate nodes in this solution. Therefore we can
state the following structural result on the power of intermediate node storage.

Lemma 3.2. Allowing the storage of flow at intermediate nodes in N saves at
most a factor of 2 in the optimal makespan. On the other hand, there are instances
where the optimal makespan without storage at intermediate nodes is 4/3 times the
optimal makespan with storage.

Proof. The bound of 2 follows from the discussion above. In Figure 2 we give an
instance with a gap of 4/3 between the optimal makespan without storing and the
optimal makespan with storing at intermediate nodes.

Notice that the gap of 4/3 is not an artifact of the small numbers in the instance
depicted in Figure 2. It holds for more general demands and transit times as well: For
instance, scale all transit times and capacities of arcs by a factor of q, and multiply
all pairwise demands by a factor of q2. For the new instance, there is still a gap
of 4/3 between the optimal makespan without storing and the optimal makespan
with storing at intermediate nodes.

In view of the discussion before Lemma 3.2, we can now state the core of our
approximation algorithm; see Figure 3. If the given time horizon T is at least as
large as the optimum makespan of the given instance, a static flow fulfilling require-
ments (3.2), (3.2), and (3.2) exists. In the first step of Algorithm LengthBounded
(Figure 3), we relax the length bound in property (3.2) by a factor 1 + ε so that the
step can be performed in polynomial time; see section 3.1.

We state the main result of this section.
Theorem 3.3. For the quickest multicommodity transshipment problem with

bounded cost, there exists a polynomial-time algorithm that, for any ε > 0, finds a
solution of cost at most C (cost budget) with makespan at most 2 + ε times the opti-
mal makespan. Moreover, the computed solution does not store flow at intermediate
nodes.

Proof. We embed Algorithm LengthBounded into a binary search for the op-
timal makspan T ∗. After O(log T ∗/ε′) steps, we get a guess of the optimal makespan
with precision 1 + ε′/4 for any ε′ > 0. That is, we get T with

T ∗ ≤ T ≤ (1 + ε′/4)T ∗.

If we call Algorithm LengthBounded using T and ε := ε′/4, we get a flow over

QUICKEST FLOWS OVER TIME 1611

Algorithm LengthBounded
Input: An instance of the quickest multicommodity transshipment problem with

cost bound C; tentative time horizon T ; precision ε > 0.
Output: A flow over time satisfying all supplies and demands with makespan

at most (2 + ε)T and cost bounded by C; or the information that T is
strictly smaller than the optimal makespan.

1. Compute a static flow x such that
– x is (1 + ε)T -length bounded;
– x satisfies a fraction 1/T of the supplies and demands;
– c(x) ≤ C/T ;

or decide that no such flow exists. In the latter case stop and output
“T < T ∗”.

2. Turn x into a flow over time satisfying all supplies and demands with
makespan at most (2 + ε)T and cost bounded by C (see discussion in
section 3.2).

Fig. 3. The core of the (2 + ε)-approximation algorithm.

s1

s2

s3

sk

tk

tk−1

tk−2

t1

k − 1

...

2

1

0

0

k − 1

...

2

1

0

Fig. 4. An instance with k commodities showing that the analysis in the proof of Theorem 3.3
is tight. All arcs have unit capacity and transit times as depicted above. The demand value of every
commodity is 1. A quickest flow needs T ∗ = k time units. However, any static flow can satisfy at
most a fraction of 1/k of the demands. In particular, the makespan of the resulting flow over time
is at least 2k − 1.

time with makespan (2 + ε)T ≤ (2 + ε′)T ∗. In the last inequality we assume that ε′

is chosen small enough (i.e., ε′ ≤ 4).
In Figure 4 we present an instance which shows that the analysis in the proof of

Theorem 3.3 is tight. That is, the performance guarantee of the discussed approxi-
mation algorithm is not better than 2.

3.3. Avoiding the length-bounded flow computation. In contrast to Ford’s
and Fulkerson’s temporally repeated flows, the flows over time resulting from T -
length-bounded static flows described before Lemma 3.2 do not necessarily use flow-
carrying paths as long as possible with respect to the time horizon 2T . Instead, we
stop sending flow into all paths at the same time T . In the following we argue that
such a flow over time can easily be turned into a temporally repeated flow.

We simply extend the time interval [0, T) during which flow is being sent into
each path P such that the last flow on path P arrives at the sink exactly at time 2T .
Thus, the extended time interval for path P is [0, 2T − τ(P)). On the other hand, we

1612 LISA FLEISCHER AND MARTIN SKUTELLA

compensate for the enlarged time interval by scaling the flow rate xi
P on each path P to

x̃i
P :=

T

2T − τ(P)
xi
P ≤ xi

P .

Notice that the resulting temporally repeated flow obeys capacities since we have not
increased the flow rate on any path. Moreover, by choice of x̃i

P the amount of flow
that is sent on any path P has remained unchanged because x̃i

P (2T − τ(P)) = xi
PT .

For the setting without costs, this observation also implies that the length-boun-
ded flow computation in our algorithm can be replaced by a standard (and presumably
faster) flow computation with costs, where transit times on arcs are interpreted as
cost coefficients. To simplify the presentation of this result, we restrict to the case
of only one source si and one sink ti for every commodity i ∈ K. The scaled flow
rates x̃i

P discussed above define a static multicommodity flow x̃. Let |x̃i| be the si-
ti-flow value of commodity i in x̃, and let di be the demand of commodity i. Since
the temporally repeated flow with time horizon 2T and flow rates x̃i

P sends exactly di
units of commodity i from si to ti, it follows from (6) that

2T |x̃i| −
∑

e∈A

τe x̃
i
e = di for all i ∈ K.(7)

On the other hand, any feasible static multicommodity flow x̃ fulfilling (7) can easily
be turned into a temporally repeated flow over time satisfying all demands within
time 2T : Compute any path decomposition of x̃ and send flow into every path at the
corresponding flow rate as long as there is enough time left for the flow to arrive at
its sink before time 2T . This follows again from (6). We can now prove the following
slightly improved approximation result which does not rely on a length-bounded static
flow computation.

Theorem 3.4. There exists a 2-approximation algorithm for the quickest mul-
ticommodity transshipment problem. Moreover, the computed solution does not store
flow at intermediate nodes.

Proof. For the sake of simplicity, we again restrict to the case of one single
source si and one sink ti for every commodity i ∈ K. The algorithm first solves the
following flow problem

min T

s.t. 2T |x̃i| −
∑

e∈A

τe x̃
i
e = di for every i ∈ K,

(x̃i
e)e∈A, i∈K is a feasible multicommodity flow.

Notice that this program is nonlinear since both T and the flow values |xi| are vari-
ables. On the other hand, it can be seen as a parametric multicommodity circulation
problem by introducing an arc of infinite capacity and cost 2T from ti to si for
all i ∈ K. The problem can thus be solved in polynomial time.

It follows from (7) and the discussion above that the optimal solution value T is
a lower bound on the time horizon of a quickest flow. Finally, the static flow x̃ can
be turned into a temporally repeated flow over time with time horizon 2T by taking
an arbitrary path-decomposition of x̃.5

5If the path-decomposition contains paths of length longer than 2T , these paths contribute
negatively to the right-hand side of (7). Thus we can remove them along with flow on a set of shorter
paths and obtain a smaller path-decomposition.

QUICKEST FLOWS OVER TIME 1613

s t

τ = 1 − ε; c = 1 τ = 1 − ε; c = 1

τ = 0; c = 0 τ = 0; c = 0

Fig. 5. An instance showing that the cost of a temporally repeated flow depends on the particular
path-decomposition of the underlying static s-t-flow. Consider the static flow of value 2 in the
depicted network with flow value 1 on every arc. The time horizon is set to 2. There are two
possible decompositions of this static flow into a sum of two path-flows. One of them leads to a
temporally repeated flow of cost 2 + 2ε; the other one has cost 2ε.

Unfortunately, this result cannot be generalized to the quickest multicommodity
transshipment problem with costs. The reason is that the cost of a temporally re-
peated flow is not uniquely determined by the underlying static flow but also depends
on the chosen path decomposition. This has already been observed in [25]. We give
an example in Figure 5. In fact, it can be shown by a reduction of the NP-complete
problem Partition that finding a path-decomposition of a given static flow x yielding
a cheapest temporally repeated flow is NP-hard.

4. Approximation schemes for quickest flows. In this section we present a
framework for obtaining FPTASs for various quickest flow problems. In section 4.1 we
introduce special time-expanded networks of polynomial size which are the backbone
of this framework. In section 4.2 we present the basic idea of our approach and point
out fundamental problems that need to be solved in order to make it work. Then,
in section 4.3 we discuss the special case of acyclic graphs. Under the assumption
that storage of flow at intermediate nodes is allowed, acyclic graphs are amenable
to a simple analysis. On the other hand, we show in section 4.4 that optimal single
commodity flows over time (with costs) do not require storage. Based on this insight,
we give an FPTAS for the quickest transshipment problem with bounded cost which
does not use storage at intermediate nodes in section 4.5. We describe a generalization
of our approach to the multicommodity flow setting in section 4.6.

4.1. Condensed time-expanded networks. Traditionally, flows over time are
solved in a time-expanded network. Given a network N = (V,A) with integral transit
times on the arcs and an integral time horizon T , the T -time-expanded network of N
denoted N T is obtained by creating T copies of V , labeled V0 through VT−1, with
the θth copy of node v denoted vθ, θ = 0, . . . , T − 1. The flow that passes through Vθ
corresponds to flow over time in the interval [θ, θ + 1). For every arc e = (v, w) in A
and 0 ≤ θ < T − τe, there is an arc eθ from vθ to wθ+τe with the same capacity and
cost as arc e. For each terminal v ∈ Si, i ∈ K, there is an additional infinite capacity
holdover arc from vθ to vθ+1 for all 0 ≤ θ < T − 1, which models the possibility to
hold flow at node v in the time interval [θ, θ+1). We assume without loss of generality
that a source (sink) has no incoming (outgoing) arc in N . Thus, a terminal is never
an intermediate node on a path flow.6 We treat the first copy v0 of a source v ∈ S+

i as
the corresponding source in N T and treat the last copy vT−1 of a sink v ∈ S−

i as the
corresponding sink in N T . In the model with storage of flow at intermediate nodes,
we introduce holdover arcs for all nodes v ∈ V . An illustration of a time-expanded
network is given in Figures 6(a) and (b).

6Under this assumption, the flow storage level of commodity i at v ∈ Si never exceeds Dv,i.

1614 LISA FLEISCHER AND MARTIN SKUTELLA

s

2
τ (s

,v)
=

0

0
3

1 t

c)

[0, 1)

[1, 2)

[2, 3)

[3, 4)

[4, 5)

[5, 6)

[4, 6)

[2, 4)

[0, 2)

s v w ttwvs

w

v

a) b)

Fig. 6. (a) A static network N with transit times on the arcs, one source s, and one sink t;
(b) the corresponding time-expanded network NT with time horizon T = 6; (c) the condensed time-
expanded network NT /∆ with ∆ = 2. Notice that the transit time of arc (s, w) has been rounded
up to 4 in NT /∆ since the original transit time 3 is not a multiple of ∆ (see also section 4.2).

Any static (multicommodity) flow in this time-expanded network corresponds to
a (multicommodity) flow over time of equal cost: For any commodity, interpret the
flow on arc eθ as the flow rate entering arc e = (v, w) in the time interval [θ, θ + 1).
Similarly, any flow over time completing by time T corresponds to a flow in N T of the
same value and cost obtained by setting the flow on eθ to be the average flow rate into e
over the interval [θ, θ+1). More details can be found below in Lemma 4.1 (set ∆ := 1).
Thus, we may solve any flow over time problem by solving the corresponding static
flow problem in the time-expanded graph.

One problem with this approach is that the size of N T depends linearly on T so
that if T is not bounded by a polynomial in the input size, this is not a polynomial-
time method of obtaining the required flow over time. However, if all arc lengths are
a multiple of ∆ > 0 such that (T/∆) is bounded by a polynomial in the input size,
then instead of using the T -time-expanded network, we may rescale time and use a
condensed time-expanded network that contains only (T/∆) copies of V . Since in this
setting every arc corresponds to a time interval of length ∆, capacities are multiplied
by ∆. We denote this condensed time-expanded network by N T /∆ and the copies
of V in this network by Vρ∆ for ρ = 0, . . . , (T/∆) − 1. Copy Vρ∆ corresponds to flow
through V in the interval [ρ∆, (ρ + 1)∆). An illustration is given in Figure 6(c).

Lemma 4.1. Suppose that all arc lengths are multiples of ∆ and T/∆ is an integer.
Then, any (multicommodity) flow over time that completes by time T corresponds
to a static (multicommodity) flow of equal cost in N T /∆, and any flow in N T /∆
corresponds to a flow over time of equal cost that completes by time T .

Proof. Given an arbitrary (multicommodity) flow over time, a modified flow over
time of equal value and cost can be obtained by averaging the flow value of every
commodity on any arc in each time interval [ρ∆, (ρ + 1)∆), ρ = 0, . . . , T/∆ − 1.
This modified flow over time defines a static (multicommodity) flow in N T /∆ in a
canonical way. Notice that the capacity constraints are obeyed since the total flow
starting on arc e in interval [ρ∆, (ρ + 1)∆) is bounded by ∆ue. The flow values on
the holdover arcs are defined in such a way that flow conservation is obeyed in every
node of N T /∆.

On the other hand, a static (multicommodity) flow on N T /∆ can easily be turned
into a flow over time. The static flow on an arc with tail in Vρ∆ is divided by ∆ and

QUICKEST FLOWS OVER TIME 1615

∆/2 + ∆/2
∆

∆/2

∆

a)

1

4

3

2
2

1

3

4

b)

Fig. 7. (a) A flow over time in the original network. The two packets of flow originating at
nodes 1 and 2 are sent one after another into arc (3, 4). (b) The “same” flow over time in the
network with rounded transit times causes congestion on arc (3, 4) since the two packets of flow
arrive simultaneously on the arc.

sent for ∆ time units starting at time ρ∆. If the head of the arc is in Vσ∆ for σ ≥ ρ,
then the length of the arc is (σ − ρ)∆, and the last flow (sent before time (ρ + 1)∆)
arrives before time (σ + 1)∆. Note that if costs are assigned to arcs of N T /∆ in
the natural way, then the cost of the flow over time is the same as the cost of the
corresponding flow in the time-expanded graph.

If we drop the condition that T/∆ is integral, we get the following slightly weaker
result.

Corollary 4.2. Suppose that all arc lengths are multiples of ∆. Then, any
(multicommodity) flow over time that completes by time T corresponds to a static
(multicommodity) flow of equal value and cost in N T /∆, and any flow in N T /∆
corresponds to a flow over time of equal value that completes before time T + ∆.

4.2. Outline of an approximation scheme. The basic idea of our algorithm
is to round up transit times to the nearest multiple of ∆ for an appropriately cho-
sen ∆, solve the static flow problem in the corresponding ∆-condensed time-expanded
network, and then translate this flow back to the setting of the original transit times.
In order to obtain provably good solutions in this way, one has to make sure that the
following two conditions are fulfilled:

I. the makespan of an optimal solution to the instance with increased transit
times (represented by the condensed time-expanded network) approximates
the makespan of an optimal solution in the original setting;

II. the solution to the instance with increased transit times can be transformed
into a flow over time with original arc lengths without too much loss in flow
value.

Before discussing how to fulfill these conditions, we first give some simple examples
to show that nontrivial problems have to be dealt with to address both I and II.

Consider first a (sub)network consisting of four nodes {1, 2, 3, 4} and three arcs
(1, 3), (2, 3), and (3, 4) with unit capacity depicted in Figure 7(a). The transit times
are τ(1,3) = ∆/2, τ(2,3) = ∆, and τ(3,4) = ∆. A flow in the graph without rounded tran-
sit times can send ∆/2 units of flow in interval [0,∆/2) on each path P1 = 1 → 3 → 4
and P2 = 2 → 3 → 4. Path P1 will use arc (3, 4) in interval [∆/2,∆), and path P2

will use arc (3, 4) in interval [∆, 3∆/2). However, if we send flow simultaneously on
paths P1 and P2 in the network with transit times rounded up to the nearest multiple
of ∆, then this will cause a bottleneck on arc (3, 4); see Figure 7(b).

Now consider the unit capacity (sub)network depicted in Figure 8. If all transit
times are rounded up to the nearest multiple of ∆, we may send ∆ units of flow
simultaneously on each path from s to t, and each path will use arc (v, t) in a distinct
interval of time. If we try to interpret this flow in the network with original transit
times, however, each path-flow will try to use arc (v, t) in the same time interval,
causing a large bottleneck.

1616 LISA FLEISCHER AND MARTIN SKUTELLA

#∆/4$ %∆/4&

#∆
/4$ %∆

/4
&

#∆/3$

%∆/2&#∆/2$

∆

0v
ts

%∆/3&
%∆/3&

Fig. 8. In this partially drawn unit capacity network, there are ∆ paths from s to v. The ith

path contains i arcs, each with transit time roughly ∆/i.

Condition II can be enforced by allowing storage of flow at nodes: If arc e = (v, w)
has length increased by ∆′ ≤ ∆, then this can be emulated in the original network
by holding flow arriving at w for ∆′ time units.7 More generally, we can state the
following observation.

Observation 4.3. Consider a network N = (V,A) and two transit time vec-
tors τ, τ ′ ∈ RA

+ with τe ≤ τ ′
e for all e ∈ A. Then, a flow over time in N with transit

times τ ′ can be emulated in N with transit times τ by introducing waiting time τ ′
e−τe

at the head of every arc e.
For the case of acyclic graphs, we give a simple argument in section 4.3 to show

how to uphold condition I when storage is allowed. In section 4.5 we describe a more
sophisticated approach that works for general graphs even when storage of flow at
nodes is not allowed.

4.3. Acyclic graphs with storage. For acyclic graphs, the existence of a topo-
logical ordering of the nodes makes the problems illustrated above fairly easy to re-
solve. The algorithm is simple: For an appropriate guess of T , choose ∆ := ε

nT , and
round transit times up to the nearest multiple of ∆. Form the ∆-condensed time-
expanded network, and compute a solution f in this network. Output the solution f ′

obtained by modifying f by emulating the rounded transit times as described above.
It remains to show condition I: There exists a feasible flow of cost at most C (the

given cost budget) satisfying the given (multicommodity) demands D by time T ∗(1+ε)
in the network with transit times rounded up to the nearest multiple of ∆. Let f∗

be a flow over time of cost at most C that satisfies demands D by time T ∗. More-
over, let {v0, v1, . . . , vn−1} be a topological ordering of V . Modify f∗ to obtain f̂
by setting f̂e(θ) = f∗

e (θ − i∆) for e = (vi, vj) and for all θ ∈ [0,∞). With these
modifications, flow traveling on any path that includes vi is delayed from its origi-
nal departure from i by exactly i∆ time units. Thus, flow arriving at node vj in f̂

arrives at most j∆ time units later than its arrival in f∗, and the time horizon of f̂
is T ∗+∆(n−1) ≤ T ∗(1+ε). Since f∗ is feasible, so is f̂ . Since flow travels on the same
paths in f∗ and f̂ , we have c(f∗) = c(f̂), and f̂ satisfies the same multicommodity
demands as f∗.

Notice that f̂ induces a flow in the network with the transit time of an arc (vi, vj)

equal to τij +∆(j − i) ≥ τij +∆. An alternate and equivalent view is that f̂ induces
a flow with storage in the network with transit time of (vi, vj) rounded up to τij +δij ,

7If ∆′ is large, then this requires a large amount of additional storage.

QUICKEST FLOWS OVER TIME 1617

the nearest multiple of ∆. In this view, flow sent on (vi, vj) is then held at vj for an
additional ∆(j− i)− δij ≥ 0 units of time. This latter flow is a flow in the ∆-rounded
network, implying the following theorem.

Theorem 4.4. In acyclic graphs with node storage, a (1+ε)-approximate solution
to the quickest cost-bounded multicommodity flow problem can be obtained with a static
flow computation in a network with O(n2/ε) nodes and O(nm/ε) arcs.

4.4. Minimum cost flows without storage. It follows from the work of
Hoppe and Tardos [24, 22] that for the quickest transshipment problem there al-
ways exists an optimal solution which does not store flow at intermediate nodes. We
generalize this result to the problem with costs and also to the more general case
when the flow cost on an arc is a nondecreasing, convex function of the flow rate
into the arc. As mentioned in section 4.1, when transit times are integers, the min-
cost transshipment over time problem with or without storage at intermediate nodes
can be solved by solving the corresponding static flow problem in the time-expanded
network8 N T .

Theorem 4.5. For nondecreasing, convex cost functions, the cost of a minimum
cost transshipment over time that does not use intermediate node storage is no more
than the cost of a minimum cost transshipment over time using intermediate node
storage.

The details of this proof are not essential for understanding the remainder of the
paper.

Proof. Consider a minimum cost transshipment over time with intermediate node
storage and a corresponding static min-cost flow x in the time-expanded network N T .
Notice that the set X of all min-cost solutions x is the intersection of the polytope
formed by all feasible solutions with a closed convex set given by the convex cost
constraint. In particular, X is convex and compact.

For a node z ∈ V , let x(δ(zθ)) be the net amount of flow leaving z in the time
interval [θ, θ + 1):

x(δ(zθ)) :=
∑

e∈δ+(z)

xeθ −
∑

e∈δ−(z)

xeθ−τe
.

Since X is compact, there exists an x ∈ X minimizing the convex function F (x) :=∑
z∈V

∑T−1
θ=0 |x(δ(zθ))|. We show that x does not send flow along holdover arcs of

nodes in V \ S.
By contradiction, let vϕ be the earliest copy of node v /∈ S to send flow along a

holdover arc. We have that x(δ(vϕ)) = −xvϕ,vϕ+1 < 0. Let [ϕ+ q, ϕ+ q+1) for q > 0
and integral be the first time interval after [ϕ,ϕ+1) in which v has more flow leaving
it than entering it; i.e., x(δ(vϕ+q)) > 0. We show in the following that F (x) can be
decreased by augmenting flow along a cycle in the time-expanded network N T . This
is a contradiction to the choice of x.

Consider a time-expanded network that is infinite in both directions, N (−∞,+∞).
Note that N (−∞,+∞) looks the same at vϕ as it does at vϕ+q. However, x in this
network looks different at each of these copies of v. We indicate this difference by

8Notice that the averaging argument used in the proof of Lemma 4.1 to turn an arbitrary flow
over time into a static flow in the time-expanded network also works for the case of convex costs
since averaging never increases cost.

1618 LISA FLEISCHER AND MARTIN SKUTELLA

coloring the arcs of N (−∞,+∞) as follows. Color transit arc (iθ−τij , jθ)

red if x(iθ−τij
,jθ) < x(iθ−τij−q,jθ−q)

blue if x(iθ−τij
,jθ) > x(iθ−τij−q,jθ−q)

no color if x(iθ−τij
,jθ) = x(iθ−τij−q,jθ−q).

All holdover arcs remain colorless. Note that there are no blue arcs leaving Vθ for θ ≥
T − 1 and there are no red arcs entering Vθ for θ ≤ q.

Let P be a simple path consisting of backward red arcs and forward blue arcs
from vϕ+q to a node wµ with the property that x(δ(wµ)) < x(δ(wµ−q)). We claim
that such a P exists: Since x(δ(vϕ+q)) − x(δ(vϕ)) > 0, node vϕ+q has either a red
arc entering it or a blue arc leaving it. Consider the set of all nodes which can be
reached from vϕ+q on a path consisting of backward red arcs and forward blue arcs.
Since x(δ(vϕ+q)) − x(δ(vϕ)) > 0, it follows from flow conservation that there must
exist a node wµ with x(δ(wµ)) − x(δ(wµ−q)) < 0 in this set.

Note that V (P) ⊂
⋃T−1

θ=q Vθ. We define the capacity u(P) of P to be

u(P) := min
(iθ,jθ+τij

)∈P
|x(iθ,jθ+τij

) − x(iθ−q,jθ−q+τij
)|.

We modify x to reduce |x(δ(vϕ))| and |x(δ(vϕ+q))|. Let

κ := min
{
u(P), − x(δ(vϕ)), x(δ(vϕ+q)), x(δ(wµ−q)) − x(δ(wµ))

}
> 0.

If an arc (iθ, jθ+τij) ∈ P is red, then we modify x on (iθ, jθ+τij) and (iθ−q, jθ−q+τij)
to

x(iθ,jθ+τij
) := x(iθ,jθ+τij

) + κ and x(iθ−q,jθ−q+τij
) := x(iθ−q,jθ−q+τij

) − κ.

If (iθ, jθ+τij) ∈ P is blue, then

x(iθ,jθ+τij
) := x(iθ,jθ+τij

) − κ and x(iθ−q,jθ−q+τij
) := x(iθ−q,jθ−q+τij

) + κ.

Finally, we remove κ units of flow from the path of holdover arcs from vϕ to vϕ+q and
add κ to the path of holdover arcs from wµ−q to wµ. Notice that we have augmented

flow on a cycle in N T by κ. Since the domain of P is restricted to V (P) ⊂
⋃T−1

θ=q Vθ,
the flow x is still a feasible solution to our problem.

We next argue that the cost of x is not increased so that x is still in X. Since
the flow augmentation transfers an equal amount of flow from one copy of an arc to
a parallel copy, if flow costs are linear, this does not change the cost of our solution.
Since the sum of flow on these two arcs does not change and we simply move flow so
that the flow on each is closer to the average flow on each, if our flow costs are convex
and nondecreasing, then the cost of our solution does not increase.

Finally, the augmentation by κ ensures that |x(δ(vϕ))| and |x(δ(vϕ+q))| are each
reduced by κ and |x(δ(wµ))|+ |x(δ(wµ−q))| is not increased. (Either |x(δ(wµ−q))| > κ
and |x(δ(wµ))| < −κ or, since κ ≤ x(δ(wµ−q)) − x(δ(wµ)), the quantities |x(δ(wµ))|
and |x(δ(wµ−q))| exchange values.) Thus, F (x) =

∑
z∈V

∑T−1
θ=0 |x(δ(zθ))| is decreased

by at least 2κ > 0. This concludes the proof.

QUICKEST FLOWS OVER TIME 1619

Theorem 4.5 implies that we can find a minimum cost flow over time in the time-
expanded network without holdover arcs for intermediate nodes. We can even state
the following stronger result.

Corollary 4.6. For every instance of the minimum cost transshipment over
time problem, when costs are nondecreasing convex functions of the flow rate, there
exists an optimal solution without intermediate node storage such that any infinitesi-
mal unit of flow visits every node at most once.

Proof. We first consider the case that there is no cycle of zero cost in N . If some
path-flow in an optimal flow visits a node v more than once, it travels along a cycle
in N . Therefore the cost of the solution can be decreased by letting the flow wait
at v. This is a contradiction to the optimality of the solution.

If there exists zero cost cycles in N , we can increase the cost of every arc by a
small amount such that an optimal solution to the modified problem always yields an
optimal solution to the original problem. This eliminates cycles of zero cost and thus
concludes the proof.

4.5. General graphs without storage. Here we describe how to adapt the
outline given in section 4.2 to yield an FPTAS for the quickest transshipment prob-
lem with bounded cost in general graphs. The computed solution does not use any
intermediate node storage.

The approach has two main steps. First, we choose ∆ small enough so that
we can increase the time horizon by a sufficiently large amount relative to ∆ to
satisfy condition I. Second, we average the flow computed in the rounded network over
sufficiently large intervals relative to ∆ so that the resulting flow is almost feasible,
satisfying condition II. This second step also increases the total time horizon of the
flow, but again, by careful choice of ∆, by a sufficiently small amount.

The core of the FPTAS consists of an algorithm which gets as input an instance of
the quickest transshipment problem with bounded cost together with a tentative time
horizon T and precision ε > 0. The algorithm either finds a feasible solution (i.e., flow
over time) with makespan at most (1 + O(ε))T or decides that T is smaller than the
optimal makespan. Throughout this section we denote the optimal makespan by T ∗.
A detailed description of the algorithm is given in Figure 9.

Before we discuss and analyze this algorithm in more detail, we first remark the
following. A (1 + O(ε))-approximate flow over time can be computed by embed-
ding Algorithm FPTAS-Core into a binary search framework. We can begin with a
standard binary search to find lower and upper bounds on the optimal makespan T ∗

Algorithm FPTAS-Core
Input: Network N , capacities u, linear costs c, transit times τ , demand vector D,

cost bound C, time horizon T , and precision ε > 0.
Output: Feasible flow over time f with time horizon (1 + O(ε))T satisfying

demands D at cost at most C; or the information that T < T ∗.
1. set ∆ := ε2 T/n and T ′ := ((1 + ε)3T/∆)∆;
2. compute static flow x in N T ′

/∆ satisfying demands (1 + ε)D at cost at
most (1 + ε)C; if no such flow exists, then stop and output “T < T ∗”;

3. transform x into a flow over time f in N with time horizon (1 + ε)T ′

satisfying demands D at cost at most C.

Fig. 9. The core component of an FPTAS.

1620 LISA FLEISCHER AND MARTIN SKUTELLA

that are within a constant multiple of each other. This requires log T ∗ calls of Al-
gorithm FPTAS-Core.9 Based on these upper and lower bounds, an estimate T
with T ∗ ≤ T ≤ (1 + O(ε))T ∗ can be obtained by a geometric mean binary search10

with O(log(1/ε)) calls of Algorithm FPTAS-Core. In particular, the last call of
Algorithm FPTAS-Core then returns a solution to the quickest flow problem with
time horizon at most (1 + ε)T ′. By definition of T ′ and ∆, this makspan is bounded
from above by (1 + ε)4T + (1 + ε)∆ and thus in (1 + O(ε))T ∗. The correctness of
Algorithm FPTAS-Core follows from the next proposition.

Proposition 4.7. Let T ≥ T ∗, ∆ := ε2T/n, and T ′ := ((1 + ε)3T/∆)∆.
(a) There exists a static flow x in the ∆-condensed time-expanded network N T ′

/∆
satisfying demands (1 + ε)D at cost at most (1 + ε)C.

(b) Given a flow x as in (a), one can compute a flow over time f in N with time
horizon at most (1 + ε)T ′ satisfying demands D at cost at most C.

We start by proving the following lemma.
Lemma 4.8. For any δ ≥ 1 and any T ≥ T ∗, there exists a flow over time f̃ with

time horizon δT satisfying supplies and demands δD at cost at most δC.
Proof. Consider an optimal solution f∗ to the quickest flow problem. That is, f∗ is

a flow over time with time horizon T ∗ ≤ T satisfying supplies and demands D at cost
at most C. By rescaling time, we can assume without loss of generality that T and all
transit times are integral. Let x∗ be the static flow in the T -time-expanded network
which corresponds to f∗. Consider a modified instance where all transit times of arcs
are increased by a factor of δ. Then, the δ-condensed time-expanded network of the
modified instance with time horizon δT is identical to the time-expanded network N T

but with arc capacities multiplied by δ. In particular, δx∗ defines a feasible flow over
time with time horizon δT and cost δc(f∗) ≤ δC satisfying demands and supplies δD
for the modified instance. Since transit times in the original instance are smaller, it
can be seen as a relaxation of the modified instance. This yields the existence of f̃
and concludes the proof.

In the following we denote the rounded transit time function by τ ′; i.e., τ ′
e :=

(τe/∆)∆ and 0 ≤ τ ′
e − τe < ∆ for all e ∈ A.

Proof of Proposition 4.7(a). In order to prove the existence of a static flow x
in N T ′

/∆ with the claimed properties, Lemma 4.1 implies that it suffices to show the
following: In the network N with transit times τ ′ there exists a flow over time f̄ with
time horizon T ′ satisfying demands (1 + ε)D at cost at most (1 + ε)C.

By Corollary 4.6 there exists a flow over time f̃ as in Lemma 4.8 with δ =
(1 + ε)2 that in addition sends flow only on simple paths and that never stores flow
at intermediate nodes. This means that f̃ can be written as a sum of path-flows over
time f̃P , P ∈ P: Consider an arbitrary arc e = (v, w) ∈ A. The total flow into arc e
at time θ is

f̃e(θ) =
∑

P∈P : e∈P

f̃P
(
θ − τ(P, e)

)
,(8)

where τ(P, e) denotes the length of the subpath of P which is obtained by removing
arc e and all its successors.

9Alternatively, the constant factor approximation algorithm for the quickest transshipment prob-
lem with bounded cost presented in section 3 yields a lower bound L and an upper bound U on T ∗

with U ∈ O(L).
10For details on this variant of binary search we refer to [21].

QUICKEST FLOWS OVER TIME 1621

ε Tε T 0
θ

f̃P (θ)

0
θ

f̂P (θ)

Fig. 10. The “smoothed” path flow over time f̂P in comparison to the original flow over time f ′
P

sent into path P .

From f̃ we obtain a “smoothed” flow over time (f̂P)P∈P which has a time horizon
of (1 + ε)2T + ε T by defining

f̂P (θ) :=
1

ε T

∫ θ

θ−ε T
f̃P (ξ) dξ(9)

for θ ∈ [0, (1 + ε)2T + ε T) and P ∈ P. An illustrative example is given in Figure 10.
It is easy to check that f̂ obeys capacity constraints and the total amount of flow sent
on a path P ∈ P is the same in f̃ and f̂ . In particular, c(f̂) = c(f̃) ≤ (1 + ε)2C,
and f̂ satisfies demands (1 + ε)2D.

Notice that (f̂P)P∈P still describes a (not necessarily feasible) flow over time
in (N , τ ′). Since every path P ∈ P is simple, it contains at most n − 1 arcs; there-
fore, 0 ≤ τ ′(P) − τ(P) ≤ ε2T , and

0 ≤ τ ′(P, e) − τ(P, e) ≤ ε2T(10)

for all e ∈ P . Thus, if we interpret f̂ as a flow over time in (N , τ ′), we get, for
all e ∈ A and θ ∈ [0, (1 + ε)2T + ε T + ε2 T),

f̂e(θ)
(8)
=

∑

P∈P : e∈P

f̂P (θ − τ ′(P, e))

(9)
=

1

ε T

∑

P∈P : e∈P

∫ θ−τ ′(P,e)

θ−τ ′(P,e)−ε T
f̃P (ξ) dξ

(10)
≤ 1

ε T

∑

P∈P : e∈P

∫ θ−τ(P,e)

θ−τ(P,e)−ε2 T−ε T
f̃P (ξ) dξ(11)

=
1

ε T

∫ θ

θ−ε2 T−ε T

∑

P∈P : e∈P

f̃P
(
ξ − τ(P, e)

)
dξ

(8)
=

1

ε T

∫ θ

θ−ε2 T−ε T
f̃e(ξ) dξ

≤ ε2 T + ε T

ε T
ue = (1 + ε)ue.

(Above, a number over a relation indicates that the corresponding equation is used
to obtain the right-hand side. In (11), we use (10) and the fact that f̃P (ξ) ≥ 0
for all ξ.) Thus, by dividing f̂ by 1 + ε, we establish the existence of a feasible
flow over time—namely f̄ := f̂/(1 + ε)—in (N , τ ′). The time horizon of f̄ is at

1622 LISA FLEISCHER AND MARTIN SKUTELLA

most (1 + ε)2T + ε T + ε2 T ≤ (1 + ε)3T ≤ T ′, its cost is c(f̂)/(1 + ε) ≤ (1 + ε)C, and
it satisfies demands (1 + ε)D.

We now turn to the second part of Proposition 4.7. The static flow x in N T ′
/∆

naturally induces a flow over time f ′ in (N , τ ′) with time horizon T ′. If we choose to
allow storage of flow at intermediate nodes, we may simplify the algorithm by finding
a flow x satisfying demands D at cost C in step 2. Then the corresponding flow over
time can be simulated in the network with transit times τ by holding flow at nodes.

If, however, storage of flow at intermediate nodes is not allowed, deriving the final
flow over time f in (N , τ) from the static flow x computed in step 2 is a nontrivial task.
The static flow x corresponds to a flow over time f ′ in (N , τ ′) with time horizon T ′

that satisfies demands (1+ε)D at cost at most (1+ε)C. Since x lives in a (condensed)
time-expanded network without holdover arcs at intermediate nodes, f ′ never stores
flow at intermediate nodes in (N , τ ′). Moreover, using the same argument as in
Corollary 4.6, we can assume that x is such that f ′ sends flow only on simple paths in
the underlying network N . This means that f ′ can be written as a sum of path-flows
over time f ′

P , P ∈ P.
In the following lemma we show that a path-decomposition of the static flow x

can be turned into a path-decomposition of the flow over time f ′ which features a
simple structure. Notice that the number of arcs of the condensed time-expanded
network N T ′

/∆ is in O(mn/ε2).
Lemma 4.9. A path-decomposition of x into flows on r paths in N T ′

/∆ can be
turned into a path-decomposition (f ′

P)P∈P of f ′ on r paths such that the time inter-
val [0, T ′) can be partitioned into T ′/∆ ∈ O(n/ε2) subintervals where f ′

P is constant
for all P ∈ P.

Proof. Any path P used in a path-decomposition of x connects a source to a
sink in N T ′

/∆. Each path P consists of a sequence of holdover arcs at the source,
followed by a path of copies of arcs in N , followed by a sequence of holdover arcs at
the sink. The static path-flow in N T ′

/∆ of value xP along P thus induces a path-flow
over time f ′

P ′ : [0, T ′) → R+ along path P ′ in N such that the flow function f ′
P ′ is

0 except for an interval of length ∆ where it is equal to xP /∆. Since there can be
several paths in N T ′

/∆ that correspond to the same path P ′ in N , the flow function
on path P ′ in the final decomposition of f ′ is a piecewise constant function where the
number of intervals with constant flow value is bounded by the number of time layers
of N T ′

/∆ which is equal to T ′/∆.
We are now ready to prove the second part of Proposition 4.7.
Proof of Proposition 4.7(b). Given x, we first derive the corresponding flow over

time f ′ in (N , τ ′) with a path-decomposition (f ′
P)P∈P as in Lemma 4.9. Similar to

the proof of Proposition 4.7(a), we consider a “smoothed” flow over time f̌ in (N , τ ′)
defined by

f̌P (θ) :=
1

ε T ′

∫ θ

θ−ε T ′
f ′
P (ξ) dξ(12)

for θ ∈ [0, (1 + ε)T ′) and P ∈ P. The flow over time (f̌P)P∈P can be interpreted
as a (not necessarily feasible) flow over time in (N , τ) with time horizon (1 + ε)T ′

satisfying demands (1+ ε)D at cost at most (1+ ε)C. Moreover, by using essentially
the same arguments as for f̂ in the proof of Proposition 4.7(a), we get, for all e ∈ A

QUICKEST FLOWS OVER TIME 1623

and θ ∈ [0, (1 + ε)T ′),

f̌e(θ) =
∑

P∈P : e∈P

f̌P (θ − τ(P, e))

(12)
=

1

ε T ′

∑

P∈P : e∈P

∫ θ−τ(P,e)

θ−τ(P,e)−ε T ′
f ′
P (ξ) dξ

(10)
≤ 1

ε T ′

∑

P∈P : e∈P

∫ θ−τ ′(P,e)+ε2T ′

θ−τ ′(P,e)−ε T ′
f ′
P (ξ) dξ(13)

=
1

ε T ′

∫ θ+ε2T ′

θ−ε T ′

∑

P∈P : e∈P

f ′
P

(
ξ − τ ′(P, e)

)
dξ

=
1

ε T ′

∫ θ+ε2T ′

θ−ε T ′
f ′
e(ξ) dξ

≤ ε2 T ′ + ε T ′

ε T ′ ue = (1 + ε)ue.

(Above, a number over a relation indicates that the corresponding equation is used
to obtain the right-hand side.) Thus, by dividing f̌ by 1 + ε, we get the desired flow
over time f in (N , τ) with time horizon (1 + ε)T ′ satisfying demands D at cost at
most C.

It remains to discuss the issue of how to actually compute f in step 3 of Algo-
rithm FPTAS-Core. According to Lemma 4.9, a path-decomposition of x yields a
path-decomposition of the corresponding flow over time f ′ such that f ′

P is piecewise
constant for all P ∈ P and has at most O(n/ε2) breakpoints. Since by definition

fP (θ) =
1

1 + ε

1

ε T ′

∫ θ

θ−ε T ′
f ′
P (ξ) dξ,

by Lemma 4.9, the functions fP , P ∈ P, are piecewise linear (see Figure 10) and can
be efficiently computed. This concludes the proof.

It remains to discuss the running time of Algorithm FPTAS-Core. The con-
densed time-expanded network N T ′

/∆ (without holdover arcs) contains O(n2/ε2)
nodes and O(mn/ε2) arcs. Thus the static flow x′ in step 2 can be computed in
polynomial time. Since step 3 of Algorithm FPTAS-Core also takes polynomial
time (see the proof of Proposition 4.7(b)), the overall running time of the algorithm
is polynomial in the input size.

Theorem 4.10. For an arbitrary ε > 0, a (1 + ε)-approximate solution to the
quickest transshipment problem with bounded cost can be obtained from O(log(1/ε))
static min-cost flow computations in a condensed time-expanded network containing
O(n2/ε2) nodes and O(mn/ε2) arcs (without holdover arcs). In particular, this solu-
tion does not use intermediate node storage.

For the case of the quickest transshipment problem without costs, the min-cost
flow computations in the condensed time-expanded network can be replaced by max-
flow computations.

4.6. Quickest multicommodity flows. The result of Theorem 4.10 can be
generalized to the quickest multicommodity flow problem with bounded cost. Figure 2
shows that the optimal solution to the quickest multicommodity flow problem may
require the use of storage of flow at intermediate nodes. On the other hand, if storing

1624 LISA FLEISCHER AND MARTIN SKUTELLA

at intermediate nodes is not allowed, then the optimal solution may contain nonsimple
flow paths. The analysis in (11) and (13) relies on the fact that one can restrict to
simple flow paths, since it uses (10). Indeed, it is shown in [19] that, unless P=NP,
there is no FPTAS for the quickest multicommodity flow problem when intermediate
node storage is prohibited and flow may only be sent on simple paths. If, however,
intermediate node storage is allowed, then there exists an optimal solution that uses
only simple flow paths: Instead of flow traveling around a cycle, it can simply wait at
the start node of the cycle. In this case, the approach described in section 4.5 can be
modified as follows.

A flow over time f which stores flow at intermediate nodes can no longer be
decomposed into path-flows over time as described in (8). In order to handle the
setting with storage of flow at intermediate nodes in a path-based model, we introduce
the following notation: A path with delays P δ is given by a path P in N consisting
of nodes (v0, v1, . . . , vp) and a vector of nonnegative delays δ = (δ1, . . . , δp). The
value δi, i = 1, . . . , p, specifies the amount of time that flow is stored at node vi before
it continues its journey towards node vi+1 in a flow over time on P δ. Thus, flow
entering P δ at time θ enters arc e = (v), v)+1), + = 0, . . . , p− 1, at time θ + τ(P δ, e)

with τ(P δ, e) :=
∑)

j=1(τ(vj−1,vj) + δj).
Since in a given flow over time f with time horizon T every infinitesimal unit

of flow describes a path with delays in N , the flow over time f can be decomposed
into (possibly infinitely many) flows over time fP δ on paths with delays P δ. In this
setting, (8) is replaced by

fe(θ) =
∑

P δ : e∈P

fP δ

(
θ − τ(P δ, e)

)
(14)

for all e ∈ A. If f is given by a corresponding static flow x in a (condensed) time-
expanded network with holdover arcs, then there exists a decomposition of f into
flows over time on paths with delays in N whose number is bounded by the num-
ber of arcs in the (condensed) time-expanded network: Consider an arbitrary path-
decomposition of x, and notice that any path in the (condensed) time-expanded net-
work with holdover arcs yields a path with delays in N .

Summarizing, a straightforward modification of the analysis in section 4.5 (i.e.,
replacing (8) by (14)) yields the following result.

Theorem 4.11. Consider an instance of the quickest multicommodity trans-
shipment problem with bounded cost and intermediate node storage. For any ε > 0,
a (1+ε)-approximate solution can be found by O(log(1/ε)) static multicommodity flow
computations with bounded cost in a condensed time-expanded network with O(n2/ε2)
nodes and O(mn/ε2) arcs (including holdover arcs).

5. Earliest arrival flows. In this section, we address the multiple source, earli-
est arrival flow problem: Given a set of sources S with supplies Dv > 0 for v ∈ S and
a single sink t, send the supplies to the sink so that the amount of supplies arriving
at the sink by time θ is the maximum possible for all θ ≥ 0. We show how the result
from section 4 can be generalized to this problem.

We use the following notion of approximation for the problem of computing an ear-
liest arrival flow. A flow over time is an α-approximate solution to this problem if, for
all d′ ≤ d :=

∑
v∈S Dv, the earliest point in time when d′ units have arrived at the sink

is within a factor of α of the earliest possible time. An algorithm which computes such
a flow over time in polynomial time is called an α-approximation algorithm. In order
to stress the property that the performance guarantee α is achieved for all d′ ≤ d, we

QUICKEST FLOWS OVER TIME 1625

say that such an algorithm has universal performance guarantee α. For the earliest
arrival problem, we find a solution with universal performance guarantee (1 + ε).

In section 5.2 we show that a unit-interval discretization may not be sufficiently
fine to achieve this guarantee, and we describe how to determine a good initial dis-
cretization. This discretization may be too large, and it will be necessary to condense
it. However, a uniformly crude discretization will not work, so in section 5.3, we in-
troduce a general framework for nonuniform condensed time-expanded networks and
prove some useful properties. Finally, in section 5.4 we derive a polynomial-time
algorithm that yields a univeral performance guarantee for the earliest arrival flow
problem by using a nonuniform, condensed time-expanded network with intervals of
geometrically increasing size.

5.1. Previous work. In the discrete time model, a universally maximal s-t-flow
over time can be computed in the time-expanded network by using lexicographically
maximal flows introduced by Minieka [28]. A lexicographically maximal flow is defined
in a static network with multiple sources and/or sinks. There is a strict ordering on
the sources and sinks, e.g., {ν1, ν2, . . . , νk}, where νi is used here to denote either
a source or a sink. A lexicographically maximal flow is a flow that simultaneously
maximizes the flow leaving each ordered subset of sources and sinks {ν1, ν2, . . . , νi},
i = 1, . . . , k. In the discrete time model, a universally maximal s-t-flow over time with
time horizon T is a lexicographically maximal flow in the time-expanded graph with
ordering of sources and sinks as

sT−1, sT−2, . . . , s1, s0, tT−1, tT−2, . . . , t1, t0.

However, due to the exponential size of the time-expanded network, this insight does
not lead to an efficient algorithm for the problem. As mentioned above, the algorithms
of Wilkinson [35] and Minieka [28] are based on the successive shortest path algorithm.
These also are not efficient algorithms for computing universally maximal dynamic
flows since the successive shortest path algorithm requires an exponential number of
iterations in the worst case; see, e.g., Zadeh [36].

While the results of Wilkinson and Minieka were originally derived for the discrete
time model, they also hold for the continuous time model. In this setting, the existence
of universally maximal dynamic flows was first observed by Philpott [32]. Fleischer
and Tardos [11] show how the algorithms for the discrete time model mentioned above
can be carried over to the continuous time setting.

In the continuous time model, an equivalent problem is the universally quickest
flow problem which asks for a flow over time of value d such that the earliest point in
time when d′ units have arrived at the sink is simultaneously minimized for all d′ ≤ d
and the earliest point in time when d′ units have left the source is simultaneously
maximized for all d′ ≤ d.

Hoppe and Tardos [23] compute a single-source single-sink universally maximal
dynamic flow where the amount of flow is approximately optimal at any moment of
time. Our Lemma 4.8 implies that this algorithm also achieves a universal guarantee.

An earliest arrival flow also exists for the case of multiple sources and a single
sink [34]. In the discrete time model, such a flow over time can again be found by a
lexicographically maximal flow computation in the time-expanded network. On the
other hand, Fleischer [9] presents an instance with two sources and two sinks for which
an earliest arrival flow does not exist.

Nonuniform time-expanded networks have been used previously to obtain ex-
act algorithms for the quickest transshipment problem in the setting of zero transit

1626 LISA FLEISCHER AND MARTIN SKUTELLA

times [9]. Partitioning time into intervals of geometrically increasing size has been
used previously in conjunction with dynamic programming to derive approximation
algorithms for problems in the area of machine scheduling [20, 4, 5, 1].

5.2. A sufficiently fine discretization of time. Unfortunately, a lexicograph-
ically maximal flow in a time-expanded network does not necessarily yield a universal
performance guarantee for the quickest flow problem in the continuous time model.
Although we can interpret a static flow in a time-expanded network as a continuous
flow over time (see proof of Lemma 4.1), in doing so, all the solutions we get are
such that the rate of flow arriving at the sink is constant (i.e., averaged) within each
discrete time interval. While this effect is negligible for late intervals in time, as the
following example shows, it could be significant in the first time intervals.

Example 1. The network is a single arc from source s to sink t with capacity
2 and transit time 0. There is a unit of supply at s and a unit of demand at t. A
universally quickest flow sends flow from s to t at rate 2 during the interval [0, 1

2) so
that flow arrives at t at rate 2 in the interval [0, 1

2). Averaging the flow over unit
intervals yields a flow that arrives at t at rate 1 in the interval [0, 1). Thus this flow
has universal performance guarantee of at most 2.

The problem illustrated by this example can be resolved as follows. For an arbi-
trary ε > 0 with 1/ε integral, we discretize time into intervals of size ε. Then, averag-
ing flow within each such interval delays flow that arrives at the sink after time 1 by
at most a factor of 1 + ε. It thus remains to take care of what happens until time 1.

Notice that flow arriving at the sink before time 1 can use only arcs with transit
time 0. In particular, an earliest arrival flow until time 1 can be computed by re-
stricting attention to the subnetwork consisting of these arcs. Hajek and Ogier [18]
describe an algorithm that finds an earliest arrival flow in a network with a single
sink and zero transit times using O(n) maximum flow computations. Fleischer [9]
gives an improved algorithm that solves the problem in the same asymptotic time as
one maximum flow computation. Moreover, the analysis of this algorithm shows that
the function describing the optimal rate of inflow into the sink is piecewise constant
and has at most k breakpoints θ1, . . . , θk, where k is the number of sources. These
breakpoints are independent of the discretization after time 1 and can be computed
without this information in polynomial time. They can then be used to determine
the appropriate discretization in [0, 1). Thus, a sufficiently fine discretization of time
guarantees that an earliest arrival flow until time 1 can be computed in the corre-
sponding time-expanded network. In the example given above, a discretization of time
into intervals of size 1/2 is sufficient. Together with the observation stated above, this
yields the following result.

Lemma 5.1. Consider an instance of the earliest arrival problem with multiple
sources with supply vector D and a single sink, and let θ1, . . . , θk be defined as above.
Then, a (1 + ε)-approximate earliest arrival flow can be obtained from a lexicograph-
ically maximal flow computation in the time-expanded network N T /∆, where ∆ is
chosen such that θ1, . . . , θk and ε are multiples of ∆.

By discussion in [9] (specifically, Theorem 3.6 and Theorem 4.1), we can bound ∆
from below by (m

∑
e∈A ue)−k. Thus, the size of the resulting time-expanded net-

work N T /∆ is pseudopolynomial in the input size of the problem. Since time can
be rescaled by a factor of 1/∆, we can and will assume without loss of generality
that ∆ = 1 and thus N T /∆ = N T . In the next subsection we show how N T can be
turned into a network of polynomial size while only losing another factor of 1 + ε in
the performance guarantee of the resulting polynomial-time algorithm.

QUICKEST FLOWS OVER TIME 1627

5.3. Nonuniform condensed time-expanded networks. As we mentioned
above, the size of the time-expanded network N T is only pseudopolynomial in the
input size. In contrast to the situation for the quickest flow problem discussed in
section 4, using a uniformly rough discretization can lead to a much worse performance
guarantee for the earliest arrival flow problem. Instead we will use a nonuniform
discretization. In this section we describe a general framework for nonuniform time-
expanded networks and establish, where possible, the appropriate generalizations of
properties of uniform time-expanded networks.

Overloading the notation introduced in section 4.1, for a sorted list L = 〈θ0, . . . , θr〉
with

0 = θ0 < θ1 < · · · < θr−1 < θr = T,

the L-time-expanded network of N = (V,A) denoted by NL is obtained by creating r
copies of V , labeled V0 through Vr−1, with the qth copy of node v denoted vq for q =
0, . . . , r − 1. For every arc e = (v, w) ∈ A and for every q ≥ 0 with θq + τe ≤ θr−1,
there is an arc eq from vq to wq′e with

q′e := min{q′′ | θq + τe ≤ θq′′}.(15)

When e is clear from context, we use q′ instead of q′e. The capacity of arc eq is set
to ue (θq+1 − θq). In addition, there is a holdover arc from vq to vq+1 with infinite
capacity for all v ∈ V and 0 ≤ q < r − 1. Notice that this definition generalizes
the definition of the T -time-expanded network N T ; in particular, N T = NL for L =
〈0, 1, . . . , T 〉.

Whenever we consider a static flow in NL, we implicitly assume that tr−1 is its
only sink; all flow arriving at tq for q < r − 1 is sent to this sink on holdover arcs.

Lemma 5.2. Let L = 〈0 = θ0, . . . , θr〉 with θq − θq−1 ≤ θq+1 − θq for all q = 1
to r− 1. Then any static flow in NL corresponds to a flow over time in N such that
the amount of flow reaching t in N by time θq+1, q = 0, . . . , r− 1, is the same as the
amount of flow reaching node tq in NL.

Proof. Let x be a static flow in NL. We interpret x as a “generalized” flow over
time f ′ where, in contrast to “standard” flows over time, transit times can now vary
over time. Interpret the flow xeq on arc eq = (vq, wq′) as flow f ′

e sent at the constant
rate xeq/(θq+1−θq) into arc e = (v, w) during the time interval [θq, θq+1) and arriving
at node w during the time interval [θq′ , θq′+1) at the constant rate xeq/(θq′+1−θq′). In
particular, in the time interval [θq, θq+1), the transit time on arc e varies between θq′−
θq (flow entering the arc at time θq) and θq′+1−θq+1 (flow entering the arc immediately
before time θq+1) in f ′. Thus, since the sizes of the time intervals [θq, θq+1), q =
0, . . . , r − 1, are nondecreasing and by choice of q′, the transit time on arc e in f ′ is
never smaller than τe.

By design, f ′ obeys flow rate capacity constraints and flow conservation. More-
over, for q = 0, . . . , r−1, the amount of flow reaching t in f ′ by time θq+1 is the same
as the amount of flow reaching node tq in x. Finally, since transit times in f ′ are
always lower bounded by the actual transit times τe of arcs e ∈ A (by (15)), it can
easily be interpreted as a regular flow over time f in N by introducing appropriate
waiting times for every infinitesimal flow unit at the head of each arc.

Lemma 5.3. Let L = 〈0 = θ0, . . . , θr〉 with θq − θq−1 ≤ θq+1 − θq for all q = 1
to r − 1. Let f be any flow over time that completes by time θr in the network N
modified so that all transit times are increased by ∆ := θr − θr−1. Then, f induces a
feasible static flow in NL of the same value.

1628 LISA FLEISCHER AND MARTIN SKUTELLA

Proof. For all e ∈ A and 0 ≤ q ≤ r − 1, define xeq to be the total f -flow into e
in interval [θq, θq+1). Since f is feasible, it obeys the capacity constraints; then by
construction so does x. By design, the value of x equals the value of f .

To establish flow conservation, consider the path P = 〈w0, w1, . . . , wh = t〉 trav-
eled by an infinitesimal unit of flow in f . This infinitesimal unit of flow arrives at wi at
time ϕi and leaves wi at some time ξi ≥ ϕi. We argue that the corresponding unit of
flow in x arrives at wi

pi
for some pi satisfying θpi ≤ ϕi. Thus it is available to be sent

along P in NL on arc (wi
qi , w

i+1
q′i

), where qi is the maximum index + satisfying θ) ≤ ξi.

This will show that x satisfies flow conservation.
Set q := qi−1. By design of x, the infinitesimal unit of flow leaves wi−1

q in NL

and thus arrives at wi
q′ , where q′ is defined according to (15). By definition of q′, we

have that

θq′ − θq = θq′−1 − θq + (θq′ − θq′−1)

< τ(wi−1,wi) + (θr − θr−1) = τ(wi−1,wi) + ∆.

This yields θq′ < θq + τ(wi−1,wi) + ∆ ≤ ξi−1 + τ(wi−1,wi) + ∆ = ϕi ≤ ξi. (The
second inequality follows by definition of q := qi−1 ≤ ξi−1 at the end of the previous
paragraph; the subsequent equality follows by definition of ϕi.) This implies that
θq′ ≤ θqi , and thus the flow obeys conservation constraints.

5.4. An approximation scheme. To obtain a (1 + ε)-universal guarantee for
the earliest arrival flow problem, we use a geometrically increasing time discretization.
Let p := (2n/ε2), and define the list

L := 〈0, 1, 2, . . . , 2p,
2(p + 1), 2(p + 2), . . . , 4p,

4(p + 1), 4(p + 2), . . . , 8p,

. . .

2)−1(p + 1), 2)−1(p + 2), . . . , 2)p〉.

Here + ∈ N0 is chosen such that the resulting time-expanded network NL is large
enough to allow for a (1 + O(ε))-approximate time horizon. To be more precise,
we choose the smallest + such that 2T ∗ ≤ 2)p, where T ∗ is the time horizon of an
optimal flow over time. Notice that the length of the list L is in O(p log T ∗) and hence
polynomially bounded in the input size and 1/ε. It thus remains to be shown that
a lexicographically maximal flow in the corresponding geometrically condensed time-
expanded network NL yields a flow over time with universal performance guarantee 1+
O(ε).

Lemma 5.4. A lexicographically maximal flow in NL induces a flow over time
in N with universal performance guarantee 1 + O(ε).

Proof. Let T ≤ T ∗ be the minimal time required to send d′ ≤ d units of flow to
the sink. We consider the time-expanded network NL′

defined by the sublist L′ :=
〈θ0, . . . , θr′〉 of L with r′ := min{q | θq ≥ (1+ ε)2 T}. In other words, NL′

is obtained
from NL by removing all time layers Vq with q ≥ r′ and all incident arcs. We show

below that there is a flow in NL′
of value d′. Then, since in a lexicographically

maximum flow in NL at least d′ units of flow reach tr′−1, the corresponding flow over
time in N sends at least d′ to t by time θr′ by Lemma 5.2. Hence this flow yields a
universal performance guarantee of 1 + O(ε).

QUICKEST FLOWS OVER TIME 1629

Let ∆′ = θr′ − θr′−1. By choice of p and since we can assume that θr′ ≤ 2T , we
have that

∆′ = θr′ − θr′−1 ≤ θr′/p ≤ ε2T/n.(16)

Since there is flow of value d′ in N by time T , Lemma 4.8 implies that there is flow
of value d′(1 + ε) in N by time T (1 + ε). Then, the same argument as in the proof
of Proposition 4.7(a) (together with (16)) implies that there is flow of value d′ that
completes by time (1+ ε)T + ε T + ε2 T = (1+ ε)2T in the network N with all transit
times increased by ∆′. By Lemma 5.3, this implies that there is flow of value d′

in NL′
.

We have now established the main result of this section.
Theorem 5.5. There exists an FPTAS for the problem of computing an earliest

arrival flow in a network with multiple sources and a single sink.

Acknowledgments. We thank Dan Stratila for his helpful comments on an
earlier version of this paper. We also thank the two anonymous referees for their
numerous valuable comments that helped to improve the presentation of the paper.

REFERENCES

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko, Approximation schemes
for minimizing average weighted completion time with release dates, in Proceedings of the
40th Annual IEEE Symposium on Foundations of Computer Science, New York City, NY,
1999, pp. 32–43.

[2] J. E. Aronson, A survey of dynamic network flows, Ann. Oper. Res., 20 (1989), pp. 1–66.
[3] R. E. Burkard, K. Dlaska, and B. Klinz, The quickest flow problem, ZOR Methods Models

Oper. Res., 37 (1993), pp. 31–58.
[4] S. Chakrabarti, C. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein, Improved

scheduling algorithms for minsum criteria, in Automata, Languages and Programming,
Lecture Notes in Comput. Sci. 1099, F. Meyer auf der Heide and B. Monien, eds., Springer,
Berlin, 1996, pp. 646–657.

[5] F. A. Chudak and D. B. Shmoys, Approximation algorithms for precedence-constrained
scheduling problems on parallel machines that run at different speeds, J. Algorithms, 30
(1999), pp. 323–343.

[6] L. Fleischer and M. Skutella, The quickest multicommodity flow problem, in Integer Pro-
gramming and Combinatorial Optimization, Lecture Notes in Comput. Sci. 2337, W. J.
Cook and A. S. Schulz, eds., Springer, Berlin, 2002, pp. 36–53.

[7] L. Fleischer and M. Skutella, Minimum cost flows over time without intermediate stor-
age, in Proceedings of the 14th Annual ACM–SIAM Symposium on Discrete Algorithms,
Baltimore, MD, 2003, pp. 66–75.

[8] L. K. Fleischer, Approximating fractional multicommodity flows independent of the number
of commodities, SIAM J. Discrete Math., 13 (2000), pp. 505–520.

[9] L. K. Fleischer, Faster algorithms for the quickest transshipment problem, SIAM J. Optim.,
12 (2001), pp. 18–35.

[10] L. K. Fleischer, Universally maximum flow with piece-wise constant capacity functions, Net-
works, 38 (2001), pp. 1–11.

[11] L. K. Fleischer and É. Tardos, Efficient continuous-time dynamic network flow algorithms,
Oper. Res. Lett., 23 (1998), pp. 71–80.

[12] L. R. Ford and D. R. Fulkerson, Constructing maximal dynamic flows from static flows,
Oper. Res., 6 (1958), pp. 419–433.

[13] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962.

[14] D. Gale, Transient flows in networks, Michigan Math. J., 6 (1959), pp. 59–63.
[15] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman, San Francisco, 1979.

1630 LISA FLEISCHER AND MARTIN SKUTELLA

[16] N. Garg and J. Könemann, Faster and simpler algorithms for multicommodity flow and
other fractional packing problems, in Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, Palo Alto, CA, 1998, pp. 300–309.

[17] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Algorithms Combin., Springer, Berlin, 1988.

[18] B. Hajek and R. G. Ogier, Optimal dynamic routing in communication networks with con-
tinuous traffic, Networks, 14 (1984), pp. 457–487.

[19] A. Hall, S. Hippler, and M. Skutella, Multicommodity flows over time: Efficient algorithms
and complexity, Theoret. Comput. Sci., to appear.

[20] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms, Math. Oper. Res., 22
(1997), pp. 513–544.

[21] R. Hassin, Approximation schemes for the restricted shortest path problem, Math. Oper. Res.,
17 (1992), pp. 36–42.

[22] B. Hoppe, Efficient Dynamic Network Flow Algorithms, Ph.D. thesis, Cornell University,
Ithaca, NY, 1995.

[23] B. Hoppe and É. Tardos, Polynomial time algorithms for some evacuation problems, in
Proceedings of the 5th Annual ACM–SIAM Symposium on Discrete Algorithms, Arlington,
VA, 1994, pp. 433–441.

[24] B. Hoppe and É. Tardos, The quickest transshipment problem, Math. Oper. Res., 25 (2000),
pp. 36–62.

[25] B. Klinz and G. J. Woeginger, Minimum-cost dynamic flows: The series-parallel case,
Networks, 43 (2004), pp. 153–162.

[26] D. H. Lorenz and D. Raz, A simple efficient approximation scheme for the restricted shortest
path problem, Oper. Res. Lett., 28 (2001), pp. 213–219.

[27] N. Megiddo, Combinatorial optimization with rational objective functions, Math. Oper. Res.,
4 (1979), pp. 414–424.

[28] E. Minieka, Maximal, lexicographic, and dynamic network flows, Oper. Res., 21 (1973),
pp. 517–527.

[29] R. G. Ogier, Minimum-delay routing in continuous-time dynamic networks with piecewise-
constant capacities, Networks, 18 (1988), pp. 303–318.

[30] J. B. Orlin, Minimum convex cost dynamic network flows, Math. Oper. Res., 9 (1984), pp. 190–
207.

[31] C. A. Phillips, The network inhibition problem, in Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing, San Diego, CA, 1993, pp. 776–785.

[32] A. B. Philpott, Continuous-time flows in networks, Math. Oper. Res., 15 (1990), pp. 640–661.
[33] W. B. Powell, P. Jaillet, and A. Odoni, Stochastic and dynamic networks and routing, in

Network Routing, Handbooks Oper. Res. Management Sci. 8, M. O. Ball, T. L. Magnanti,
C. L. Monma, and G. L. Nemhauser, eds., North–Holland, Amsterdam, 1995, Chap. 3,
pp. 141–295.

[34] D. Richardson and É. Tardos, private communication, 2002.
[35] W. L. Wilkinson, An algorithm for universal maximal dynamic flows in a network, Oper.

Res., 19 (1971), pp. 1602–1612.
[36] N. Zadeh, A bad network problem for the simplex method and other minimum cost flow algo-

rithms, Math. Program., 5 (1973), pp. 255–266.

