
Scheduling-LPs Bear Probabilities 
Randomized Approximations for Min-Sum Criteria 

Andreas S. Schulz and Martin Skutella 

Technische Universit~it Berlin, 
Fachbereich Mathematik, MA 6-t ,  

StraBe des 17. Jani 136, 10623 Berlin, Germany, 
E-mail {schulz,skutelta} @math.m-berlin.de 

Abstract. In this paper, we provide a new class of randomized approximation 
algorithms for scheduling problems by directly interpreting solutions to so-called 
time-indexed LPs as probabilities. The most general model we consider is sched- 
uling unrelated parallel machines with release dates (or even network scheduling) 
so as to minimize the average weighted completion time. The crucial idea for 
these multiple machine problems is not to use standard list scheduling but rather 
to assign jobs randomly to machines (with probabilities taken from an optimal 
LP solution) and to perform list scheduling on each of them. 
For the general model, we give a (2+ e)-approximation algorithm. The best pre- 
viously known approximation algorithm has a performance guarantee of 16/3 
[HSW96]. Moreover, our algorithm also improves upon the best previously 
known approximation algorithms for the special case of identical parallel ma- 
chine scheduling (performance guarantee (2.89 + e) in general [CPS+96] and 
2.85 for the average completion time [CMNS97], respectively). A perhaps sur- 
prising implication for identical parallel machines is that jobs are randomly as- 
signed to machines, in which each machine is equally likely. In addition, in this 
case the algorithm has running time O(nlogn) and performance guarantee 2. 
The same algorithm also is a 2-approximation for the corresponding preemptive 
scheduling problem on identical parallel machines. 
Finally, the results for identical parallel machine scheduling apply to both the 
off-line and the on-line settings with no difference in performance guarantees. In 
the on-line setting, we are scheduling jobs that continually arrive to be processed 
and, for each time t, we must construct the schedule until time t without any 
knowledge of the jobs that will arrive afterwards. 

1 Introduction 

It is by now well-known that randomization can help in the design of algorithms, cf., 
e.g.,  [MR95,MNR96]. One way of  guiding randomness is the use of  linear programs 
(LPs). In this paper, we give LP-based approximation algorithms for problems which 
are particularly well-known for the difficulties to obtain good lower bounds: machine 
(or processor) scheduling problems, Because of the random choices involved, our algo- 
rithms are rather randomized approximation algorithms. A randomized p-approxima-  
tion algorithm is a polynomial-t ime algorithm that produces a feasible solution whose 
expected value is within a factor of  p of  the optimum; p is also called the expected 
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performance guarantee of the algorithm. Actually, we always compare the output of an 
algorithm with a lower bound given by an optimum solution to a certain LP relaxation. 
Hence, at the same time we obtain an analysis of the quality of the respective LP. All our 
off-line algorithms can be derandomized with no difference in performance guarantee, 
but at the cost of increased (but still polynomial) running times. 

We consider the following model. We are given a set J of n jobs (or tasks) and 
m unrelated parallel machines. Each job j has a positive integral processing require- 
ment Pij which depends on the machine i job j will be processed on. Each job j must 
be processed for the respective amount of time on one of the m machines, and may 
be assigned to any of them. Every machine can process at most one job at a time. In 
preemptive schedules, a job may repeatedly be interrupted and continued later on an- 
other (or the same) machine. In nonpreemptive schedules, a job must be processed in 
an uninterrupted fashion. Each job j has an integral release date rj >t 0 before which it 
cannot be processed. We denote the completion time of job j in a schedule by Cj, and 
for any fixed a E (0,1], the a-point Cj(a) of job j is the first moment in time at which 
an a-fraction of job j has been completed; a-points were first used in the context of 
approximation by Hall, Shmoys, and Wein [HSW96]. We seek to minimize the total 
weighted completion time: a weight wj >t 0 is associated with each job j and the goal 
is to minimize ]~j~jwjCj. In scheduling, it is quite convenient to refer to the respective 
problems using the standard classification scheme of Graham et al. [GLLRK79]. The 
nonpreemptive problem R I rj I ZwjCj, just described, is strongly NP-hard. 

Scheduling to minimize the total weighted completion time (or, equivalently, the av- 
erage weighted completion time) has recently achieved a great deal of attention, partly 
because of its importance as a fundamental problem in scheduling, and also because of 
new applications, for instance, in compiler optimization [CJM+96] or in parallel com- 
puting [CM96]. In the last two years, there has been significant progress in the design of 
approximation algorithms for this kind of problems which led to the development of the 
first constant worst-case bounds in a number of settings. This progress essentially fol- 
lows on the one hand from the use of preemptive schedules to construct nonpreemptive 
ones [PSW95,CPS+96,CMNS97,Goe97,SS97]. On the other hand, one solves an LP re- 
laxation and then a schedule is constructed by list scheduling in a natural order dictated 
by the LP solution [PSW95,HSW96,Sch96,HSSW96,MSS96,Goe97,CS97,SS97]. 

In this paper, we utilize a different idea: random assignments of jobs to machines. 
To be more precise, we exploit a new LP relaxation in time-indexed variables for the 
problem R I rj [ ~wjCj, and we then show that a certain variant of randomized rounding 
leads to a (2 + e)-approximation algorithm, for any e > 0. At the same moment, the 
corresponding LP is a (2 + e)-relaxation, i.e., the true optimum is always within a 
factor of (2 + e) of the optimal value of the LP relaxation; and this is tight. Our algorithm 
improves upon a 16/3-approximation algorithm of Hall, Shmoys, and Wein [HSW96] 
that is also based on time-indexed variables which have a different meaning, however. In 
contrast to their approach, our algorithm does not rely on Shmoys and Tardos' rounding 
technique for the generalized assignment problem [ST93]. We rather exploit the LP by 
interpreting LP values as probabilities with which jobs are assigned to machines. For 
an introduction to and the application of randomized rounding to other combinatorial 
optimization problems, the reader is referred to [RT87,MNR96]. 
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For the special case of identical parallel machines, i.e., for each job j and all ma- 
chines i we have PO = P J, Chakrabarti, Phillips, Schulz, Shmoys, Stein, and Wein 
[CPS+96] obtained a (2.89 + e)-approximation by refining an on-line greedy frame- 
work of Hall et at. [HSW96]. The former best known LP-based algorithm, however, 
relies on an LP relaxation solely in completion time variables which is weaker than the 
one we propose. It has performance guarantee (4 - 1) (see [HSSW96] for the details). 
For the LP we use here, an optimum solution can greedily be obtained by a certain pre- 
emptive schedule on a virtual single machine which is m times as fast as any of the orig- 
inal machines. The idea of using a preemptive relaxation on such a virtual machine was 
introduced before by Chekuri, Motwani, Natarajan, and Stein [CMNS97]. They show 
that any preemptive schedule on this machine can be converted into a nonpreemptive 
schedule on the m identical parallel machines such that, for each job j, its completion 
time in the nonpreemptive schedule is at most (3 - ~) times its preemptive comple- 
tion time. For the average completion time, they refine this to a 2.85-approximation 
algorithm for P Ir~lZ C~. For P I r i[ Y~w~C~, the algorithm we propose delivers in time 
O(nlogn) a solution that is expected to be within a factor of 2 of the optimum. 

Since the LP relaxation we use is also a relaxation for the corresponding preemp- 
tive problem, our algorithm is also a 2-approximation for P It j, pmtn l~,wjCj. This 
improves upon a 3-approximation algorithm due to Hall, Schulz, Shmoys, and Wein 
[HSSW96]. 

The paper is organized as follows. In Section 2, we start with the discussion of our 
main result: the 2-approximation in the general context of unrelated parallel machine 
scheduling. In the next section, we give a combinatorial 2-approximation algorithm for 
PI rj lY~wjCj and Pi rj, pmtn[~,wjCj. Then, in Section 4, we discuss the derandom- 
ization of the previously given randomized algorithms. Finally, in Section 5 we give 
the technical details of turning the pseudo-polynomial algorithm of Section 2 into a 
polynomial time algorithm with performance guarantee (2 + e). 

2 Unrelated Parallel Machine Scheduling with Release Dates 

In this section, we consider the problem R I rj 17LwjCj. As in [PSW94,HSW96], we will 
even discuss a slightly more general problem in which the release date of job j may 
also depend on the machine. The release date of job j on machine i is thus denoted 
by rij. Machine-dependent release dates are relevant to model network scheduling in 
which parallel machines are connected by a network, each job is located at one given 
machine at time 0, and cannot be started on another machine until sufficient time elapses 
to allow the job to be transmitted to its new machine. This model has been introduced 
in [DLLX90,AKP92]. 

The problem R l rq I~,wjCj is well-known to be strongly NP-hard, even for the case 
of a single machine [LRKB77]. The first non-trivial approximation algorithm for this 
problem was given by Phillips, Stein, and Wein [PSW94]. It has performance guarantee 
O(log2n). Subsequently, Hall et al. [HSW96] gave a 16/3-approximation algorithm 
which relies on a time-indexed LP relaxation whose optimum value serves as a surro- 
gate for the true optimum in their estimations. We use a somewhat similar LP relaxation, 
but whereas Hall et al. invoke the deterministic rounding technique of Shmoys and Tar- 
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dos [ST93] to construct a feasible schedule we randomly round LP solutions to feasible 
schedules. 

Let T = maxi,j rq + ~je] maxiPij - 1 be the time horizon, and introduce for every 
job j E J, every machine i = 1,...  ,m, and every point t = 0, . . .  ,T in time a variable 
Yijt which represents the time job j is processed on machine i within the time interval 
(t, t + 1]. Equivalently, one can say that a Yijt/Pij-fraction of job j is being processed 
on machine i within the time interval (t,t + 1]. The LP, which is an extension of a single 
machine LP relaxation of Dyer and Wolsey [DW90], is as follows: 

minimize 2 wjCj 
jEJ 
m T 

subject to ~.~ ~ Yijt = I for all j E J, (1) 
i=lt=r U Pij 

(LPR) ~Yijt <x l fori= l , . . . ,mandt=O, . . . ,T ,  (2) 
jEJ 

m T 
~ ~ '  (YiJt (t'a" l ~ ) Cj  ---- ~ z.~ k n..  k --  21 q- 1 Yijt for all j E J,  (3) 
i=1 t=0 YtJ 

Yijt=O for i=l , . . . ,m ,  j E J ,  t = O , . . . , r q - t ,  (4) 
Yijt>~O for i=l , . . . ,m ,  j E J ,  t=r i j , . . . ,T .  (5) 

Equations (1) ensure that the whole processing requirement of every job is satisfied. 
The machine capacity constraints (2) simply express that each machine can process at 
most one job at a time. Now, for (3), consider an arbitrary feasible schedule, where job 
j is being continuously processed between time Cj - Phj and Cj on machine h. Then 
the expression for Cj in (3) corresponds to the real completion time, if we assign the 
values to the LP variables Yijt as defined above, i.e., Yijt = 1 if i = h and t E {Cj - 
Phj,... ,Cj - 1}, and Yijt = 0 otherwise. Hence, (LPR) is a relaxation of the scheduling 
problem under consideration. 

The following algorithm takes an optimum LP solution, and then constructs a fea- 
sible schedule by using a kind of randomized rounding. 

Algorithm R 
1) Compute an optimum solution y to (LPR). 
2) Assign job j to a machine-time pair (i, t) at random with probability Yijt/Pij; draw 

tj from the chosen time interval (t,t + 1] at random with uniform distribution. 
3) Schedule on each machine i the jobs that were assigned to it nonpreemptively as 

early as possible in nondecreasing order of tj. 

Note that all the random assignments need to be performed independently from each 
other (at least pairwise). 

Lemma 1. Let y be the optimum solution to (LPR) which is computed in Step 1 of 
Algorithm R. Then, for each job j E J the expected processing time of j in the schedule 
constructed by Algorithm R equals ~m=l ~T=oyljt. 
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Proof First, we fix a machine-time pair (i,t) job j has been assigned to. Then, the ex- 
pected processing time of j under these conditions is Pij. By adding these conditional 
expectations over all machines and time intervals, weighted by the corresponding prob- 
abilities Yijt/Plj, we get the claimed result. [] 

Note that the lemma remains true if we start with an arbitrary, not necessarily op- 
timal solution y to (LPR) in Step 1 of Algorithm R. This also holds for the following 
theorem. The optimality of the LP solution is only needed to get a lower bound on the 
value of an optimal schedule. 

Theorem 2. The expected completion time of each job j in the schedule constructed by 
Algorithm R is at most 2. C~ e, where C~ e is the LP completion time (defined by (3)) of 
the optimum solution y we started with in Step 1. 

Proof We consider an arbitrary, but fixed job j E J. To analyze the expected completion 
time of job j ,  we first also consider a fixed assignment of j to a machine-time pair 
(i, t). Then, the expected starting time of job j under these conditions precisely is the 
conditional expected idle time plus the conditional expected amount of processing of 
jobs that come before j on machine i. 

Observe that there is no idle time on machine i between the maximum release date 
of jobs on machine i which start no later than j and the starting time of job j. It fol- 
lows from the ordering of jobs and constraints (4) that this maximum release date and 
therefore the idle time of machine i before the starting time of j is bounded from above 
byt.  

On the other hand, we get the following bound on the conditional expected process- 
ing time on machine i before the start of j: 

~.~ Pik " Pr(k on i before j) <~ ~.~ Pik " ~ ~ <~ t + 1 . 
m k kT~j kCj e = 0  Pi 

The last inequality follows from the machine capacity constraints (2). Putting the obser- 
vations together we get an upper bound of 2- (t + 1) for the expected starting time of j. 
Unconditioning the expectation together with Lemma 1 and (3) yields the theorem. [] 

Theorem 2 implies a performance guarantee of 2 for Algorithm R. In the course of 
its proof, we also have shown that (LPR) is a 2-relaxation. Moreover, even for the case 
of identical parallel machines without release dates there are instances for which this 
bound is asymptotically attained, see Section 3. Thus our analysis is tight. 

Unfortunately, (LPR) has exponentially many variables. Consequently, Algorithm R 
only is a pseudo-polynomial-time algorithm. However, we can overcome this drawback 
by introducing new variables which are not associated with time intervals of length 
1, but rather with intervals of geometrically increasing size. The idea of using interval- 
indexed variables to get polynomial-time solvable LP relaxations was introduced earlier 
by Hall, Shmoys, and Wein [HSW96]. In order to get polynomial-time approximation 
algorithms in this way, we have to pay for with a slightly worse performance guarantee. 
For any constant e > 0, we get an approximation algorithm with performance guarantee 
2 + e for RI rij I~,wFi. The rather technical details can be found in Section 5. 
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It is shown in [SS97] that in the absence of (non-trivial) release dates, the use of a 
slightly stronger LP relaxation improves the performance guarantee of Algorithm R to 
3/2. Independently, this has also been observed by Fabifin A. Chudak (communicated 
to us by David B. Shmoys, March 1997) after reading a preliminary version of the paper 
on hand which only contained the 2-approximation for R I rq l Y, wjC~. 
Remark 3. The reader might wonder whether the seemingly artificial random choice of 
the tj's in Algorithm R is really necessary. Indeed, it is not, which also implies that we 
could work with a discrete probability space: From the proof of Theorem 2 one can see 
that we could simply set tj = t if job j is assigned to a machine-time pair (i, t) - -  without 
loosing the performance guarantee of 2. Ties are simply broken (as before) by preferring 
jobs with smaller indices, or even randomly. We mainly chose this presentation for the 
sake of giving a different, perhaps more intuitive interpretation in the special case of 
identical parallel machine scheduling; this will become apparent soon. 

3 Identical Parallel Machine Scheduling with Release Dates 
We now consider the special case of m identical parallel machines. Each job must be 
nonpreemptively processed on one of these machines, and may be assigned to any of 
them. The processing requirement and the release date of job j no longer depend on the 
machine job j is processed on and are thus denoted by pj resp. rj. Already the problem 
P21 [~_,wjCj is NP-hard, see [BCS74,LRKB77]. We consider P1 rj IZwjCj. There are 
several good reasons to explicitly investigate this special case: 

o There is a purely combinatorial algorithm to solve the LP relaxation. This leads to 
a randomized approximation algorithm with running time O(nlogn). 

o The previous use of randomness obtains another interpretation in terms of schedul- 
ing by or-points (and vice versa). 

o The same algorithm also is a 2-approximation algorithm for the preemptive variant 
P lrj, pmtnl~,wjCj. 

o The algorithm can easily be turned into a randomized on-line algorithm, with no 
difference in performance guarantee. 

We give an approximation algorithm that converts a preemptive schedule on a virtual 
single machine into a nonpreemptive one on m identical parallel machines. The single 
machine is assumed to be m times as fast as each of the original m machines, i. e., the 
(virtual) processing time of any job j on this (virtual) machine is pj /m (w. 1. o. g., we 
may assume that pj is a multiple of m). The weight and the release date of job j remain 
the same. This kind of single machine relaxation has been used before in [CMNS97]. 
The algorithm is as follows: 

Algorithm P 
1) Construct a preemptive schedule on the virtual single machine by scheduling at any 

point in time among the available jobs the one with largest wj /p j  ratio. Let Cj be 
the completion time of job j in this preemptive schedule. 

2) Independently for each job j E J, draw t~j randomly and uniformly distributed from 
(0,1] and assign j randomly (with probability 1/m) to one of the m machines. 

3) Schedule on each machine i the jobs that were assigned to it nonpreemptively as 
early as possible in nondecreasing order of Cj(o~j). 
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Notice that in Step 1 whenever a job is released, the job being processed (if any) 
will be preempted if the released job has a higher w j / p j  ratio. 

In the analysis of Algorithm P, we use a reformulation of (LPR) for the special case 
of identical parallel machines. We therefore combine for each job j and each time inter- 
val (t, t + 1] the variables Yijt, i = 1 , . . . ,  m, to a single variable Y jr with the interpretation 
Y jr = Yljt + " "  q-Ymjt. This leads to the following simplified LP: 

minimize ~., wjC~ 
jEJ 

T 
subject to ~ Y jr = Pj for all j E J, 

t=rj 

(LIp) 2 Y j t  <<. m f o r t = 0 , . . .  ,T, 
jEJ 

1 T 
C j =  ~ + - ~ i ~ _ . Y j t ( t +  l)  

J t=0  

Y jr = 0 
Y jr >t 0 

(6) 

(7) 

for all j E J, (8) 

for all j E J and t = 0 , . . . ,  rj - 1, (9) 
for all j E J andt = rj , . . .  ,T.  (10) 

For the special case m = 1, this LP was introduced by Dyer and Wolsey [DW90]. One 
crucial insight for the analysis of Algorithm P is that the preemptive schedule on the 
fast machine that is constructed in Step 1 of Algorithm P defines an optimum solution 
to (LPp). If we set Yjt = m whenever job j is being processed on the virtual machine in 
the period (t,t + 1] by the preemptive schedule, it essentially follows from the work of 
Goemans [Goe96] that y is an optimum solution to (LIp). 

The prior discussion especially implies that Step 1 of Algorithm P simply computes 
an optimum solution to the LP relaxation, as does Step 1 of Algorithm R. Moreover, 
the optimum solution of (LPn) that corresponds to the preemptive schedule in Step 1 
of Algorithm P is symmetric for the m machines and therefore for a job j each ma- 
chine i is chosen with probability 1/m in Algorithm R. The symmetry also yields that 
for each job j the choice of tj is not correlated with the choice of i. It can easily be 
seen that the probability distribution of the random variable tj in Algorithm R exactly 
equals the probability distribution of Ci(o~j) in Algorithm P. For this, observe that the 
probability that Cj(o~j) E (t,t + 1] for some t equals the fraction Yjt/Pj of job j that 
is being processed in this time interval. Moreover, since txj is uniformly distributed in 
(0, 1] each point in (t,t + 1] is equally likely to be obtained for Cj(o~j). Therefore, the 
random choice of Cj(txj) in Algorithm P is an alternative way of choosing tj as it is 
done in Algorithm R. Consequently, Algorithm P is a reformulation of Algorithm R 
for the identical parallel machine case. In particular, the expected completion time of 
each job is bounded from above by twice its LP completion time and Algorithm P is a 
2-approximation algorithm. 

At this point, it is appropriate to briefly compare this result in the single machine 
case (m = 1) with the result of Goemans [Goe97]. In Step 2, if we only work with one 
ct for all jobs instead of individual and independent otj's and if we draw oc uniformly 
from (0,1], then we precisely get Goemans' randomized 2-approximation algorithm 
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RANDOMa [Goe97]. In particular, for arbitrary m, Algorithm P has the same running 
time O(nlogn) as RANDOMt~ since it is dominated by the effort to compute the pre- 
emptive schedule in Step 1. Finally, whereas Goemans' algorithm has a small sample 
space - -  the algorithm can only output O(n) different schedules - -  Algorithm P can 
construct exponentially many different schedules. 

Let us continue with some additional remarks on Algorithm P. Since (LPp) is also 
a relaxation for P I rj, prntnl~;,wjC j it follows that the (nonpreemptive) schedule con- 
structed by Algorithm P is not worse than twice the optimum preemptive schedule. This 
improves upon a 3-approximation algorithm due to Hall et al. [HSSW96]. 

The analysis implies as well that (LPp) is a 2-relaxation for P I rj [Y, wjCj and 
PI rj, pmtnlEwFj. In fact, this bound is best possible, for (LPp). For this, consider 
an instance with m machines and one job of length m, unit weight, and release date 0. 
The optimum LP completion time is - ~ ,  whereas the optimum completion time is m. 

Furthermore, notice that Algorithm P can easily be turned into an on-line algorithm 
with competitive ratio 2. In particular, the preemptive schedule in Step 1 can be con- 
structed until time t without any knowledge of jobs that are released afterwards. The 
random assignment of a job to a machine and the random choice of txj can be done as 
soon as the job is released. Moreover, it follows from the analysis in the proof of Theo- 
rem 2 that we get the same performance guarantee if job j is not started before time tj 
resp. Cj(o~j). 

Finally, by a nonuniform choice of the txj's one can improve the analysis for the 
on-line and the off-line algorithm to get a performance guarantee better than 2. This im- 
provement, however, depends on m. For the single machine case, Goemans, Queyranne, 
Schulz, Skutella, and Wang elaborate on this and give a 1.6853-approximation algo- 
rithm [GQS+97]. 

The perhaps most appealing aspect of Algorithm P is that the random assignment of 
jobs to machines does not depend on job characteristics; any job is put with probability 
1/m to any of the machines. This technique also proves useful for the problem without 
(non-trivial) release dates. The very same random machine assignment followed by list 
scheduling in order of nonincreasing ratios wj/pj on every machine is a randomized 
3/2-approximation algorithm (see [SS97] for details). Quite interestingly, its deran- 
domized variant precisely coincides with the WSPT-rule analyzed by Kawaguchi and 
Kyan [KK86]: list the jobs according to nonincreasing ratios wj/pj and schedule the 
next job whenever a machine becomes available. 

4 Derandomization 

Up to now we have presented randomized algorithms that compute a feasible solution 
the expected value of which can be bounded from above by twice the optimum solution 
to the scheduling problem under consideration. This means that our algorithms will 
perform well on average; however, we cannot give a firm guarantee for the performance 
of any single execution. From a theoretical point of view it is perhaps more desirable 
to have (deterministic) algorithms that obtain a certain performance in all cases rather 
than merely with high probability. 
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If we can bound the expected value of the solution computed by a randomized 
algorithm we know that there exists at least one particular fixed assignment of values 
to random variables such that the value of the corresponding solution is at least as 
good as the expected value and can thus be bounded by the same factor. The issue of 
derandomization is to find such a good assignment deterministically in reasonable time. 

One of the most important techniques in this context is the method of conditional 
probabilities. This method is implicitly contained in a paper of Erdts and Selfridge 
[ES73] and has been developed in a more general context by Spencer [Spe87]. The 
idea is to consider the random decisions in a randomized algorithm one after another 
and always to choose the most promising alternative. This is done by assuming that all 
the remaining decisions will be made randomly. Thus, an alternative is said to be most 
promising if the corresponding conditional expectation for the value of the solution is 
as small as possible. 

The purpose of this section is to derandomize Algorithm R by the method of condi- 
tional probabilities. Using Remark 3 we consider the variant of Algorithm R where we 
set tj = t if job j is assigned to a machine-time pair (i , t) .  Thus, we have to construct 
a deterministic assignment of jobs to machine-time pairs. Unfortunately, the analysis 
of Algorithm R in the proof of Theorem 2 does not give a precise expression for the 
expected value of the solution but only an upper bound. However, in order to apply the 
method of conditional probabilities we have to compute in each step exact conditional 
expectations. Hence, for the sake of a more accessible derandomization, we modify 
Algorithm R by replacing Step 3 with 

3') Schedule on each machine i the jobs that were assigned to it nonpreemptively in 
nondecreasing order of tj, where ties are broken by preferring jobs with smaller 
indices. At the starting time of job j the amount of idle time on its machine has to 
be exactly t j. 

Since rij <. tj for each job j that has been assigned to machine i and tj ~ tk if job k 
is scheduled after job j, Step 3' defines a feasible schedule. In the proof of Theorem 2 
we have bounded the idle time before the start of job j on its machine from above by 
tj. Thus, the analysis still works for the modified Algorithm R which therefore has ex- 
pected performance guarantee 2. The main advantage of the modification of Step 3 is 
that we can now give precise expressions for the expectations resp. conditional expec- 
tations of completion times. 

Let y be the optimum solution we started with in Step 1 of Algorithm R. Using the 
same arguments as in the proof of Theorem 2 we get the following expected completion 
time of job j in the schedule constructed by our modified Algorithm R 

m T t -1  
E(Cj )  ~ ~ Yijt [ ) : 2_~2_~ -~ i i~Pi j -Ft+ ~_~ ~.~Yikgq" 2 Y i k t  • 

i= l  t=O k" J k~j g=O k<j  

Moreover, we are also interested in the conditional expectation of j 's  completion time 
if some of the jobs have already been assigned to a machine-time pair. Let K C J be 
such a subset of jobs. For each job k E K the O/l-variable xi~ for t >/ri~ indicates if k 
has been assigned to the machine time-pair (i,t) (xik~ = 1) or not (xikt = 0). This enables 
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us to give the following expressions for the conditional expectation of j ' s  completion 
time. If  j ¢f K we get 

m T 
e K : ( c j ) = _ _  , pq+t+ X + X 

i=1 t=0  P'J kEK l=O kEK, k<j 
t-1 

+ Z ZYi td+ Z Y i ~ ) ,  
kEJ\(KU{j}) g=0 keJ\K,k<j 

(11) 

and, if j E K, we get 

t - 1  
EK¢(Cj)=Pij+t+ Z Z xikgpik+ Z xiktPik 

kEK g=O kEK, k < j 
t-1 

+ Z Z Y  ild+ Z Yikt , 
kEaOkK t-----O kEJ~K,k<j 

(12) 

where (i,t) is the machine-time pair job j has been assigned to, i.e., xijt = 1. The 
following lemma is the most important part of the derandomization of Algorithm R by 
the method of conditional probabilities. 

Lemma 4. Let y be the optimum solution we started with in Step 1 of Algorithm R, 
K C_ J and x a fixed assignment of the jobs in K to machine-time pairs. Furthermore 
let j E J \  K. Then, there exists an assignment of j to a machine time pair (i,t) (i. e., 
Xij t = 1) with rij ~ t such that 

eKu j}  (Ye <. w Ce) (13) 

Proof The conditional expectation on the right hand side of (13) can be written as 
a convex combination of conditional expectations EKo{j}~(]~tweCe) over all possible 
assignments of job j to machine-time pairs (i,t) with coefficients Yijt/Pij. [] 

We therefore get a good derandomized version of Algorithm R if we replace Step 2 by 

2') Set K = 0; x:=0; for all j E J do 
i) for all possible assignments of job j to machine-time pairs (i,t) (i. e., xijt = 1) 

compute EKu{j} :(,~..g w tCe ) ; 
ii) determine the machine time pair (i,t) that minimizes EKu{j},,(]~eweCe); 

iii) setK:=KU{j};xi j t  = 1; 

Notice that we have replaced Step 3 of Algorithm R by 3' only to give a more accessible 
analysis of its derandomization. Since the value of the schedule constructed in Step 3 of 
Algorithm R is always at least as good as the one constructed in Step 3', the following 
theorem can be formulated for Algorithm R with the original Step 3. 

Theorem 5. If we replace Step 2 in Algorithm R with 2' we get a deterministic algo- 
rithm with performance guarantee 2. Moreover, the running time of this algorithm is 
polynomially bounded in the number of variables of the LP relaxation. 



426 

Proof Since E(]~ewlCt) < 2]~twtCt{ P by Theorem 2, an inductive use of Lemma 4 
yields the performance guarantee 2 for the derandomized algorithm. The computation 
of (11) and (12) is polynomially bounded in the number of variables. Therefore, the 
running time of each of the n iterations in Step 2' is polynomially bounded in this 
number. [] 

Since Algorithm P can be seen as a special case of Algorithm R, it can be deran- 
domized in the same manner. Notice that, in contrast to the situation for the randomized 
algorithms, we can no longer give job-by-job bounds for the derandomized algorithms. 

5 Interval-Indexed Formulation 

As mentioned earlier, the Algorithm R for scheduling unrelated parallel machines suf- 
fers from the exponential number of variables in the corresponding LP relaxation. How- 
ever, we can overcome this drawback by using new variables which are not associated 
with exponentially many time intervals of length 1, but rather with a polynomial num- 
ber of intervals of geometrically increasing size. This idea was earlier introduced by 
Hall et al. [HSW96]. 

For a given e > 0, L is chosen to be the smallest integer such that (1 + e) L/> T + 1. 
Consequently, L is polynomially bounded in the input size of the considered scheduling 
problem. Let I0 = [0,1] and for 1 ~< g ~< L let It = ((1 +e)e- l , (1  +e) t ] .  We denote 
with Iltl the length of the g-th interval, i. e., Iltl -- e(1 +e)  ~-1 for t ~< g ~< L. To simplify 
notation we define (t +e )  t - I  to be ½ for £ = 0. We introduce variables Yijg for i = 
1,...  ,m, j E J, and g = 0, . . .  ,L with the following interpretation: Yijg" lztl is the time 
job j is processed on machine i within time interval It, or, equivalently: (Yijt" lltl)/pij 
is the fraction of job j that is being processed on machine i within It. Consider the 
following linear program in these interval-indexed variables: 

minimize ~ wjCj 
jEJ 
m L 

subject to ~ ~ Yijg" Iltl _ 1 for all j E J, (14) 
i=1 ~=o Pij 

(l+e)~>ro 

ZYiJg ~< 1 for i = 1,... ,m and g = 0, . . .  ,L, 
jEJ 

Cj= f i  ~(YiJe'lltl(l~ +e)-'e-l--l.yijg,lltl 
i=1 t = 0  Y J 

Yije=O f o r / =  t,o.. ,m, j E J , ( l + e ) t ~ r i j ,  
yi]e)O for i=l , . . . ,m,  jEJ ,  g=O,...,L. 

(15) 

for all j E J, (16) 

(17) 
(18) 

Consider a feasible schedule and assign the values to the variables Yijt as defined 
above. This solution is clearly feasible: constraints (14) are satisfied since a job j con- 
sumes Pij time units if it is processed on machine i; constraints (15) are satisfied since 
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the total amount of processing on machine i of jobs that are processed within the inter- 
val Ie cannot exceed its size. Finally, if job j is continuously being processed between 
Cj  -- Phi and Cj on machine h, then the right hand side of equation (16) is a lower 
bound on the real completion time. Thus, (LP~) is a relaxation of the scheduling prob- 
lemRlrijl~,wjCj. 

Since for fixed e > 0 (LP~) is of polynomial size, an optimum solution can be 
computed in polynomial time. The following algorithm is an adaptation of Algorithm R 
to the new LP: 

Algorithm R e 

1) Compute an optimum solution y to (LP~). 
2) Assign job j to a machine-interval pair (i, ll) at random with probability ~ ;  draw PU 

tj from the chosen time interval at random with uniform distribution. 
3) Schedule on each machine i the jobs that were assigned to it nonpreemptively as 

early as possible in nondecreasing order of tj. 

Again, all the random assignments need to be performed independently from each 
other. The following lemma is a reformulation of Lemma 1 for Algorithm R e and can 
be proved analogously. 

Lemma 6. The expected processing time of  each job j E J in the schedule constructed 
m L [ by Algorithm R e equals ~i=I Y~l=oYijl " [ ~[. 

Theorem 7. The expected completion time of each job j in the schedule constructed by 
Algorithm R e is at most 2. (1 + ~).Ctf e, where C~ e is the LP completion time (defined 
by (16)) of the optimum solution y we started with in Step 1 of Algorithm R E. 

Proof. We argue almost exactly as in the proof of Theorem 2, but rather use Lemma 6 
instead of Lemma 1. We consider an arbitrary, but fixed job j E J. First, we also consider 
a fixed assignment of j to machine i and time interval Ib Again, the conditional expec- 
tation of j ' s  starting time equals the expected idle time plus the expected processing 
time on machine i before j is started. 

With similar arguments as in the proof of Theorem 2, we can bound the sum of the 
idle time plus the processing time by 2. (1 + e)- (1 + e) t -  1. This, together with Lemma 6 
and (16) yields the theorem. [] 

Theorem 7 implies that Algorithm R e is a (2 + 2e)-approximation algorithm. Fur- 
thermore, (LP~) is a (2 + 2e)-relaxation of the problem R lrq I EwFj.  

Of course, as suggested by Remark 3, tj need also not be chosen at random in 
Step 2 of Algorithm R E. Moreover, Algorithm R e can be derandomized with the same 
technique as described in Section 4. In particular, the running time of the derandomized 
version is again polynomiaUy bounded in the number of variables in the corresponding 
LP relaxation and therefore, for fixed e > 0, polynomial in the input size. 
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