
Scheduling-LPs Bear Probabilities
Randomized Approximations for Min-Sum Criteria

Andreas S. Schulz and Martin Skutella

Technische Universit~it Berlin,
Fachbereich Mathematik, MA 6-t ,

StraBe des 17. Jani 136, 10623 Berlin, Germany,
E-mail {schulz,skutelta} @math.m-berlin.de

Abstract. In this paper, we provide a new class of randomized approximation
algorithms for scheduling problems by directly interpreting solutions to so-called
time-indexed LPs as probabilities. The most general model we consider is sched-
uling unrelated parallel machines with release dates (or even network scheduling)
so as to minimize the average weighted completion time. The crucial idea for
these multiple machine problems is not to use standard list scheduling but rather
to assign jobs randomly to machines (with probabilities taken from an optimal
LP solution) and to perform list scheduling on each of them.
For the general model, we give a (2+ e)-approximation algorithm. The best pre-
viously known approximation algorithm has a performance guarantee of 16/3
[HSW96]. Moreover, our algorithm also improves upon the best previously
known approximation algorithms for the special case of identical parallel ma-
chine scheduling (performance guarantee (2.89 + e) in general [CPS+96] and
2.85 for the average completion time [CMNS97], respectively). A perhaps sur-
prising implication for identical parallel machines is that jobs are randomly as-
signed to machines, in which each machine is equally likely. In addition, in this
case the algorithm has running time O(nlogn) and performance guarantee 2.
The same algorithm also is a 2-approximation for the corresponding preemptive
scheduling problem on identical parallel machines.
Finally, the results for identical parallel machine scheduling apply to both the
off-line and the on-line settings with no difference in performance guarantees. In
the on-line setting, we are scheduling jobs that continually arrive to be processed
and, for each time t, we must construct the schedule until time t without any
knowledge of the jobs that will arrive afterwards.

1 Introduction

It is by now well-known that randomization can help in the design of algorithms, cf.,
e.g., [MR95,MNR96]. One way of guiding randomness is the use of linear programs
(LPs). In this paper, we give LP-based approximation algorithms for problems which
are particularly well-known for the difficulties to obtain good lower bounds: machine
(or processor) scheduling problems, Because of the random choices involved, our algo-
rithms are rather randomized approximation algorithms. A randomized p-approxima-
tion algorithm is a polynomial-t ime algorithm that produces a feasible solution whose
expected value is within a factor of p of the optimum; p is also called the expected

417

performance guarantee of the algorithm. Actually, we always compare the output of an
algorithm with a lower bound given by an optimum solution to a certain LP relaxation.
Hence, at the same time we obtain an analysis of the quality of the respective LP. All our
off-line algorithms can be derandomized with no difference in performance guarantee,
but at the cost of increased (but still polynomial) running times.

We consider the following model. We are given a set J of n jobs (or tasks) and
m unrelated parallel machines. Each job j has a positive integral processing require-
ment Pij which depends on the machine i job j will be processed on. Each job j must
be processed for the respective amount of time on one of the m machines, and may
be assigned to any of them. Every machine can process at most one job at a time. In
preemptive schedules, a job may repeatedly be interrupted and continued later on an-
other (or the same) machine. In nonpreemptive schedules, a job must be processed in
an uninterrupted fashion. Each job j has an integral release date rj >t 0 before which it
cannot be processed. We denote the completion time of job j in a schedule by Cj, and
for any fixed a E (0,1], the a-point Cj(a) of job j is the first moment in time at which
an a-fraction of job j has been completed; a-points were first used in the context of
approximation by Hall, Shmoys, and Wein [HSW96]. We seek to minimize the total
weighted completion time: a weight wj >t 0 is associated with each job j and the goal
is to minimize]~j~jwjCj. In scheduling, it is quite convenient to refer to the respective
problems using the standard classification scheme of Graham et al. [GLLRK79]. The
nonpreemptive problem R I rj I ZwjCj, just described, is strongly NP-hard.

Scheduling to minimize the total weighted completion time (or, equivalently, the av-
erage weighted completion time) has recently achieved a great deal of attention, partly
because of its importance as a fundamental problem in scheduling, and also because of
new applications, for instance, in compiler optimization [CJM+96] or in parallel com-
puting [CM96]. In the last two years, there has been significant progress in the design of
approximation algorithms for this kind of problems which led to the development of the
first constant worst-case bounds in a number of settings. This progress essentially fol-
lows on the one hand from the use of preemptive schedules to construct nonpreemptive
ones [PSW95,CPS+96,CMNS97,Goe97,SS97]. On the other hand, one solves an LP re-
laxation and then a schedule is constructed by list scheduling in a natural order dictated
by the LP solution [PSW95,HSW96,Sch96,HSSW96,MSS96,Goe97,CS97,SS97].

In this paper, we utilize a different idea: random assignments of jobs to machines.
To be more precise, we exploit a new LP relaxation in time-indexed variables for the
problem R I rj [~wjCj, and we then show that a certain variant of randomized rounding
leads to a (2 + e)-approximation algorithm, for any e > 0. At the same moment, the
corresponding LP is a (2 + e)-relaxation, i.e., the true optimum is always within a
factor of (2 + e) of the optimal value of the LP relaxation; and this is tight. Our algorithm
improves upon a 16/3-approximation algorithm of Hall, Shmoys, and Wein [HSW96]
that is also based on time-indexed variables which have a different meaning, however. In
contrast to their approach, our algorithm does not rely on Shmoys and Tardos' rounding
technique for the generalized assignment problem [ST93]. We rather exploit the LP by
interpreting LP values as probabilities with which jobs are assigned to machines. For
an introduction to and the application of randomized rounding to other combinatorial
optimization problems, the reader is referred to [RT87,MNR96].

418

For the special case of identical parallel machines, i.e., for each job j and all ma-
chines i we have PO = P J, Chakrabarti, Phillips, Schulz, Shmoys, Stein, and Wein
[CPS+96] obtained a (2.89 + e)-approximation by refining an on-line greedy frame-
work of Hall et at. [HSW96]. The former best known LP-based algorithm, however,
relies on an LP relaxation solely in completion time variables which is weaker than the
one we propose. It has performance guarantee (4 - 1) (see [HSSW96] for the details).
For the LP we use here, an optimum solution can greedily be obtained by a certain pre-
emptive schedule on a virtual single machine which is m times as fast as any of the orig-
inal machines. The idea of using a preemptive relaxation on such a virtual machine was
introduced before by Chekuri, Motwani, Natarajan, and Stein [CMNS97]. They show
that any preemptive schedule on this machine can be converted into a nonpreemptive
schedule on the m identical parallel machines such that, for each job j, its completion
time in the nonpreemptive schedule is at most (3 - ~) times its preemptive comple-
tion time. For the average completion time, they refine this to a 2.85-approximation
algorithm for P Ir~lZ C~. For P I r i[Y~w~C~, the algorithm we propose delivers in time
O(nlogn) a solution that is expected to be within a factor of 2 of the optimum.

Since the LP relaxation we use is also a relaxation for the corresponding preemp-
tive problem, our algorithm is also a 2-approximation for P It j, pmtn l~,wjCj. This
improves upon a 3-approximation algorithm due to Hall, Schulz, Shmoys, and Wein
[HSSW96].

The paper is organized as follows. In Section 2, we start with the discussion of our
main result: the 2-approximation in the general context of unrelated parallel machine
scheduling. In the next section, we give a combinatorial 2-approximation algorithm for
PI rj lY~wjCj and Pi rj, pmtn[~,wjCj. Then, in Section 4, we discuss the derandom-
ization of the previously given randomized algorithms. Finally, in Section 5 we give
the technical details of turning the pseudo-polynomial algorithm of Section 2 into a
polynomial time algorithm with performance guarantee (2 + e).

2 Unrelated Parallel Machine Scheduling with Release Dates

In this section, we consider the problem R I rj 17LwjCj. As in [PSW94,HSW96], we will
even discuss a slightly more general problem in which the release date of job j may
also depend on the machine. The release date of job j on machine i is thus denoted
by rij. Machine-dependent release dates are relevant to model network scheduling in
which parallel machines are connected by a network, each job is located at one given
machine at time 0, and cannot be started on another machine until sufficient time elapses
to allow the job to be transmitted to its new machine. This model has been introduced
in [DLLX90,AKP92].

The problem R l rq I~,wjCj is well-known to be strongly NP-hard, even for the case
of a single machine [LRKB77]. The first non-trivial approximation algorithm for this
problem was given by Phillips, Stein, and Wein [PSW94]. It has performance guarantee
O(log2n). Subsequently, Hall et al. [HSW96] gave a 16/3-approximation algorithm
which relies on a time-indexed LP relaxation whose optimum value serves as a surro-
gate for the true optimum in their estimations. We use a somewhat similar LP relaxation,
but whereas Hall et al. invoke the deterministic rounding technique of Shmoys and Tar-

419

dos [ST93] to construct a feasible schedule we randomly round LP solutions to feasible
schedules.

Let T = maxi,j rq + ~je] maxiPij - 1 be the time horizon, and introduce for every
job j E J, every machine i = 1,... ,m, and every point t = 0, . . . ,T in time a variable
Yijt which represents the time job j is processed on machine i within the time interval
(t, t + 1]. Equivalently, one can say that a Yijt/Pij-fraction of job j is being processed
on machine i within the time interval (t,t + 1]. The LP, which is an extension of a single
machine LP relaxation of Dyer and Wolsey [DW90], is as follows:

minimize 2 wjCj
jEJ
m T

subject to ~.~ ~ Yijt = I for all j E J, (1)
i=lt=r U Pij

(LPR) ~Yijt <x l fori= l , . . . ,mandt=O, . . . ,T , (2)
jEJ

m T
~ ~ ' (YiJt (t'a" l ~) Cj ---- ~ z.~ k n.. k -- 21 q- 1 Yijt for all j E J, (3)
i=1 t=0 YtJ

Yijt=O for i=l , . . . ,m , j E J , t = O , . . . , r q - t , (4)
Yijt>~O for i=l , . . . ,m , j E J , t=r i j , . . . ,T . (5)

Equations (1) ensure that the whole processing requirement of every job is satisfied.
The machine capacity constraints (2) simply express that each machine can process at
most one job at a time. Now, for (3), consider an arbitrary feasible schedule, where job
j is being continuously processed between time Cj - Phj and Cj on machine h. Then
the expression for Cj in (3) corresponds to the real completion time, if we assign the
values to the LP variables Yijt as defined above, i.e., Yijt = 1 if i = h and t E {Cj -
Phj,... ,Cj - 1}, and Yijt = 0 otherwise. Hence, (LPR) is a relaxation of the scheduling
problem under consideration.

The following algorithm takes an optimum LP solution, and then constructs a fea-
sible schedule by using a kind of randomized rounding.

Algorithm R
1) Compute an optimum solution y to (LPR).
2) Assign job j to a machine-time pair (i, t) at random with probability Yijt/Pij; draw

tj from the chosen time interval (t,t + 1] at random with uniform distribution.
3) Schedule on each machine i the jobs that were assigned to it nonpreemptively as

early as possible in nondecreasing order of tj.

Note that all the random assignments need to be performed independently from each
other (at least pairwise).

Lemma 1. Let y be the optimum solution to (LPR) which is computed in Step 1 of
Algorithm R. Then, for each job j E J the expected processing time of j in the schedule
constructed by Algorithm R equals ~m=l ~T=oyljt.

4 2 0

Proof First, we fix a machine-time pair (i,t) job j has been assigned to. Then, the ex-
pected processing time of j under these conditions is Pij. By adding these conditional
expectations over all machines and time intervals, weighted by the corresponding prob-
abilities Yijt/Plj, we get the claimed result. []

Note that the lemma remains true if we start with an arbitrary, not necessarily op-
timal solution y to (LPR) in Step 1 of Algorithm R. This also holds for the following
theorem. The optimality of the LP solution is only needed to get a lower bound on the
value of an optimal schedule.

Theorem 2. The expected completion time of each job j in the schedule constructed by
Algorithm R is at most 2. C~ e, where C~ e is the LP completion time (defined by (3)) of
the optimum solution y we started with in Step 1.

Proof We consider an arbitrary, but fixed job j E J. To analyze the expected completion
time of job j , we first also consider a fixed assignment of j to a machine-time pair
(i, t). Then, the expected starting time of job j under these conditions precisely is the
conditional expected idle time plus the conditional expected amount of processing of
jobs that come before j on machine i.

Observe that there is no idle time on machine i between the maximum release date
of jobs on machine i which start no later than j and the starting time of job j. It fol-
lows from the ordering of jobs and constraints (4) that this maximum release date and
therefore the idle time of machine i before the starting time of j is bounded from above
byt.

On the other hand, we get the following bound on the conditional expected process-
ing time on machine i before the start of j:

~.~ Pik " Pr(k on i before j) <~ ~.~ Pik " ~ ~ <~ t + 1 .
m k kT~j kCj e = 0 Pi

The last inequality follows from the machine capacity constraints (2). Putting the obser-
vations together we get an upper bound of 2- (t + 1) for the expected starting time of j.
Unconditioning the expectation together with Lemma 1 and (3) yields the theorem. []

Theorem 2 implies a performance guarantee of 2 for Algorithm R. In the course of
its proof, we also have shown that (LPR) is a 2-relaxation. Moreover, even for the case
of identical parallel machines without release dates there are instances for which this
bound is asymptotically attained, see Section 3. Thus our analysis is tight.

Unfortunately, (LPR) has exponentially many variables. Consequently, Algorithm R
only is a pseudo-polynomial-time algorithm. However, we can overcome this drawback
by introducing new variables which are not associated with time intervals of length
1, but rather with intervals of geometrically increasing size. The idea of using interval-
indexed variables to get polynomial-time solvable LP relaxations was introduced earlier
by Hall, Shmoys, and Wein [HSW96]. In order to get polynomial-time approximation
algorithms in this way, we have to pay for with a slightly worse performance guarantee.
For any constant e > 0, we get an approximation algorithm with performance guarantee
2 + e for RI rij I~,wFi. The rather technical details can be found in Section 5.

421

It is shown in [SS97] that in the absence of (non-trivial) release dates, the use of a
slightly stronger LP relaxation improves the performance guarantee of Algorithm R to
3/2. Independently, this has also been observed by Fabifin A. Chudak (communicated
to us by David B. Shmoys, March 1997) after reading a preliminary version of the paper
on hand which only contained the 2-approximation for R I rq l Y, wjC~.
Remark 3. The reader might wonder whether the seemingly artificial random choice of
the tj's in Algorithm R is really necessary. Indeed, it is not, which also implies that we
could work with a discrete probability space: From the proof of Theorem 2 one can see
that we could simply set tj = t if job j is assigned to a machine-time pair (i, t) - - without
loosing the performance guarantee of 2. Ties are simply broken (as before) by preferring
jobs with smaller indices, or even randomly. We mainly chose this presentation for the
sake of giving a different, perhaps more intuitive interpretation in the special case of
identical parallel machine scheduling; this will become apparent soon.

3 Identical Parallel Machine Scheduling with Release Dates
We now consider the special case of m identical parallel machines. Each job must be
nonpreemptively processed on one of these machines, and may be assigned to any of
them. The processing requirement and the release date of job j no longer depend on the
machine job j is processed on and are thus denoted by pj resp. rj. Already the problem
P21 [~_,wjCj is NP-hard, see [BCS74,LRKB77]. We consider P1 rj IZwjCj. There are
several good reasons to explicitly investigate this special case:

o There is a purely combinatorial algorithm to solve the LP relaxation. This leads to
a randomized approximation algorithm with running time O(nlogn).

o The previous use of randomness obtains another interpretation in terms of schedul-
ing by or-points (and vice versa).

o The same algorithm also is a 2-approximation algorithm for the preemptive variant
P lrj, pmtnl~,wjCj.

o The algorithm can easily be turned into a randomized on-line algorithm, with no
difference in performance guarantee.

We give an approximation algorithm that converts a preemptive schedule on a virtual
single machine into a nonpreemptive one on m identical parallel machines. The single
machine is assumed to be m times as fast as each of the original m machines, i. e., the
(virtual) processing time of any job j on this (virtual) machine is pj /m (w. 1. o. g., we
may assume that pj is a multiple of m). The weight and the release date of job j remain
the same. This kind of single machine relaxation has been used before in [CMNS97].
The algorithm is as follows:

Algorithm P
1) Construct a preemptive schedule on the virtual single machine by scheduling at any

point in time among the available jobs the one with largest wj /p j ratio. Let Cj be
the completion time of job j in this preemptive schedule.

2) Independently for each job j E J, draw t~j randomly and uniformly distributed from
(0,1] and assign j randomly (with probability 1/m) to one of the m machines.

3) Schedule on each machine i the jobs that were assigned to it nonpreemptively as
early as possible in nondecreasing order of Cj(o~j).

422

Notice that in Step 1 whenever a job is released, the job being processed (if any)
will be preempted if the released job has a higher w j / p j ratio.

In the analysis of Algorithm P, we use a reformulation of (LPR) for the special case
of identical parallel machines. We therefore combine for each job j and each time inter-
val (t, t + 1] the variables Yijt, i = 1 , . . . , m, to a single variable Y jr with the interpretation
Y jr = Yljt + " " q-Ymjt. This leads to the following simplified LP:

minimize ~., wjC~
jEJ

T
subject to ~ Y jr = Pj for all j E J,

t=rj

(LIp) 2 Y j t <<. m f o r t = 0 , . . . ,T,
jEJ

1 T
C j = ~ + - ~ i ~ _ . Y j t (t + l)

J t=0

Y jr = 0
Y jr >t 0

(6)

(7)

for all j E J, (8)

for all j E J and t = 0 , . . . , rj - 1, (9)
for all j E J andt = rj , . . . ,T. (10)

For the special case m = 1, this LP was introduced by Dyer and Wolsey [DW90]. One
crucial insight for the analysis of Algorithm P is that the preemptive schedule on the
fast machine that is constructed in Step 1 of Algorithm P defines an optimum solution
to (LPp). If we set Yjt = m whenever job j is being processed on the virtual machine in
the period (t,t + 1] by the preemptive schedule, it essentially follows from the work of
Goemans [Goe96] that y is an optimum solution to (LIp).

The prior discussion especially implies that Step 1 of Algorithm P simply computes
an optimum solution to the LP relaxation, as does Step 1 of Algorithm R. Moreover,
the optimum solution of (LPn) that corresponds to the preemptive schedule in Step 1
of Algorithm P is symmetric for the m machines and therefore for a job j each ma-
chine i is chosen with probability 1/m in Algorithm R. The symmetry also yields that
for each job j the choice of tj is not correlated with the choice of i. It can easily be
seen that the probability distribution of the random variable tj in Algorithm R exactly
equals the probability distribution of Ci(o~j) in Algorithm P. For this, observe that the
probability that Cj(o~j) E (t,t + 1] for some t equals the fraction Yjt/Pj of job j that
is being processed in this time interval. Moreover, since txj is uniformly distributed in
(0, 1] each point in (t,t + 1] is equally likely to be obtained for Cj(o~j). Therefore, the
random choice of Cj(txj) in Algorithm P is an alternative way of choosing tj as it is
done in Algorithm R. Consequently, Algorithm P is a reformulation of Algorithm R
for the identical parallel machine case. In particular, the expected completion time of
each job is bounded from above by twice its LP completion time and Algorithm P is a
2-approximation algorithm.

At this point, it is appropriate to briefly compare this result in the single machine
case (m = 1) with the result of Goemans [Goe97]. In Step 2, if we only work with one
ct for all jobs instead of individual and independent otj's and if we draw oc uniformly
from (0,1], then we precisely get Goemans' randomized 2-approximation algorithm

423

RANDOMa [Goe97]. In particular, for arbitrary m, Algorithm P has the same running
time O(nlogn) as RANDOMt~ since it is dominated by the effort to compute the pre-
emptive schedule in Step 1. Finally, whereas Goemans' algorithm has a small sample
space - - the algorithm can only output O(n) different schedules - - Algorithm P can
construct exponentially many different schedules.

Let us continue with some additional remarks on Algorithm P. Since (LPp) is also
a relaxation for P I rj, prntnl~;,wjC j it follows that the (nonpreemptive) schedule con-
structed by Algorithm P is not worse than twice the optimum preemptive schedule. This
improves upon a 3-approximation algorithm due to Hall et al. [HSSW96].

The analysis implies as well that (LPp) is a 2-relaxation for P I rj [Y, wjCj and
PI rj, pmtnlEwFj. In fact, this bound is best possible, for (LPp). For this, consider
an instance with m machines and one job of length m, unit weight, and release date 0.
The optimum LP completion time is - ~ , whereas the optimum completion time is m.

Furthermore, notice that Algorithm P can easily be turned into an on-line algorithm
with competitive ratio 2. In particular, the preemptive schedule in Step 1 can be con-
structed until time t without any knowledge of jobs that are released afterwards. The
random assignment of a job to a machine and the random choice of txj can be done as
soon as the job is released. Moreover, it follows from the analysis in the proof of Theo-
rem 2 that we get the same performance guarantee if job j is not started before time tj
resp. Cj(o~j).

Finally, by a nonuniform choice of the txj's one can improve the analysis for the
on-line and the off-line algorithm to get a performance guarantee better than 2. This im-
provement, however, depends on m. For the single machine case, Goemans, Queyranne,
Schulz, Skutella, and Wang elaborate on this and give a 1.6853-approximation algo-
rithm [GQS+97].

The perhaps most appealing aspect of Algorithm P is that the random assignment of
jobs to machines does not depend on job characteristics; any job is put with probability
1/m to any of the machines. This technique also proves useful for the problem without
(non-trivial) release dates. The very same random machine assignment followed by list
scheduling in order of nonincreasing ratios wj/pj on every machine is a randomized
3/2-approximation algorithm (see [SS97] for details). Quite interestingly, its deran-
domized variant precisely coincides with the WSPT-rule analyzed by Kawaguchi and
Kyan [KK86]: list the jobs according to nonincreasing ratios wj/pj and schedule the
next job whenever a machine becomes available.

4 Derandomization

Up to now we have presented randomized algorithms that compute a feasible solution
the expected value of which can be bounded from above by twice the optimum solution
to the scheduling problem under consideration. This means that our algorithms will
perform well on average; however, we cannot give a firm guarantee for the performance
of any single execution. From a theoretical point of view it is perhaps more desirable
to have (deterministic) algorithms that obtain a certain performance in all cases rather
than merely with high probability.

424

If we can bound the expected value of the solution computed by a randomized
algorithm we know that there exists at least one particular fixed assignment of values
to random variables such that the value of the corresponding solution is at least as
good as the expected value and can thus be bounded by the same factor. The issue of
derandomization is to find such a good assignment deterministically in reasonable time.

One of the most important techniques in this context is the method of conditional
probabilities. This method is implicitly contained in a paper of Erdts and Selfridge
[ES73] and has been developed in a more general context by Spencer [Spe87]. The
idea is to consider the random decisions in a randomized algorithm one after another
and always to choose the most promising alternative. This is done by assuming that all
the remaining decisions will be made randomly. Thus, an alternative is said to be most
promising if the corresponding conditional expectation for the value of the solution is
as small as possible.

The purpose of this section is to derandomize Algorithm R by the method of condi-
tional probabilities. Using Remark 3 we consider the variant of Algorithm R where we
set tj = t if job j is assigned to a machine-time pair (i , t) . Thus, we have to construct
a deterministic assignment of jobs to machine-time pairs. Unfortunately, the analysis
of Algorithm R in the proof of Theorem 2 does not give a precise expression for the
expected value of the solution but only an upper bound. However, in order to apply the
method of conditional probabilities we have to compute in each step exact conditional
expectations. Hence, for the sake of a more accessible derandomization, we modify
Algorithm R by replacing Step 3 with

3') Schedule on each machine i the jobs that were assigned to it nonpreemptively in
nondecreasing order of tj, where ties are broken by preferring jobs with smaller
indices. At the starting time of job j the amount of idle time on its machine has to
be exactly t j.

Since rij <. tj for each job j that has been assigned to machine i and tj ~ tk if job k
is scheduled after job j, Step 3' defines a feasible schedule. In the proof of Theorem 2
we have bounded the idle time before the start of job j on its machine from above by
tj. Thus, the analysis still works for the modified Algorithm R which therefore has ex-
pected performance guarantee 2. The main advantage of the modification of Step 3 is
that we can now give precise expressions for the expectations resp. conditional expec-
tations of completion times.

Let y be the optimum solution we started with in Step 1 of Algorithm R. Using the
same arguments as in the proof of Theorem 2 we get the following expected completion
time of job j in the schedule constructed by our modified Algorithm R

m T t -1
E(Cj) ~ ~ Yijt [) : 2_~2_~ -~ i i~Pi j -Ft+ ~_~ ~.~Yikgq" 2 Y i k t •

i= l t=O k" J k~j g=O k<j

Moreover, we are also interested in the conditional expectation of j 's completion time
if some of the jobs have already been assigned to a machine-time pair. Let K C J be
such a subset of jobs. For each job k E K the O/l-variable xi~ for t >/ri~ indicates if k
has been assigned to the machine time-pair (i,t) (xik~ = 1) or not (xikt = 0). This enables

425

us to give the following expressions for the conditional expectation of j ' s completion
time. If j ¢f K we get

m T
e K : (c j) = _ _ , pq+t+ X + X

i=1 t=0 P'J kEK l=O kEK, k<j
t-1

+ Z ZYi td+ Z Y i ~) ,
kEJ\(KU{j}) g=0 keJ\K,k<j

(11)

and, if j E K, we get

t - 1
EK¢(Cj)=Pij+t+ Z Z xikgpik+ Z xiktPik

kEK g=O kEK, k < j
t-1

+ Z Z Y ild+ Z Yikt ,
kEaOkK t-----O kEJ~K,k<j

(12)

where (i,t) is the machine-time pair job j has been assigned to, i.e., xijt = 1. The
following lemma is the most important part of the derandomization of Algorithm R by
the method of conditional probabilities.

Lemma 4. Let y be the optimum solution we started with in Step 1 of Algorithm R,
K C_ J and x a fixed assignment of the jobs in K to machine-time pairs. Furthermore
let j E J \ K. Then, there exists an assignment of j to a machine time pair (i,t) (i. e.,
Xij t = 1) with rij ~ t such that

eKu j} (Ye <. w Ce) (13)

Proof The conditional expectation on the right hand side of (13) can be written as
a convex combination of conditional expectations EKo{j}~(]~tweCe) over all possible
assignments of job j to machine-time pairs (i,t) with coefficients Yijt/Pij. []

We therefore get a good derandomized version of Algorithm R if we replace Step 2 by

2') Set K = 0; x:=0; for all j E J do
i) for all possible assignments of job j to machine-time pairs (i,t) (i. e., xijt = 1)

compute EKu{j} :(,~..g w tCe) ;
ii) determine the machine time pair (i,t) that minimizes EKu{j},,(]~eweCe);

iii) setK:=KU{j};xi j t = 1;

Notice that we have replaced Step 3 of Algorithm R by 3' only to give a more accessible
analysis of its derandomization. Since the value of the schedule constructed in Step 3 of
Algorithm R is always at least as good as the one constructed in Step 3', the following
theorem can be formulated for Algorithm R with the original Step 3.

Theorem 5. If we replace Step 2 in Algorithm R with 2' we get a deterministic algo-
rithm with performance guarantee 2. Moreover, the running time of this algorithm is
polynomially bounded in the number of variables of the LP relaxation.

426

Proof Since E(]~ewlCt) < 2]~twtCt{ P by Theorem 2, an inductive use of Lemma 4
yields the performance guarantee 2 for the derandomized algorithm. The computation
of (11) and (12) is polynomially bounded in the number of variables. Therefore, the
running time of each of the n iterations in Step 2' is polynomially bounded in this
number. []

Since Algorithm P can be seen as a special case of Algorithm R, it can be deran-
domized in the same manner. Notice that, in contrast to the situation for the randomized
algorithms, we can no longer give job-by-job bounds for the derandomized algorithms.

5 Interval-Indexed Formulation

As mentioned earlier, the Algorithm R for scheduling unrelated parallel machines suf-
fers from the exponential number of variables in the corresponding LP relaxation. How-
ever, we can overcome this drawback by using new variables which are not associated
with exponentially many time intervals of length 1, but rather with a polynomial num-
ber of intervals of geometrically increasing size. This idea was earlier introduced by
Hall et al. [HSW96].

For a given e > 0, L is chosen to be the smallest integer such that (1 + e) L/> T + 1.
Consequently, L is polynomially bounded in the input size of the considered scheduling
problem. Let I0 = [0,1] and for 1 ~< g ~< L let It = ((1 +e)e- l , (1 +e) t] . We denote
with Iltl the length of the g-th interval, i. e., Iltl -- e(1 +e) ~-1 for t ~< g ~< L. To simplify
notation we define (t +e) t - I to be ½ for £ = 0. We introduce variables Yijg for i =
1,... ,m, j E J, and g = 0, . . . ,L with the following interpretation: Yijg" lztl is the time
job j is processed on machine i within time interval It, or, equivalently: (Yijt" lltl)/pij
is the fraction of job j that is being processed on machine i within It. Consider the
following linear program in these interval-indexed variables:

minimize ~ wjCj
jEJ
m L

subject to ~ ~ Yijg" Iltl _ 1 for all j E J, (14)
i=1 ~=o Pij

(l+e)~>ro

ZYiJg ~< 1 for i = 1,... ,m and g = 0, . . . ,L,
jEJ

Cj= f i ~(YiJe'lltl(l~ +e)-'e-l--l.yijg,lltl
i=1 t = 0 Y J

Yije=O f o r / = t,o.. ,m, j E J , (l + e) t ~ r i j ,
yi]e)O for i=l , . . . ,m, jEJ , g=O,...,L.

(15)

for all j E J, (16)

(17)
(18)

Consider a feasible schedule and assign the values to the variables Yijt as defined
above. This solution is clearly feasible: constraints (14) are satisfied since a job j con-
sumes Pij time units if it is processed on machine i; constraints (15) are satisfied since

427

the total amount of processing on machine i of jobs that are processed within the inter-
val Ie cannot exceed its size. Finally, if job j is continuously being processed between
Cj -- Phi and Cj on machine h, then the right hand side of equation (16) is a lower
bound on the real completion time. Thus, (LP~) is a relaxation of the scheduling prob-
lemRlrijl~,wjCj.

Since for fixed e > 0 (LP~) is of polynomial size, an optimum solution can be
computed in polynomial time. The following algorithm is an adaptation of Algorithm R
to the new LP:

Algorithm R e

1) Compute an optimum solution y to (LP~).
2) Assign job j to a machine-interval pair (i, ll) at random with probability ~ ; draw PU

tj from the chosen time interval at random with uniform distribution.
3) Schedule on each machine i the jobs that were assigned to it nonpreemptively as

early as possible in nondecreasing order of tj.

Again, all the random assignments need to be performed independently from each
other. The following lemma is a reformulation of Lemma 1 for Algorithm R e and can
be proved analogously.

Lemma 6. The expected processing time of each job j E J in the schedule constructed
m L [by Algorithm R e equals ~i=I Y~l=oYijl " [~[.

Theorem 7. The expected completion time of each job j in the schedule constructed by
Algorithm R e is at most 2. (1 + ~).Ctf e, where C~ e is the LP completion time (defined
by (16)) of the optimum solution y we started with in Step 1 of Algorithm R E.

Proof. We argue almost exactly as in the proof of Theorem 2, but rather use Lemma 6
instead of Lemma 1. We consider an arbitrary, but fixed job j E J. First, we also consider
a fixed assignment of j to machine i and time interval Ib Again, the conditional expec-
tation of j ' s starting time equals the expected idle time plus the expected processing
time on machine i before j is started.

With similar arguments as in the proof of Theorem 2, we can bound the sum of the
idle time plus the processing time by 2. (1 + e)- (1 + e) t - 1. This, together with Lemma 6
and (16) yields the theorem. []

Theorem 7 implies that Algorithm R e is a (2 + 2e)-approximation algorithm. Fur-
thermore, (LP~) is a (2 + 2e)-relaxation of the problem R lrq I EwFj.

Of course, as suggested by Remark 3, tj need also not be chosen at random in
Step 2 of Algorithm R E. Moreover, Algorithm R e can be derandomized with the same
technique as described in Section 4. In particular, the running time of the derandomized
version is again polynomiaUy bounded in the number of variables in the corresponding
LP relaxation and therefore, for fixed e > 0, polynomial in the input size.

Acknowledgements: The authors are grateful to Chandra S. Chekuri, Michel X. Goe-
roans, and David B. Shmoys for helpful comments.

428

References

[AKP921

[BCS74]

[CJM+96]

[CM96]

[CMNS97]

[CPS+96]

[CS97]

[DLLX90]

[DW90]

[ES73]

[GLLRK79]

[Goe96]

[Goe97]

[GQS+97]

[HSSW96]

B. Awerbuch, S. Kutten, and D. Peleg. Competitive distributed job scheduling.
In Proceedings of the 24th Annual ACM Symposium on the Theory of Computing,
pages 571 - 581, 1992.
J. L. Bruno, E. G. Coffman Jr., and R. SethJ. Scheduling independent tasks to
reduce mean finishing time. Communications of the Association for Computing
Machinery, 17:382- 387, 1974.
C. S. Chekuri, R. Johnson, R. Motwani, B. K. Natarajan, B. R. Rau, and
M. Schlansker. Profile-driven instruction level parallel scheduling with applica-
tions to super blocks. December 1996. Proceedings of the 29th Annual Interna-
tional Symposium on Microarchitecture (MICRO-29), Pads, France.
S. Chakrabarti and S. Muthukrishnan. Resource scheduling for parallel database
and scientific applications. June 1996. Proceedings of the 8th ACM Symposium
on Parallel Algorithms and Architectures.
C. S. Chekufi, R, Motwani, B. Natarajan, and C. Stein. Approximation techniques
for average completion time scheduling. In Proceedings of the 8th ACM-SIAM
Symposium on Discrete Algorithms, pages 609 - 618, 1997.
S. Chakrabarti, C, A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein.
Improved scheduling algorithms for reinsure criteria. In E Meyer auf der Heide
and B. Monien, editors, Automata, Languages and Programming, number 1099
in Lecture Notes in Computer Science, pages 646 - 657. Springer, Berlin, 1996.
Proceedings of the 23rd International Colloquium (ICALP'96).
E A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different speeds.
In Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, pages
581 - 590, 1997.
X. Deng, H. Liu, L Long, and B. Xiao. Deterministic load balancing in computer
networks. In Proceedings of the 2nd Annual IEEE Symposium on Parallel and
Distributed Processing, pages 5 0 - 57, 1990.
M. E. Dyer and L. A. Wolsey. Formulating the single machine sequencing problem
with release dates as a mixed integer program. Discrete Applied Mathematics,
26:255 - 270, 1990,
P. ErdOs and J. L, Selfridge. On a combinatorial game. Journal of Combinatorial
Theory A, 14:298 - 301, 1973.
R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Optimization
and approximation in deterministic sequencing and scheduling: A survey. Annals
of Discrete Mathematics, 5:287 - 326, 1979.
M. X. Goemans. A supermodular relaxation for scheduling with release dates. In
W. H. Cunningham, S. T. McCormick, and M. Queyranne, editors, Integer Pro-
gramming and Combinatorial Optimization, number t084 in Lecture Notes in
Computer Science, pages 288 - 300. Springer, Berlin, 1996. Proceedings of the
5th International IPCO Conference.
M. X. Goemans. Improved approximation algorithms for scheduling with release
dates. In Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms,
pages 591 - 598, 1997.
M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutelta, and Y. Wang, 1997. In
preparation.
L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize av-
erage completion time: Off-line and on-line approximation algorithms. Preprint

429

[HSW96]

[KK86]

[LRKB77]

[MNR96]

[MR95]

[MSS96]

[PSW94]

[PSW95]

[RT87]

[Sch96]

[Spe87]

[SS97]

[ST931

516/1996, Department of Mathematics, Technical University of Berlin, Berlin, Ger-
many, 1996. To appear in Mathematics of Operations Research.
L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling to minimize average comple-
tion time: Off-line and on-line algorithms. In Proceedings of the 7th ACM-SIAM
Symposium on Discrete Algorithms, pages 142 - 151, 1996.
T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for the mean
weighted flow-time problem. SlAM Journal on Computing, 15:1119- 1129, 1986.
J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, Complexity of machine
scheduling problems. Annals of Discrete Mathematics, 1:343 - 362, 1977.
R. Motwani, J. Naor, and P. Raghavan. Randomized approximation algorithms in
combinatorial optimization. In D. S. Hochbaum, editor, Approximation Algorithms
for NP-Hard Problems, chapter 11. Thomson, 1996.
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.
R. H. MOhdng, M. W. Sch~fter, and A. S. Schulz. Scheduling jobs with com-
munication delays: Using infeasible solutions for approximation. In J. Diaz and
M. Sema, editors, Algorithms - ESA'96, volume 1136 of Lecture Notes in Com-
puter Science, pages 76- 90. Springer, Berlin, 1996. Proceedings of the 4th Annual
European Symposium on Algorithms.
C. Phillips, C. Stein, and J. Wein. Task scheduling in networks. In Algorithm
Theory-- SWAT'94, number 824 in Lecture Notes in Computer Science, pages 290

- 301. Springer, Berlin, 1994. Proceedings of the 4th Scandinavian Workshop on
Algorithm Theory.
C. Phillips, C. Stein, and J. Wein. Scheduling jobs that arrive over time. In Pro-
ceedings of the Fourth Workshop on Algorithms and Data Structures, number 955
in Lecture Notes in Computer Science, pages 86 - 97. Springer, Berlin, 1995.
P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7:365 - 374, 1987.
A. S. Schulz. Scheduling to minimize total weighted completion time: Performance
guarantees of LP-based heuristics and lower bounds. In W. H. Cunningham, S. T.
McCormick, and M. Queyraune, editors, Integer Programming and Combinatorial
Optimization, number 1084 in Lecture Notes in Computer Science, pages 301 -
315. Springer, Berlin, 1996. Proceedings of the 5th International IPCO Conference.
J. Spencer. Ten Lectures on the Probabilistic Method. Number 52 in CBMS-NSF
Reg. Conf. Ser. Appl. Math. SIAM, 1987.
A. S. Schulz and M. SkuteUa. Random-based scheduling: New approximations
and LP lower bounds. Preprint 549/1997, Department of Mathematics, Techni-
cal University of Berlin, Berlin, Germany, February 1997. To appear in Springer
Lecture Notes in Computer Science, Proceedings of the tst International Sym-
posium on Randomization and Approximation Techniques in Computer Science
(Random'97).
D. B. Shmoys and I~. Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical Programming, 62:461 - 474, 1993.

