Latency Constrained Aggregation in Sensor
Networks*

Luca Becchetti!, Peter Korteweg?, Alberto Marchetti-Spaccamela®,
Martin Skutella®, Leen Stougie>*, and Andrea Vitaletti!

! University of Rome “La Sapienza”
2TU Eindhoven
3 University of Dortmund
4 CWI Amsterdam

Abstract. A sensor network consists of sensing devices which may ex-
change data through wireless communication; sensor networks are highly
energy constrained since they are usually battery operated. Data aggre-
gation is a possible way to save energy consumption: nodes may delay
data in order to aggregate them into a single packet before forwarding
them towards some central node (sink). However, many applications im-
pose constraints on data freshness; this translates into latency constraints
for data arriving at the sink.

We study the problem of data aggregation to minimize maximum
energy consumption under latency constraints on sensed data delivery
and we assume unique transmission paths that form a tree rooted at
the sink. We prove that the off-line problem is strongly NP-hard and we
design a 2-approximation algorithm. The latter uses a novel rounding
technique.

Almost all real life sensor networks are managed on-line by simple
distributed algorithms in the nodes. In this context we consider both
the case in which sensor nodes are synchronized or not. We consider
distributed on-line algorithms and use competitive analysis to assess their
performance.

1 Introduction

A sensor network consists of sensor nodes and one or more central nodes or sinks.
Sensor nodes are able to monitor events, to process the sensed information and
to communicate the sensed data. Sinks are powerful base stations which gather
data sensed in the network; sinks either process this data or act as gateways to
other networks. Sensors send data to the sink through multi-hop communication.

A particular feature of sensor nodes is that they are battery powered, making
sensor networks highly energy constrained. Replacing batteries on hundreds of

* Supported by EU Integrated Project AEOLUS (FET-15964), EU project ADONET
(MRTN-CT-2003-504438), EU COST-action 293, MIUR-FIRB project VICOM,
Dutch project BRICKS, DFG Focus Program 1126, “Algorithmic Aspects of
Large and Complex Networks”, grant SK 58/5-3, MIUR-FIRB Israel-Italy project
RBIN047MH9.

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 88-99, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Latency Constrained Aggregation in Sensor Networks 89

nodes, often deployed in inaccessible environments, is infeasible or too costly
and, therefore, the key challenge in a sensor network is the reduction of energy
consumption. Energy consumption can be divided into three domains: sensing,
communication and data processing [1]. Communication is most expensive be-
cause a sensor node spends most of its energy in data transmission and reception
[7]. This motivates the study of techniques to reduce overall data communication,
possibly exploiting processing capabilities available at each node. Data aggre-
gation is one such technique. It consists of aggregating redundant or correlated
data in order to reduce the overall size of sent data, thus decreasing the network
traffic and energy consumption.

Most literature on sensor networks assumes total aggregation, i.e. data pack-
ets are assumed to have the same size and aggregation of two or more incoming
packets at a node results in a single outgoing packet. Observe that even if this
might be considered a simplistic assumption, it allows us to provide an upper
bound on the expected benefits of data aggregation in terms of power consump-
tion. We refer here to a selection of papers, focused on the algorithmic side of
the problem [3,6,10,9, 11, 12]. However, these papers mainly focus on empirical
and technical aspects of the problem.

We concentrate on data aggregation in sensor networks under constraints on
the latency of sensed events; this means that data should be communicated to
the sinks within a specified time after being sensed. Preliminary results are given
in [8,15]. In both cases formal proofs of the performance are not provided.

Time synchronization, in the sense of the existence of a common clock for the
nodes, may or may not be a requirement of the sensor network. Therefore, we
will consider both the synchronous model and the asynchronous model.

Contributions of the paper. A sensor network is naturally represented by
a graph whose nodes are the sensors and the arcs the wireless communication
links. Data aggregation, latency constraints and energy savings, give rise to a
large variety of graph optimization problems depending on the following issues.

- Transmission energy and time can be seen as functions of the size of the
packet and the transmission arc. Typically, these are concave functions exhibit-
ing economies of scale in the size of the packets sent.

- The latency may depend on the (types of) sensor data or on the sensor nodes.
- Sensor networks can be modelled as synchronous or asynchronous systems.

- Data is delivered to one or more sinks.

- The overlay routing paths connecting nodes to the sinks can be fixed a priori,
(e.g. a tree or a chain) or may also be chosen as part of the optimization process.
- There might be several objective functions; the most natural ones are to min-
imize the maximum energy consumption over all nodes or to maximize the
amount of sensed data arriving at the sinks with a given energy constraint.

By considering the above issues, we formulate the sensor problem in a combi-
natorial optimization setting, which allows us to derive, what we believe to be,
the first results on worst case analysis for on-line algorithms on wireless sensor
networks, as opposed to mainly empirical current results.

90 L. Becchetti et al.

We concentrate here on a basic subclass of latency constrained data aggre-
gation problems. We assume that transit times and transit costs, in terms of
energy consumption, are functions of the arcs only, modeling the situation of
total aggregation, while the objective is to minimize the maximum transit cost
per node over all nodes. There is only one sink and the transmission paths from
the nodes to the sink are unique, forming an intree with the sink as the root.
The tree is a typical routing topology in sensor networks; see [4,6, 10,13, 14].

In Section 2 we formalize the problem; for a thorough understanding of the
problem we have studied both the off-line and the on-line version of the problem,
although the latter version is the relevant one in practice.

In Section 3 we show that the off-line problem is NP-hard and we give a 2-
approximate algorithm. We remark that our approximate solution is based on a
new rounding technique of the LP-relaxation of an Integer Linear Programming
formulation of the problem, which might be useful for other applications.

In Section 4 we describe the distributed on-line problem, both in the syn-
chronous and the asynchronous settings. Our main results are:

(a) Distributed synchronous. We present a ©(logU)-competitive algorithm,
where U is the ratio between the maximum and the minimum time that a packet
can wait in its route toward the sink. We also show an {2(log U) lower bound,
whence the proposed algorithm is best possible up to a multiplicative constant.
(b) Distributed asynchronous. We give an O (8 log U)-competitive algorithm, where
¢ is the depth of the tree, which belongs to a class of algorithms for which we can
prove a lower bound of £2(§17¢) for any € > 0 on the competitive ratio.

Omitted proofs and more related results can be found in a full version [2] of
this abstract.

Related results. In spirit [4] come closest to our paper. In [4] the authors con-
sider optimization of TCP acknowledgement (ACK) in a multicasting tree. The
problem their work addresses is a data aggregation problem. However, energy
consumption is not an issue in this problem and latency is considered as a cost
instead of a constraint, resulting in an objective of minimizing the sum of the
total number of transmissions and the total latency of the messages.

In [5] the authors studied the optimal aggregation policy in a single-hop sce-
nario (i.e. the graph is a star). Namely an aggregator performs a request and
starts waiting for answers from a set of sources. The time for each source to
return its data to the aggregator is independent and identically distributed ac-
cording to a known distribution F'. The main differences with our paper are that
they assume that F' is known, and they focus on a single-hop scenario.

2 The Sensor Problem Formalized

We study sensor networks D = (V, A), which are intrees rooted at a sink node
s € V. Nodes represent sensors and arcs represent the possibility of transmission
between two sensors. Given an arc a € A we denote its head and tail nodes by
head(a) and tail(a), respectively.

Latency Constrained Aggregation in Sensor Networks 91

Over time, n messages, N := {1,...,n}, arrive at nodes and have to be sent
to the sink. Message j arrives at its release node v; at its release date r; and
must arrive at the sink via the unique v; — s-path at or before its due date
d;. Thus, each message is completely defined by the triple (v;,7;,d;). Unless
otherwise stated we assume that messages are indexed by increasing due date,
ie, di <dy <---<dy,. Werefer to L :=d; — r; as the latency of message j.

A packet is a set of messages which are sent simultaneously along an arc. More
precisely, each initial message is sent as one packet. Recursively, two packets
j and £ can be aggregated at a node v. The resulting packet has due date
d = min{d;, d,}. This definition naturally extends to the case of more packets
aggregated together.

Transition of a message along an arc takes time and energy (cost). In this paper
we assume that the transit time 7 : A — Ry(and transit cost c: A — Ry are
independent of packet size. We often refer to the transit cost of a node as the
transit cost of its unique outgoing arc. This models the situation in which all
messages have more or less the same size and where total aggregation is possible,
as discussed in the introduction. For v € V, let 7, and ¢, be, respectively, the
total transit time and total transit cost on the path from v to s. For message
j and node u on the path from v; to s, we define transit interval I;(u) as the
time interval during which message j can transit at node u: I;(u) := [r; + 7, —
Tu, dj — 7u). In particular, I;(s) = [r},d;], where v} := r; + 7, is the earliest
possible arrival time of j at s. We abbreviate I; for I;(s) and call it the arrival
interval of message j. We also write |I| for the length of interval I; note that
|I;(w)] = |I;| for all j and for all u on the path from v; to .

Finally, we define ¢ := max, 7, as the depth of the network in terms of the
transit time.

The objective of the sensor problem is to send all messages to the sink in
such a way as to minimize the maximum transit cost per node, while satisfying
the latency restrictions. Given that transit costs are independent of the size of
packets sent, but linear in the number of packets sent, it is clearly advantageous
to aggregate messages into packets at tail nodes of arcs.

3 The Off-Line Problem

We start by proving some properties of optimal off-line solutions.
Lemma 1. There exists a minimum cost solution such that:

(i) whenever two messages are present together at the same node, they stay
together until they reach the sink;
(i) a message never waits at an intermediate node, i.e., a node different from
its release node and the sink;
(iii) the time when a packel of messages arrives at the sink is the earliest due
date of any message in that packet.

Proof. (i): Repeatedly apply the argument that whenever two messages are to-
gether at the same node but split up afterwards, keeping the one arriving later
at the sink with the other message does not increase cost.

92 L. Becchetti et al.

(ii): Use (i) and repeatedly apply the following argument. Whenever a packet
of messages arrives at an intermediate node and waits there, changing the solu-
tion by shifting this waiting time to the tail node of the incoming arc does not
increase cost.

(iii): Follows similarly as (ii) by interpreting the time between the arrival of
a packet at the sink and earliest due date as waiting time.]

Theorem 1. The off-line sensor problem is strongly NP-hard.

The proof of Theorem 1 involves a non-trivial reduction from the Satisfiability
Problem and is deferred to the full version of the paper.

We give an ILP-formulation of the problem, based on Lemma 1, and show that
rounding the optimal solution of the LP-relaxation yields a 2-approximation
algorithm. For every message-arc pair {i,a}, we introduce a binary decision
variable x;,, which is set to 1 if and only if arc a is used by some message j
which arrives at s at time d;. We use the notation jui, for the smallest index @
such that d; > 7’ and a; for the first arc on the (unique) v; — s- path.

min z
stz > c(a) YL, Tia Ya € A,
Lo, > 1 V170, (1)

Tig 2 Tiw ¥V 1<i<nVaad e Awith head(a’) = tail(a),
Zig €{0,1} V1<i<nVacA.

The first set of constraints ensures that z is at least the transit cost of any node.
The second set of constraints forces each message to leave its release node in time
to reach the sink before its due date. By the third set of constraints a message
does not wait at intermediate nodes.

In the following lemma we develop a tool for rounding the corresponding
LP-relaxation, which is obtained by replacing the integrality constraints with
non-negativity constraints x;q, > 0.

Lemma 2. Let ai,...,an € Rxg and Bi,..., 0, € {0,1} with

Y=l = YV gi>1 Vi<k<naVi<j<k (2)

By decreasing some of the 3;’s from 1 to 0, one can enforce the inequality
i Bi< 2300 (3)
while maintaining property (2). Moreover, this can be done in linear time.

Proof. Consider the (;’s in order of increasing index. If 8; = 1, then round it
down to 0, unless this yields a violation of (2). It is not difficult to see that this
greedy algorithm can be implemented to run in linear time. It remains to be
proven that inequality (3) holds for the resulting numbers f1,. .., G,.

Latency Constrained Aggregation in Sensor Networks 93

For h € {1,...,n}, let h:=min{i > h | B; = 1};if B; = 0 for all i > h or
h =n, then h := n + 1. Similarly, let h := max{i < h | 8; = 1}; if 8; = 0 for all
i < hor h=1, then h:= 0. We prove the following generalization of (3):

h h—1
> Bi<2) ai V1i<h<n. (4)
=1 =1

By contradiction, consider the smallest index h violating (4). Since h is chosen
minimally, it must hold that 8, = 1; rounding 8, down to 0 would yield a
violation of (2). In particular this would yield

while E? th B; = 0 . Notice that h > 1, since, by choice of h,

h h—1 (5)
Zﬁi > 22%‘ = 2
i=1 i=1

Thus, 8, = Br = 1. We get a contradiction to the choice of h:

h—1
Zﬁz —Zﬁrl‘? 22041-1-2 220@—1—2 Z o < 22041- .
i=1

i=h+1
The first inequality follows from (4) since (b — 1) = h. O

Theorem 2. There is a polynomial time 2-approximation algorithm for the sen-
sor problem on intree D = (V, A).

Proof. We round optimal (fractional) solution (z, z) of the LP relaxation of (1) to
an integral solution (Z, z). Consider the arcs in order of non-decreasing distance
from s. For arc a with head(a) = s, set &;, = 1V i = 1,...,n. Modify these

values to T14,- .., Tne by applying Lemma 2 to x14, ..., Tne and T4, - - -, Tna-
For an arc o’ with larger distance to s, take the arc a with head(a’) = tail(a)
and set T 1= Tijq Vi = 1,...,n. We also modify these values into T14/, ..., Tna
by applying Lemma 2 to the values 14/, ..., Zna and &147, . . ., Tnes . Premise (2)
of Lemma 2 is satisfied for 14/, ..., Tne and 14/, ..., Tpe since (2) holds for
Tlaye-+sTng and Tig, ..., Tne and since T < Tiq.
By construction, the final solution (Z, Z) is feasible if we choose z =2z. 0O

4 The Distributed On-Line Problem

We consider a class of distributed on-line models, in which nodes communicate
independently of each other, while messages are released over time. Each node

94 L. Becchetti et al.

is equipped with an algorithm, which determines at what times the node sends
its packets to the next node on the path to the sink. The input of each node’s
algorithm at any time ¢ is restricted to the packets that have been released at
or forwarded from that node in the period [0, ¢].

We assume that all nodes are equipped with a clock to measure the latency
of messages. We distinguish two distributed on-line models: In the synchronous
model all nodes are equipped with a common clock, i.e. the times indicated at all
clocks are identical. A common clock may facilitate synchronization of actions in
various nodes. In the asynchronous model there is no such common clock; still,
the duration of the time unit is assumed to be the same for all nodes.

We also assume in both models that each node v knows its total transit time
Ty to the sink. Moreover, for the asynchronous model we assume that all transit
times 7(a) are equal, and without loss of generality we set 7(a) =1 Va € A.

4.1 The Synchronous Model

For the synchronous model we propose an algorithm based on the following
simple result, the obvious proof of which we omit.

Lemma 3. Given any interval [a,b], a,b € N, let i* = max{i € N | Ik €
N : k2' € [a,b]}. Then k* for which k*2" € [a,b] is odd and unique. Also,
i* > |logy (b — a)|. We use notation t(a,b) = k*2° . O

Algorithm:CommonClock (CC) Message j is sent from v; at time
t(r},d;) — Ty, to arrive at s at time #(r, d;) unless some other message
(packet) passes v; in the interval [r;,¢(r},d;) — 7,,], in which case j is

aggregated and the packet is forwarded directly.

First we derive a bound on the competitive ratio of CC for instances in which
the arrival intervals I; differ by at most a factor 2 in length.

Lemma 4. If there exists an i € N such that 2= < |I;| < 2 for all messages
j, then CC has a competitive ratio of at most 3.

Proof. Assume that in an optimal solution packets arrive at s at times t; < - -+ <
to. Let Njf be the packet arriving at ¢;, at s. Since ¢, € I; Vj € Ny and |I;| < 20
Vj, we have I; C [tp—2%,¢,4+2°] =: I Vj € N;, and |I| = 2-2°. If t}, = k2° then in
the CC-solution all messages in N}’ may arrive at s at times ¢p,, t;, — 2% or t, + 2.
If ¢, # k2¢ then I contains two different multiples of 2¢, say k2¢ and (k + 1)2°,
such that k2° < tj, < (k+1)2°. In this case, since |I;| > 2°~1 Vj, we have Vj € N;:
that I; N {k2¢, k2142171, (k+1)2'} # (). Lemma 3 implies that in a CC-solution
every message j € N; arrives at s at one of {k2, k2" 4+ 2/, (k + 1)2°}. Hence,
Vh =1,...,¢, all messages in N arrive at s at at most 3 distinct time instants
in the CC-solution. CC does not delay messages at intermediate nodes. This
implies that the arcs used by messages in IV, are traversed by these messages at
most 3 times in the CC-solution, proving the lemma. a

Latency Constrained Aggregation in Sensor Networks 95

Theorem 3. CC is ©(max{logU, 1})-competitive with U = #ﬂ;l\m}
Proof. For each ¢ € N with log(max{1l, min; |I;|}) < i < [log(max; |I;])], CC
sends the messages in N; := {j € N | 207! < |I;| < 2}, at a cost of no
more than 3 times the optimum, by Lemma 4. This proves O(max{logU,1})-
competitiveness if min; |I;] > 1. In case min; |I;| = 0 we observe that restricted
to the class of messages Ny = {j € N | |I;] = 0} CC’s cost equals the optimal
cost, because there is no choice for these messages.

To prove 2(log U) consider a chain of 2"T! nodes u1, ..., usnt1 = s for some
n € N. Take 7(a) = 1 and ¢(a) = 1Va. For j =1,...,n, v; = ugs, r; = 0, and
dj = 2" —1. Hence rj = 2"+ — 27 = k2 for some odd k € N and |I;| = 27 1.
Therefore, CC makes each message j arrive at s at time r;-, no two messages are
aggregated, and the cost is Y7 (2"*! — 27) = (n — 1)2"*! + 2. In an optimal
solution all messages are aggregated into a single packet arriving at s at time
27+l 1 at a cost of 2"+ — 2. Notice that U = 2™ — 1 in this case. O

The following theorem shows that CC is best possible (up to a multiplicative
constant).

Theorem 4. Any deterministic synchronous algorithm is £2(log U)-competitive.

Proof. Consider an intree of depth § = 2"*! with n the number of messages,
and where each node, except the leaves, has indegree n. We assume 7(a) = 1 for
all @ € A. For any on-line algorithm we will construct an adversarial sequence
of n messages all with latency L = ¢, such that there exists a node at which the
adversary can aggregate all messages in a single packet, but at which none of
them is aggregated by the on-line algorithm. Using a similar argument as in the
proof of Lemma 1 (i) the fact that all messages can be aggregated in a single
packet implies that there exists a solution such that every node sends at most
one packet, hence the cost of the adversarial solution is 1, whereas the cost of
the on-line algorithm is n.

Fix any on-line algorithm. Given an instance of the problem, let W;(u) be the
time interval message j spent at node u by application of the algorithm, i.e. the
waiting time interval of message j on u. We denote its length by [WW;(u)|. Note
that Y |[W;(u)| < |I;| for each message j. We notice that the waiting time of a
message in a node can be influenced by the other messages that are present at
that node or have passed that node before. Since the algorithms are distributed
the waiting time of a message in a node is not influenced by any message that
will pass the node in the future.

The adversary chooses the source node v; with total transit time 7, := 6 — 27
from s, for j = 1,...,n, so that |I;| = 27. Thus, U = 2"~! = §/4. The choice
of the exact position of v; and the release time r; is made sequentially and, to
facilitate the exposition, described in a backward way starting with message n.
The proof follows rather directly from the following claim.

96 L. Becchetti et al.

Claim. For any set of messages {k,...,n} the adversary can maintain the prop-
erties:

(i) all messages in {k,...,n} pass a path p, with 2* nodes;
(i) Ik(u) = Njsp Li(w) Yu € pi;

(iii) if & < m, then Wii1(u) () Ir(u) = 0 Yu € py;

(iv) if & < n, then W;(u) \W,(u) =0 Vu € py, i =k,...,n, j > i.

We notice that for any message j and any node u on the path from v; to s,
W;(u) may have length 0 but is never empty; it contains at least the departure
time of message j from node u.

Note that properties (i) and (ii) for £ = 1 imply that all messages can indeed
be aggregated into one packet, hence as argued above, the adversarial solution
has a cost of 1. Properties (iv) and (i) for k¥ = 1 imply that the on-line algorithm
sends all messages separately over a common path with 2 nodes, yielding a cost
of n. This proves the theorem.

We prove the claim by induction. The basis of the induction, k = n, is trivially
verified. Suppose the claim holds for message set {k,...,n} and py is the path
between nodes v and ©. We partition pg into two sub-paths p and p consisting
of 2#=1 nodes each, such that ¥ € p and © € p. We denote the last node of p
by @ and the first node of p by 4. We distinguish two cases with respect to the
waiting times the algorithm has selected for message k in the nodes on py.

CasEa:),
time 7, , = 60— such that its path to s traverses p but not p. More precisely,
we ensure that the first node message k—1 has in common with any other message
is . This is always possible, since the node degree is n. This choice immediately
makes that setting py_1 = p satisfies property (i). The release time of k — 1 is
chosen so that I (@) and I (@) start at the same time, implying that I, (u)
and Iy (u) start at the same time for every u € p. Since |I—1(u)| = |Ix(u)|/2 we
have Iy, (u) C Iy (u) for all u € p, whence property (ii) follows by induction.

Note that, as we consider distributed algorithms, message k — 1 does not
influence the waiting time of j,7 > k — 1, on p as @ is the first node which both
j and k — 1 traverse. In particular, Wy (u), Vu € P is not influenced by k — 1.

Now, the equal starting times of I;_1(4) and Ij(@) together with
> uep (Wi(uw)| > (1/2)|1| and |Ix—1(4)] = |Ix(@)|/2 imply that k& will not reach
4 before interval I_q (@) ends. This, together with the consideration above, im-
plies property (iii).

To prove (iv), note that by induction it is sufficient to prove that Wi_;(u) N
W;(u) = 0Vj >k —1 Yu € p. Since, as just proved, Wi (u) N Iy—1(u) =0 Vu € p
we have Wi_1(u) N Wi(u) = 0 Yu € p. We have by induction that, for j > k,
Wi(u) N Ij—1(u) = 0 Yu € p and we just proved that Ip_i(u) C Ij_1(u) C
I;(u) Yu € p, which together imply Wy_1(u) N Wj(u) =0 Vj > k Yu € p.

CAse b: 37 o5 [Wi(u)| < (1/2)|Ix]. As in the previous case, the adversary

chooses vi_1 with total transit time 7, , = 6 — 2F=1 such that its path to
s traverses D (therefore also p) but does not intersect any of the paths used by

|[Wg(uw)| > (1/2)|Ig]. The adversary chooses vi_1 with total transit
2k—1

Latency Constrained Aggregation in Sensor Networks 97

messages {k,...,n} before it reaches p in . Again, this is always possible since
the indegree of each node is n. Hence, choosing pi_1 = P satisfies property (i).
The release time of k—1 is chosen so that I;_1 () and I;,(7) end at the same time,
implying that Ix_1(u) and I (u) end at the same time for every u € p. Since
[Tr—1(w)| = |Ix(u)|/2 we have Iy_q(u) C Ix(u) for all u € P, whence property
(ii) follows by induction.

The equal ending times of 1 (@) and I (@) together with > o [Wk(u)| <
1/2|Ix| and |Ix—1 (@)| = |Ix(w)|/2 imply that k has left @ before I_1 (@) begins,
implying property (iii). Indeed, this gives W;_1 (u) N W (u) = 0, Vu € p. Tt also
implies that £ — 1 could not influence the waiting time of k£ on p.

The proof of (iv) follows the very same lines as in Case a, with the difference
that we now refer to nodes in p instead of p. O

Since in the proof U = §/4 we also have the following lower bound on the
competitive ratio of any deterministic synchronous algorithm.

Theorem 5. Any deterministic synchronous algorithm is £2(log §)-competitive.
O

4.2 The Asynchronous Model

In the asynchronous model nodes are equipped with a clock and a distributed
algorithm. All clocks have the same time unit, but neither the time nor the start
of a new time unit on clocks is synchronized. We assume that 7(a) = 1 for all a,
such that 7,, is equal to the number of nodes on the v; — s-path.

We propose algorithm Spread Latency (SL) for this model, which divides the
latency minus transmission time of each message j equally over the nodes on the
v; — s-path: at each node of this path the message is assigned a waiting time
of (Lj —7y,)/Ty, time units. As soon as messages appear simultaneously at the
same node they get aggregated into a packet, which is sent over the outgoing
arc as soon as the waiting time of at least one of its messages at that node
has passed. In this way, no message is delayed due to aggregation and thus the

algorithm yields a feasible solution.
max; |Ij| _ man(Lj—ij)
max{1,min; [I;[} — max{l,minj(Lj—TUj)} .

Let, as in the previous subsection, U :=

Theorem 6. The algorithm SL is O(6 max{log U, 1})-competitive.

Proof. We prove that for all a € A the number of packets SL sends through a
is at most O(é max{logU, 1}) times that number in an optimal solution. This
proves the theorem.

Let A := max{1, min;(L; — 7,,)}. Consider a packet P of messages sent by an
optimal solution through (u,v) at ¢t. To bound the number of packets sent by
SL that contain at least one message from P, define P, := {j € P | 2F-1\ <
Lj—7,, < 2F\}, for k =1,...,[logU]. We charge any sent packet to the message
that caused the packet to be sent due to its waiting time being over. It suffices
to prove that the number of packets charged to messages in Py, is O(9).

Since the waiting time of messages j € Py at node u is at least 2=\ /8, the
delay between any two packets that are charged to messages in Py is at least
2F=1)/6. Since the optimal solution sends packet P at ¢ through (u,v), we get

98 L. Becchetti et al.

t € I;(u) Vj € P and thus I;(u) C [t — 2K\t + 2¥)\] Vj € Py. Thus, the number
of packets charged to messages in Py is at most 2 - 28X/ (2F71)\/8) = 46. O

SL determines the waiting time of each message at the nodes it traverses inde-
pendently of all other messages. We call such an algorithm a WI-algorithm. To
be precise, in a Wl-algorithm node v determines the waiting time of message
J based only on the message characteristics (v;,7;,d;), transit time to the sink
7, and clock time. The following lower bound shows that the competitive ratio
of SL cannot be beaten by more than a factor max{log U, 1} by any other WI-
algorithm. In the derivation of the lower bound we restrict to WI-algorithms that
employ the same algorithm in all nodes with the same transit time to s. This
is not a severe restriction, given that transit time to s is the only information
about the network that a node has.

Theorem 7. Any deterministic asynchronous Wl-algorithm is £2(617¢)- com-
petitive for any € > 0.

Proof. Consider a binary intree with root s and all leaves at distance 6 from s.
Let 0 < A < 1 be such that 61~ > 3. An adversary releases message 1 with
latency L at time r; in a leaf v;. Notice that there are at most 6* nodes where
the waiting time is at least (L —7,,)/6*. Hence, the v; — s path contains a sub-
path consisting of at least §'~* — 2 nodes where in each node message 1 waits
less than (L — 7,,)/6*. Choose such a sub-path and let u be the node on this
sub-path closest to s.

Let V' be the set of leaves of the subtree with root v and depth §'~* —2. Then
[V'| > 28" -2 > 62 /4 for any fixed A € [0, 1) and é large enough. The adversary
releases messages j = 2, ..., 6" /4 with latency L at times r; = 71 +j(L — Tyj)/é)‘
in leaf v;, such that each v; — s path passes through a different vertex of V’.
Because 7,;, = 7, Vj and we assumed that any Wl-algorithm applies the same
algorithm in nodes at equal distance, all messages are sent non-aggregated to and
from u, whereas they are aggregated as early as possible in an optimal solution,
in particular at u. O

The lower bound does not hold for arbitrary algorithms as a node may adjust
the waiting time of subsequent messages that traverse that node. The following
theorem shows that the lower bound remains §2(61¢) if release nodes do not
delay subsequent messages longer than preceding messages.

Theorem 8. Any asynchronous Wl-algorithm for which the waiting time of

LTy, . iy
message j at its release node is at most % is 2(K)-competitive.

Proof. Consider a chain which consists of two nodes v and s. We assume constant
latency L for each message. The adversary releases K — 1 messages with an
interval of (L —7,,)/(/ —1) at v. Since the waiting time of message j at v is at
most (L —,,)/K, none of these messages are aggregated in the on-line solution,
whereas they are all aggregated in one packet in an optimal solution. O

The theorem proves that SL is 2(8)-competitive. For arbitrary asynchronous
algorithms we do not have any better lower bound than the one in Theorem 5.

Latency Constrained Aggregation in Sensor Networks 99

In a full version of the paper [2] we design an algorithm with improved com-

petitive ratio of O(log3 6) for the asynchronous problem on a chain with s at one

of

its ends.

References

1

10.

11.

12.

13.

14.

15.

I. Akyildiz, W. Su, Y. Sanakarasubramaniam, and E. Cayirci. Wireless sensor
networks: A survey. Computer Networks Journal, 38(4):393-422, 2002.

L. Becchetti, P. Korteweg, A. Marchetti-Spaccamela, M. Skutella, L. Stougie, and
A. Vitaletti. Latency Constrained Aggregation in Sensor Networks. SPOR-report
2006-08, TU Eindhoven, www.win.tue.nl/bs/spor, 2006.

A. Boulis, S. Ganeriwal, and M. B. Srivastava. Aggregation in sensor networks: an
energy - accuracy tradeoff. Ad-hoc Networks Journal, 1(2-3):317-331, 2003.

C. Brito, E. Koutsoupias, and S. Vaya. Competitive analysis of organization networks
or multicast acknowledgement: how much to wait? In Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 627-635, 2004.
A. Z. Broder and M. Mitzenmacher. Optimal plans for aggregation. In PODC,
pages 144-152, 2002.

A. Goel and D. Estrin. Simultaneous optimization for concave costs: single sink
aggregation or single source buy-at-bulk. In Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms (SODA), pages 499-505, 2003.
W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy efficient commu-
nication protocols for wireless microsensor networks. In Proceedings of Hawaiian
International Conference on Systems Science, pages 3005-3014, 2000.

F. Hu, X. Cao, and C. May. Optimized scheduling for data aggregation in wireless
sensor networks. In International Conference on Information Technology Coding
and Computing (ITCC), pages 557-561, 2005.

C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network
density on data aggregation in wireless sensor networks. In Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCS), pages 414—
458, 2002.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In Mobile Computing and
Networking, pages 56-67, 2000.

K. Kalpakis, K. Dasgupta, and P. Namjoshi. Efficient algorithms for maximum
lifetime data gathering and aggregation in wireless sensor networks. Computer
Networks, 42(6):697-716, 2003.

S. Lindsey and C. S. Raghavendra. Pegasis: Power-efficient gathering in sensor
information systems. In Proceedings of IEEE Aerospace Conference, pages 1125—
1130, 2000.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A tiny aggregation
service for ad-hoc sensor networks. In Proceedings of the 5th ACM Symposium on
Operating System Design and Implementation (OSDI), pages 131-146, 2002.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an acquisi-
tional query processing system for sensor networks. ACM Transactions on Database
Systems (TODS), 30(1):122-173, 2005.

W. Yuan, V. S. Krishnamurthy, and S. K. Tripathi. Synchronization of multiple
levels of data fusion in wireless sensor networks. In Proceedings of IEEE Globecom,
pages 221-225, 2003.

