
A Robust PTAS for Machine Covering and
Packing!

Martin Skutella and José Verschae

Institute of Mathematics, TU Berlin, Germany
{skutella,verschae}@math.tu-berlin.de

Abstract. Minimizing the makespan or maximizing the minimum ma-
chine load are two of the most important and fundamental parallel ma-
chine scheduling problems. In an online scenario, jobs are consecutively
added and/or deleted and the goal is to always maintain a (close to)
optimal assignment of jobs to machines. The reassignment of a job in-
duces a cost proportional to its size and the total cost for reassigning
jobs must preferably be bounded by a constant r times the total size of
added or deleted jobs. Our main result is that, for any ε > 0, one can
always maintain a (1 + ε)-competitive solution for some constant reas-
signment factor r(ε). For the minimum makespan problem this is the
first improvement of the (2 + ε)-competitive algorithm with constant re-
assignment factor published in 1996 by Andrews, Goemans, and Zhang.

1 Introduction

We consider two basic scheduling problems where n jobs need to be assigned to
m identical parallel machines. Each job j has a processing time pj ≥ 0 and the
load of a machine is the total processing time of jobs assigned to it. The machine
covering problem asks for an assignment of jobs to machines that maximizes the
minimum machine load. In the minimum makespan problem (or machine packing
problem), we wish to find a schedule minimizing the maximum machine load.

Both problems are well known to be strongly NP-hard and both allow for a
polynomial-time approximation scheme (PTAS); see, e. g., [2,9,16]. They have
also been studied extensively in the online setting where jobs arrive one by one
and must immediately be assigned to a machine at their arrival; see, e. g., [1,13].
The best known online algorithm for the minimum makespan problem is a
1.9201-competitive algorithm [8]. The best lower bound on the competitive ratio
of any deterministic online algorithm currently known is 1.88 [10]. For random-
ized online algorithms there is a lower bound of e/(e − 1) ≈ 1.58; see [6,12].

The online variant of the machine covering problem turns out to be less
tractable and there is no online algorithm with constant competitive ratio. The
best possible deterministic algorithm greedily assigns jobs to the least loaded ma-
chine, and has competitive ratio 1/m; see [16]. In [5] an upper bound of O(1/

√
m)

is shown for the competitive ratio of any randomized online algorithm, and there
is an almost matching Ω̃(1/

√
m)-competitive algorithm.

! Supported by Berlin Mathematical School and by DFG research center Matheon.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 36–47, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Robust PTAS for Machine Covering and Packing 37

There is also a large amount of literature on online load balancing problems
where jobs are allowed to arrive or depart the system; see, e. g., [4]. Most authors
consider a relaxed notion of competitive ratio, where the solution is not compare
against the current offline optimum but the largest objective value seen so far.

Proportional reassignment cost. We study a relaxed online scenario known
as online load balancing with proportional reassignment cost. In this setting, jobs
may arrive or depart at any time, and when a new job enters the system it must
immediately be assigned to a machine. Again, the objective is either to minimize
the makespan or to maximize the minimum machine load. Furthermore, upon
arrival or departure of a job, one is allowed to reassign other jobs by paying an
associated cost: reassigning job j incurs a cost of c·pj for some given constant c >
0. By scaling we can assume that c = 1.

The cost due to reassignments is controlled by the reassignment factor which
is defined as follows. Let J be the set of jobs that have so far appeared in
the system, and let JL ⊆ J be the set of jobs that have left the system. We
define the reassignment factor r of an algorithm as the worst case ratio between∑

j∈J pj +
∑

j∈JL
pj and the total cost due to reassignments. Alternatively, we

can interpret this framework in the following way: given a parameter r > 0,
the arrival or departure of a job j adds an amount of r · pj to the total budget
available to spend on reassignments. We call r · pj the reassignment potential
induced by job j.

Note that r = 0 means that no reassignment is allowed, and thus we are
in the classical online setting. On the other hand, r = ∞ implies that we are
allowed to reassign all jobs at each arrival/departure, and thus we fall back to
the offline case. We are interested in developing α-competitive algorithms where
the migration factor r is bounded by a constant. Furthermore, we study the
trade-off between α and r. Arguably, the best that we can hope for under this
framework is a robust PTAS (also known as dynamic PTAS), that is, a family
of polynomial-time (1 + ε)-competitive algorithms with constant reassignment
factor r = r(ε), for all ε > 0.

For the minimum makespan problem with proportional reassignment cost,
Westbrook [15] gives a 6-competitive algorithm with reassignment factor 1 (ac-
cording to our definition1). Andrews, Goemans, and Zhang [3] improve upon this
result, obtaining a 3.5981-competitive algorithm with reassignment factor 1. Fur-
thermore, they give a (2 + ε)-competitive algorithm with constant reassignment
factor r(ε) ∈ O(1/ε).

Related work. Sanders, Sivadasan, and Skutella [11] consider a somewhat
tighter online model, known as the bounded migration framework. This model
can be interpreted as the reassignment model with the following modification:
after the arrival or departure of a job j, its reassignment potential r · pj must be

1 Our definition differs slightly from the one given in [15]: they do not consider the
departure of jobs to add any reassignment potential, and the first assignment of a
job also induces cost in their case. However, the concept of constant reassignment
factors is the same in both models.

38 M. Skutella and J. Verschae

immediately spent or is otherwise lost. In the bounded migration scenario, the
value r is called the migration factor of the algorithm, and is a measure of the
robustness of the constructed solutions.

Sanders et al. study the bounded migration model for the special case when
jobs are not allowed to depart. For the minimum makespan problem, they give
a 3/2-competitive algorithm with migration factor 4/3. Moreover, using well
known rounding techniques, they formulate the problem as an integer linear pro-
gramming (ILP) feasibility problem in constant dimension. Combining this with
an ILP sensitivity analysis result, they obtain a robust PTAS for the bounded
migration model with job arrivals only. An important consequence of their anal-
ysis is that no special structure of the solutions is needed to achieve robustness.
More precisely, it is possible to take an arbitrary (1 + ε)-approximate solution
and, at the arrival of a new job, turn it into a (1+ε)-approximate solution to the
augmented instance while keeping the migration factor constant. This feature
prevents their technique from working in the job departure case.

The machine covering problem is also considered by Sanders et al. [11]. They
describe an interesting application of the online version of this problem in the
context of storage area networks and describe a 2-competitive algorithm with
migration factor 1. Moreover, they give a counterexample showing that it is not
possible to start with an arbitrary (1/2 + ε)-approximate solution, and then
maintain the approximation guarantee while keeping the migration factor con-
stant. This implies that the ideas developed in [11] for the minimum makespan
problem cannot be applied directly to derive a robust PTAS for the machine
covering problem. Based on ideas in [11], Epstein and Levin [7] develop a robust
APTAS for the Bin-Packing problem.

Our Contribution. We develop a general framework for obtaining robust
PTASes in the reassignment model. Our results can be considered from various
different angles and have interesting interpretations in several different contexts:

(i) We make a significant contribution to the understanding of two fundamen-
tal online scheduling problems on identical parallel machines that are also
relevant building blocks for many more complex real-world problems.

(ii) We advance the understanding of robustness of parallel machine schedules
under job arrival and departure, and give valuable insights related to the
sensitivity analysis of parallel machine schedules.

(iii) We achieve the best possible performance bound for machine balancing
with proportional reassignment costs, improving upon earlier work by West-
brook [15] and Andrews, Goemans, and Zhang [3].

Our techniques for deriving the robust PTAS take the ideas in [2] and [11]
one step further. We first prove that it is not possible to start with an arbitrary
(1− ε)-approximate solution and, at the arrival of a new job, maintain the com-
petitive ratio with constant migration factor. One of our main contributions is
to overcome this limitation by giving extra structure to the constructed solu-
tions. Roughly speaking, we do this by asking for solutions such that the sorted
vector of machine load values is lexicographically optimal. It turns out that a
solution with this property is not only optimal but also robust. In the analysis

A Robust PTAS for Machine Covering and Packing 39

p1 p2 p3

p5 p6

p7 p4

p5 p2 p3

p6 p1 p4

p7

Fig. 1. Left: Unique optimal solution to original instance. Right: Unique optimal solu-
tion to instance with new jobs.

we formulate a rounded scheduling problem as an ILP in constant dimension,
exploit the structure of the coefficient matrix, and apply sensitivity analysis for
ILPs to derive the result.

To keep the presentation short and clear, we mainly focus on the machine
covering problem in this extended abstract and present a robust PTAS for the
general case of jobs leaving and entering the system. An easy adaptation of
the techniques here presented yields a robust PTAS for the minimum makespan
problem, improving upon the (2 + ε)-competitive algorithm with constant reas-
signment factor by Andrews, Goemans, and Zhang [3]. Moreover, all our tech-
niques can be extended to a very broad class of problems, where the objective
functions solely depend on the load of each machine. Further details on these
topics, as well as the complete proofs of our results can be found in [14].

2 A Lower Bound on the Best Approximation with
Constant Migration Factor

We start by showing that it is not possible to maintain near-optimal solutions
to the machine covering problem with constant migration factor in the model of
Sanders et al. [11], if arriving jobs are arbitrarily small.

Lemma 1. For any ε > 0, there is no (19/20+ ε)-competitive algorithm for the
machine covering problem with constant migration factor, even for the special
case without job departures.

The proof of the lemma is based on an instance consisting of 3 machines and
7 jobs depicted in Figure 1. Details can be found in [14]. The proof of the lemma
can be found in [14].

As mentioned before, this lemma justifies the use of the reassignment cost
model instead of the bounded migration framework. Moreover, we see in the
proof of the lemma that the limitation of the bounded migration model is caused
by arbitrarily small jobs, whose reassignment potential do not allow any other
job to be migrated. Nonetheless, in the reassignment model we can deal with
small jobs by accumulating them as follows.

Let OPT denote the value of an optimum solution for the current set of jobs. If a
new job j with pj < ε ·OPT arrives, we do not schedule it immediately2. Instead,
2 In order to still satisfy the strict requirements of the considered online scheduling

problem, we can assume that job j is temporarily assigned to an arbitrary machine,
say machine 1. Notice that this causes an increase of the reassignment factor by at
most 1.

40 M. Skutella and J. Verschae

we accumulate several small jobs, until their total processing time surpasses ε ·
OPT . We can then incorporate them as one larger job with processing time at
least ε · OPT . This can only decrease the value of the solution by a 1 − ε factor.

The situation for the departure of small jobs is slightly more complicated.
We ignore the fact that certain small jobs are gone as long as the following
property holds: There is no machine which has lost jobs of total processing time
at least ε · OPT . Under this condition, the objective function is affected by less
than a factor 1+ε. If, on the other hand, there is such a machine, we can treat the
set of jobs that have left the machine as one single job of size at least ε ·OPT and
act accordingly. Notice that the property above has to be checked dynamically
after each reassignment of jobs caused by newly arriving or departing jobs.

Assumption 1. W.l.o.g., all arriving/departing jobs are bigger than ε · OPT .

3 A Stable Estimate of the Optimum Value

In this section we describe an upper bound on the optimum solution value of the
machine covering problem, also introduced in [2]. However, for it to be useful
for the robust PTAS, we need to show that this upper bound is stable. That is,
at the arrival/departure of a new job, its value must not change by more than a
constant factor.

Let I = (J, M) be an instance of our problem, where J is a set of n jobs
and M a set of m machines. Given a subset of jobs L, we denote by p(L) the
total processing time of jobs in L, i. e., p(L) :=

∑
j∈L pj . Instance I satisfies

property (∗) if pj ≤ p(J)/m, for all j ∈ J . The most natural upper bound to use
for our problem is the average load p(J)/m. Under condition (∗), the average
load is always within a factor 2 of OPT ; see [2,14].

Lemma 2. If instance I satisfies (∗), then p(J)
2m ≤ OPT ≤ p(J)

m .

Now we show how to transform arbitrary instances to instances satisfying (∗)
without changing the optimal solution value. If pj > p(J)/m ≥ OPT , then we
can assume that j is being processed on a machine of its own. Thus, removing j
plus its corresponding machine does not change the optimal solution value, but it
does reduce the average load. We can iterate this idea until no job is strictly larger
than the average load. We call this procedure Algorithm Stable-Average.
Also, we call L the set of jobs and w the number of machines of the corresponding
remaining instance. More importantly, we define A to be the average load of this
instance, i. e., A := p(L)/w. We call value A the stable average of instance I.
Also, we obtain that solving the instance with job set L and w identical machines
is equivalent to solving I. Thus Lemma 2 yields:

Lemma 3. The upper bound A computed by the algorithm above satisfies OPT ≤
A ≤ 2 · OPT .

It is easy to see that, in general, the factor by which the upper bound changes
at the arrival/departure of a job is not bounded (consider two machines and two

A Robust PTAS for Machine Covering and Packing 41

jobs of sizes 1 and K * 1, respectively; then one job of size K − 1 arrives).
However, we can show that if A is increased by more than a factor 2, then the
instance was trivial to solve in the first place. To this end, we show that if the
value A is increased by more than a factor of 2, then a significant amount of
jobs must have arrived to the system. The proof of the next lemma is omitted.

Lemma 4. Consider two arbitrary instances I = (J, M) and I′ = (J ′, M).
Let A, L and w (resp. A′, L′ and w′) be the returned values when applying
Algorithm Stable-Average to I (resp. I ′). If A′ > 2A, then |J+J ′| > w/2
(here + denotes the symmetric difference between the two sets).

Moreover, we say that an instance is trivial if Algorithm Stable-Average re-
turns w = 1. In this case, the optimal solution to the instance can be constructed
by processing the m − 1 largest jobs each on a machine of their own, and the
remaining jobs on the remaining machine. Moreover, the optimal value OPT
equals A. With this definition, we obtain the following easy consequence of
Lemma 4.

Corollary 1. Assume that I is nontrivial and that instance I′ is obtained from
I by adding one job. Then, it must hold that A ≤ A′ ≤ 2 · A.

4 The Structure of Robust Solutions

In the following, we show a sufficient condition to guarantee that we can achieve
near optimal solutions when jobs arrive or depart. For clarity, we first consider a
static case: Given an instance I, we construct a (1−O(ε))-approximate solution
having enough structure so that at the arrival or departure of a job larger than
ε ·OPT , we can maintain the approximation guarantee using constant migration
factor. Note that since we are using constant migration factor, we only use the
reassignment potential induced by the arriving or departing job. Nonetheless,
we do not take care of maintaining the structure so that this procedure can be
iterated when further jobs arrive (or depart). We deal with this more complicated
scenario in Section 5.

We concentrate on the case of a newly arriving job. But the presented ideas
and techniques can be easily adapted to the case of a departing job. Let I =
(J, M) be an arbitrary instance with optimal value OPT . If there is no possible
confusion, we will also use OPT to refer to some optimal schedule for I. We call
I ′ = (J ′, M) the instance with the additional arriving job pj∗ , and OPT ′ the
new optimal value.

Lemma 5. Assume that I is trivial. Then, starting from an optimal solution,
one can construct a (1− ε)-approximate solution to I′ by using migration factor
at most 2/ε.

The proof of the lemma can be found in [14]. We devote the rest of this section
to the case of nontrivial instances.

42 M. Skutella and J. Verschae

4.1 Compact Description of a Schedule

As usual in PTASes, we first simplify our instance by rounding. In this section
we briefly show how to do this for our problem. The techniques are similar to
the ones found, e. g., in [2,11,16]. Nonetheless, we must be careful to ensure that
the resulting compact description of schedules is also compatible with schedules
containing any new job that may arrive.

It is a well known fact that by only loosing a 1/(1 + ε) factor in the objective
function, we can round down all processing times to the nearest power of 1 + ε.
Thus, in the rest of this paper we assume that, for every job j, it holds that
pj = (1 + ε)k for some k ∈ Z. Moreover, we need to compute an upper bound,
ub, which is within a constant factor γ > 1 of the optimal value: OPT ≤ ub ≤
γ ·OPT . Throughout this section we use ub = A, so that γ = 2. For the general
case in Section 5, however, we have to choose this upper bound more carefully.

In what follows, we round our instance such that the number of different
processing times is constant. To this end, let σ,Σ ≥ 1 be two constant parameters
that will be chosen appropriately later. Our rounding ensures that all processing
times belong to the interval [ε · ub/σ,Σ · ub]. The value σ will be chosen big
enough so that every job that is smaller than ε·ub/σ is also smaller than ε·OPT .
On the other hand, since Σ ≥ 1, every job that is larger than Σ ·ub is also larger
than OPT , and thus should be processed on a machine of its own. Moreover, since
we are assuming that I is nontrivial, Corollary 1 implies that ub′ := A′ ≤ 2 ·ub.
We can therefore choose Σ ≥ 2 to ensure that a job that is larger than Σ · ub
is also larger than OPT ′, and thus can also be processed on a machine of its
own in optimal solutions to I ′. This will help to simultaneously round I and I ′,
yielding the same approximation guarantee for both instances. More importantly,
we note that since the lower and upper bounds are within a constant factor,
the rounded instances only have O(log1+ε(1/ε)) = O(1/ε log(1/ε)) different job
sizes. Consider the index set

I(ub) :=
{
i ∈ Z : ε · ub/σ ≤ (1 + ε)i ≤ Σ · ub

}
= {', . . . , u} .

The new rounded instance derived from I is described by defining a vector
N = (ni)i∈I , whose entry ni denotes the number of jobs of size (1 + ε)i. More
precisely, vector N is defined as follows. For each i = ' + 1, . . . , u − 1, we let

ni :=
∣∣{j ∈ J : pj = (1 + ε)i

}∣∣ , (1)

i. e., ni is the number of jobs of size (1 + ε)i in the original instance. We call
these jobs big with respect to ub. Bigger jobs are rounded down to (1+ε)u, i. e.,
we set

nu := |{j ∈ J : pj ≥ (1 + ε)u}| . (2)

We call these jobs huge with respect to ub. Finally, jobs that are smaller than
or equal to (1 + ε)" are said to be small with respect to ub. We replace them by
jobs of size (1 + ε)", i. e., we set

n" :=
⌊

1
(1+ε)!

∑
j:pj≤(1+ε)!

pj

⌋
. (3)

A Robust PTAS for Machine Covering and Packing 43

By definition (3), the total processing time of small jobs in N and I is roughly
equal. By slightly abusing notation, in what follows we also use the symbol N
to refer to the scheduling instance defined by the vector N . The next lemma is
also used in [2]. We omit the proof.

Lemma 6. The value of an optimal solution to N is within a 1 − O(ε) factor
of OPT .

Notice that a solution to the rounded instance can be turned into a schedule
for the original instance I by simply removing all jobs of size (1 + ε)" from
the schedule of N , and then applying a list scheduling algorithm to process the
original small jobs. By the same argument as in the proof of Lemma 6, this only
costs a factor 1 − O(ε) in the objective function. We can thus restrict to work
with instance N . To describe a schedule for N in a compact way, we consider
the following definition.

Definition 1. For a given schedule, a machine obeys configuration k : I(ub) →
N0, if k(i) equals the number of jobs of size (1 + ε)i assigned to that ma-
chine, for all i ∈ I(ub). The load of configuration k is defined as load(k) :=∑

i∈I(ub) k(i)(1 + ε)i.

Let us now consider set K := {k : I(ub) → N0 : k(i) ≤ σΣ/ε + 1 for all i ∈ I}.
Notice that |K| ≤ (σΣ/ε + 1)|I(ub)| ∈ 2O(1

ε log2 1
ε). The next lemma assures that

these are all necessary configurations that we need to consider.

Lemma 7. There is an optimal solution to N with all machine configurations
in K.

The proof is given in [14]. Note that the number of jobs per machine in an
optimal solution can be upper bounded by σ/ε + 1. Thus, the set K contains
more configurations than are really needed. Nonetheless, the overestimation of
the number of jobs is necessary so that, when a new job arrives and the upper
bound increases (by at most a factor of 2), the set K still contains all necessary
configurations.

The optimal schedule for N found in Lemma 7 can be described by a vector
(xk)k∈K , where xk denotes the number of machines that obey configuration k.
We can see that vector x satisfies the following set of constrains:

∑
k∈K

xk = m,
∑

k∈K
k(i) · xk = ni for all i ∈ I(ub) (4)

and xk ∈ Z≥0 for all k ∈ K. We denote by A = A(K, I) the matrix defining the
set of equations (4); the corresponding right-hand-side is denoted by b(N, m).
Also, D =

{
x ∈ ZK

≥0 : A · x = b(N, m)
}

denotes the set of non-negative integral
solutions to (4).

4.2 Constructing Stable Solutions

In the following we present the main structural contribution of this paper: We
show how to obtain a robust optimal solution to N such that, upon arrival (or
departure) of a new job of size at least ε ·OPT , we need to migrate jobs of total

44 M. Skutella and J. Verschae

processing time at most f(ε) ·OPT in order to maintain optimality. This implies
that the migration factor needed for this case is upper bounded by f(ε)/ε.

Let us order and relabel the set of configurations K = {k1, . . . , k|K|} in non-
decreasing order of their load, i. e., load(k1) ≤ load(k2) ≤ . . . ≤ load

(
k|K|

)
.

Definition 2. Let x, x′ ∈ D. We say that x′ is lexicographically smaller than x,
denoted x′ ≺lex x, if xk = x′

k for all k ∈ {k1, . . . , kq}, and x′
kq+1

< xkq+1 , for
some q.

By definition, ≺lex defines a total order on the solution set D. Thus there exists
a unique lexicographically minimum vector in x∗ ∈ D. We show that x∗ has the
proper structure needed for our purposes. Note that, in particular, it maximizes
the minimum machine load. Moreover, x∗ can be computed in polynomial time
by solving a sequence of ILPs in constant dimension as follows: for q = 1, . . . , |K|,
set

x∗
kq

:= min
{
xkq : x ∈ D and xkr = x∗

kr
for all r = 1, . . . , q − 1

}
.

Alternatively, we can find x∗ by solving a single ILP in constant dimension, i. e.,
by minimizing a carefully chosen linear function over D. Let λ := (m + 1)−1,
and define cq := λq for q = 1, . . . , |K|. The following ILP is denoted by [LEX]:

min
{ |K|∑

q=1

cq · xkq : A · x = b(N, m) and xk ∈ Z≥0 for all k ∈ K

}
.

The proof of the following lemma can be found in [14].

Lemma 8. Let z be an optimal solution to [LEX]. Then, z is the lexicographi-
cally minimal solution in D.

Let S be the schedule corresponding to z. We next show that S is robust. The
new job j∗ can be incorporated into the ILP by only slightly changing the right-
hand-side of [LEX]. Indeed, as discussed before, we can assume that pj∗ is a
power of (1 + ε) and is larger than ε · OPT ≥ ε · ub/σ (by choosing σ ≥ γ).
Then, we can round the new instance I′ by defining a vector N ′ = (n′

i)i∈I as
follows: for i = ', . . . , u − 1 let

n′
i =

{
ni + 1 if pj∗ = (1 + ε)i,

ni otherwise,
and n′

u =

{
nu + 1 if pj∗ ≥ (1 + ε)u,

nu otherwise.

In other words, if pj∗ > Σub ≥ 2ub ≥ ub′ ≥ OPT ′ then job j∗ is processed
on a machine of its own. Therefore we can assume that its size is just (1 + ε)u.
Also, note that all jobs whose size was rounded down to (1 + ε)u in the original
instance I are still larger than Σ ·ub ≥ ub′, and thus get a machine of their own
in OPT ′. Moreover, jobs that are smaller than ε · ub/σ are also smaller than ε ·
OPT ′. Thus, using the same argument as in Lemma 6, solving instance N ′ yields
a (1 − O(ε))-approximate solution to I′. Also, analogously to Lemmas 7 and 8,

A Robust PTAS for Machine Covering and Packing 45

we can solve this instance by optimizing the following modification of [LEX],
which we call [LEX]’:

min
{ |K|∑

q=1

cq · xkq : Ax = b(N ′, m) and xk ∈ Z≥0 for all k ∈ K

}
.

Let z′ be an optimum solution to [LEX]’. Notice that [LEX] and [LEX]’ only
differ in one entry of the right-hand-side vector by one. Thus, by a result from
sensitivity analysis of ILPs, the optimum solutions z and z′ are relatively close.
This yields the next theorem, whose detailed proof is given in [14].
Theorem 1. There exists a static robust PTAS if the arriving job is larger
than ε · OPT .

Running time. By the proof of Theorem 1, given z, we can compute z′ by
exhaustive search through all vectors whose components differ from z by at
most 2O(1

ε log2 1
ε). Thus, the running time needed to compute the desired solution

to I ′ is 22O(1
ε log2 1

ε)
.

Job departure. The approach presented in this section also works for the job
departure case. Indeed, if instance I ′ contains one job less than I, we can assume
that I ′ is nontrivial (otherwise see Lemma 5). Therefore ub′ ≥ ub/2, and thus
choosing σ ≥ 2γ implies that I(ub) contains all job sizes between ε · OPT ′

and OPT ′. Thus, rounding instance I ′ within this range decreases the optimum
value by at most a factor (1 − O(ε)). Again, the right hand sides of [LEX] and
[LEX]’ differ in only one entry and thus the migration factor needed to construct
the solution given by [LEX]’ is at most 2O(1

ε log2 1
ε).

5 Maintaining Robust Solutions Dynamically

In the previous section we showed how to construct a robust (1−ε)-approximate
solution, so that we can maintain the approximation guarantee at the arrival
(departure) of an arbitrary new big job and keep the migration factor bounded.
Nonetheless, we cannot further iterate this method when more jobs arrive or
depart since the optimum values of the new instances may become arbitrarily
large (small), and thus the range I(ub) is not large enough to guarantee the ap-
proximation ratios of the rounded instances. On the other hand, we cannot make
the index set I(ub) larger so as to simultaneously round all possible instances
and maintain the number of job sizes constant.

We deal with this difficulty by dynamically adjusting the set I(ub). In doing
so, we must be extremely careful not to destroy the structure of the constructed
solutions and maintain the reassignment cost bounded. Whenever the set I(ub) is
shifted to the right (left), we must regroup small jobs into larger (smaller) groups.
Therefore, I(ub) should be shifted only if we can guarantee that there is enough
reassignment potential accumulated to regroup all small jobs and simultaneously
maintain the structure of optimal solutions. Let I be the instance after the t-th
job arrival/departure. For t = 1, 2, . . . , we run the following algorithm on the
current instance I.

46 M. Skutella and J. Verschae

Robust PTAS

1. Run Algorithm Stable-Average on I to compute A and w.
2. If variable A0 is undefined or A .∈ [A0/2, 2A0], then set I0 := I and A0 := A.
3. Set ub := 2A0 and define sets I(ub), K, and the ILP [LEX] as in Section 4.

Compute the optimum solution z to [LEX] and the corresponding schedule S.

Notice that throughout the algorithm, OPT ≤ A ≤ 2A0 = ub, and thus ub
is indeed an upper bound on OPT . Moreover, OPT ≥ A/2 ≥ A0/4 = ub/8,
and thus ub is within a factor 8 of OPT (i. e., γ = 8 with the notation of
Section 4). By the discussion in Section 4.2, an appropriate choice of values σ
and Σ guarantees that all constructed solutions are (1 − O(ε))-approximate. It
remains to show that the needed reassignment factor is bounded by a constant.

For the analysis we partition the iterations of the algorithm into blocks. Each
block B consists of a consecutive sequence of iterations where the value of A0 is
kept constant. Thus, for each instance I occurring in B, its stable average A be-
longs to the interval [A0/2, 2A0]. Consider two consecutive instances I and I ′ that
belong to the same block. We add a symbol prime to denote the variables corre-
sponding to I ′ (e. g., A′ is the stable average of I ′). Since I and I ′ belong to the
same block B, it holds that ub = 2A0 = ub′, and thus the sets I(ub) and K
coincide with I(ub′) and K ′, respectively. Therefore, as already discussed in Sec-
tion 4.2, the ILPs [LEX] and [LEX]’ only differ in one entry of their right-hand-side
vectors and the same reasoning as in Theorem 1 yields the following lemma.
Lemma 9. If two consecutive instances I and I′ belong to the same block of
iterations, then the migration factor used to obtained S′ from S is at most
2O(1

ε log2 1
ε).

It remains to consider the case that instance I and the next instance I′ belong
to different blocks. For this, we assume that I′ contains one more job than I and
that A′ > 2A0. We can deal with the case A′ < A0/2 in an analogous way. By
Lemma 5 we can assume that I is nontrivial. Assume that I belongs to block B,
and consider the value of A0 corresponding to this block. It holds that A0 ≤
A ≤ 2A0. Also, since I is nontrivial, Corollary 1 ensures that A ≤ A′ ≤ 2A, and
therefore ub ≤ ub′ ≤ 4ub.

In order to compare solutions z ∈ NK
0 and z′ ∈ NK′

0 , we need to interpret them
in a common euclidean space containing them. Notice that huge jobs of I have
processing time larger than Σ · ub ≥ ub′ (assuming Σ ≥ 4). These jobs get a
machine of their own in solutions OPT , OPT ′, S, and S′; thus, we do not need to
consider them. We can therefore assume that all jobs of I and I ′ have processing
time at most Σ · ub. In particular, the entries of vector N ′ = (n′

i)i∈I(ub′) are
zero if (1 + ε)i > Σ · ub. We can thus interpret N ′ as a vector in NI(ub)

0 by
setting to zero the entries n′

i with (1 + ε)i < ε · ub′/σ. With this simplification,
all feasible solutions to [LEX]’ corresponds to solutions to [LEX] where the right
hand side has been modified according to N ′. Thus, z′ can be regarded as an
optimal solution to this modified version of [LEX].

We bound the difference between N and N ′, which allows us to bound the
difference between z and z′. This will imply the result on the reassignment factor.

A Robust PTAS for Machine Covering and Packing 47

Lemma 10. Let q be the number of jobs that have arrived in block B, including the
job that made the algorithm change to the next block. Then, ‖N − N ′‖1 ∈ O(q/ε).
The proof of the lemma can be found in [14]. Applying Lemma 10 and the same
proof technique as in Theorem 1, we obtain the following lemma.

Lemma 11. The reassignment potential used to construct S′ is at most q ·A0 ·
2O(1

ε log2 1
ε).

Theorem 2. For the machine covering problem with jobs arriving and departing
online, there exists a (1 − ε)-competitive polynomial algorithm with constant
reassignment factor at most 2O(1

ε log2 1
ε).

References

1. Albers, S.: Online algorithms: a survey. Mathematical Programming 97, 3–26
(2003)

2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. Journal of Scheduling 1, 55–66 (1998)

3. Andrews, M., Goemans, M., Zhang, L.: Improved bounds for on-line load balancing.
Algorithmica 23, 278–301 (1999)

4. Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Dagstuhl
Seminar 1996. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998)

5. Azar, Y., Epstein, L.: On-line machine covering. Journal of Scheduling 1, 67–77
(1998)

6. Chen, B., van Vliet, A., Woeginger, G.J.: Lower bounds for randomized online
scheduling. Information Processing Letters 51, 219–222 (1994)

7. Epstein, L., Levin, A.: A robust APTAS for the classical bin packing problem.
Mathematical Programming 119, 33–49 (2009)

8. Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling 3, 343–
353 (2000)

9. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. Journal of the ACM 34, 144–162
(1987)

10. Rudin III, J.F., Chandrasekaran, R.: Improved bounds for the online scheduling
problem. SIAM Journal on Computing 32, 717–735 (2003)

11. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migra-
tion. Mathematics of Operations Research 34, 481–498 (2009)

12. Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Infor-
mation Processing Letters 63, 51–55 (1997)

13. Sgall, J.: On-line scheduling — a survey. In: Fiat, A., Woeginger, G.J. (eds.)
Dagstuhl Seminar 1996. LNCS, vol. 1442, pp. 196–231. Springer, Heidelberg (1998)

14. Skutella, M., Verschae, J.: A robust PTAS for machine covering and packing. Tech-
nical Report 011-2010, Technische Universität Berlin (2010), http://www.math.
tu-berlin.de/coga/publications/techreports/2010/Report-011-2010.xhtml

15. Westbrook, J.: Load balancing for response time. Journal of Algorithms 35, 1–16
(2000)

16. Woeginger, G.J.: A polynomial-time approximation scheme for maximizing the
minimum machine completion time. Operations Research Letters 20, 149–154
(1997)

http://www.math.tu-berlin.de/coga/publications/techreports/2010/Report-011-2010.xhtml
http://www.math.tu-berlin.de/coga/publications/techreports/2010/Report-011-2010.xhtml

	A Robust PTAS for Machine Covering and Packing
	Introduction
	A Lower Bound on the Best Approximation with Constant Migration Factor
	A Stable Estimate of the Optimum Value
	The Structure of Robust Solutions
	Compact Description of a Schedule
	Constructing Stable Solutions

	Maintaining Robust Solutions Dynamically
	References

