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Abstract

We lift important results of the theory of samples of discrete ergodic
information sources to the multidimensional setting. We use the technique
of packings and coverings with multidimensional windows in entropy es-
timation and universal lossless compression. In particular, we construct
sequences of multidimensional array sets which, in the limit, build the
generated samples of any ergodic source of entropy rate below an h0 with
probability 1 and whose cardinality grows at most at exponential rate h0.
Thereby we extrapolate mathematical framework relevant for universal
source coding of multi-dimensionally correlated data.

Keywords: Universal codes, ergodic theory, typical sets, discrete samplings.

1 Introduction

The purpose of this paper is to lift results about universally typical sets, typically
sampled sets and empirical entropy estimation from the usual 1-dimensional
(discrete time) setting to a multidimensional setting. We start with a short
description of these concepts and a very brief review of related literature.

An entropy-typical set is defined as a set of nearly full measure consisting
of output sequences the negative log-probability of which is close to the en-
tropy of the source distribution. The scope of this definition is revealed by the
asymptotic equipartition property (AEP), which is present for a large class of
processes [9, 3, 1, 10, 2]. The AEP was introduced by McMillan [9] as the con-
vergence in probability of the sequence − 1

n logµ(xn
1 ) to a constant h, namely the

entropy rate of the process as introduced by Shannon [12]. Roughly speaking
it implies that the output sequences of a random process are typically confined
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to a ‘small’ set Tn of events which have all approximately the same probabil-
ity of being realized, in contrast to the much larger set of all possible output
sequences. This means that individual outcomes with much higher or smaller
probability than e−nh will rarely be observed. In particular, for stationary
ergodic processes the AEP is guaranteed by the Shannon-McMillan-Breiman
(SMB) theorem [9, 3]. By the AEP, the entropy-typical sets have total proba-
bility close to one, and their cardinality is fairly minimal among all sets with
the latter property. This way, entropy-typical sets provide an important theo-
retical framework for communication theory. Lossless source coding is a type of
algorithm which performs data compression while ensuring that the exact re-
construction of the original data is possible from the compressed data. Lossless
data compression can be achieved by encoding the typical set of a stochastic
source with fixed length block codes of length nh. By the AEP, this length nh
is also the average length needed, cf. [13]. Hence compression at an asymptotic
rate given by the entropy rate is possible. This is optimal in view of Shannon’s
source coding theorem [12, 4].

The extension of the SMB theorem (and the AEP) from discrete time pro-
cesses Z to amenable groups including the multidimensional setting Z

d, by Orn-
stein and Weiss [10] represented an important progress. It amounts to the theory
of encoding multidimensional sources. The relation is rather obvious:
In fact, any (asymptotically) optimal universal compression scheme defines se-
quences of universally typical sets: for given ε, the set of all nd-blocks such
that their comprimate needs at most (h + ε)nd bits, is universally typical for
all sources with entropy rate h or less. Vice versa, any constructive solution to
the problem of finding universally typical sets yields an universal compression
scheme, since the index in the universally typical set is an optimal code for the
block. As will turn out, our approach is constructive. But one has to admit
that such an ad hoc algorithm is –generally speaking– not very useful in practice
because determining the index should be very time consuming.

In universal source coding, the aim is to find codes which efficiently com-
press down to the theoretical limit, i.e. the entropy rate, for any ergodic source
without a need to be adapted to the specific source. We emphasize here that
codes of that type are optimal data compressors for any stationary source, since
by the ergodic decomposition theorem (see e.g. [14]) any stationary source is
a convex mixture of ergodic sources. Many prominent examples of formats for
lossless data compression, like ZIP, are based on the implementation of the al-
gorithms proposed by Lempel and Ziv (LZ) LZ77 [5] and LZ78 [6], or variants
of them, like the Welch modification [15]. The LZ algorithms constitute a uni-
versal means of constructing libraries. Yet, the LZ algorithms are designed as
text compression schemes, i.e. for 1-dimensional data sources.

For multidimensional data, Lempel and Ziv showed [7] that universal coding
of images is possible by first transforming the image to a 1-dimensional stream
(scanning the image with a Peano-Hilbert curve, a special type of Hamilton
path), and then applying the 1-dimensional algorithm LZ78. The idea behind
that approach is that the Peano-Hilbert curve scans hierarchically complete
blocks before leaving them, maintaining most of local correlations that way.
In contrast, a simple row-by-row scan only preserves horizontal correlations.
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But with the Peano curve approach, while preserving local correlations in any
non-horizontal direction, too, these correlations are much encrypted due to the
inevitably fractal nature of that space-filling curve.

We take the point of view that the techniques of packing and counting can
be better exploited in data compression with priorly unknown distributions if,
instead of transforming the ‘image’ into a dim-1-stream by scanning it with a
curve, the multi-dimensional block structure is left untouched. This will allow
to take more advantage of multidimensional correlations between neighboring
parts of data, speed up the convergence of the counting statistics, and in turn
fasten estimation and data compression tasks. This approach will be carried
out in a forthcoming paper. The idea of the present paper is to extend relevant
theoretical results about typical sets and universally typical sets to a truly multi-
dimensional sampling window setting. The proofs of these extensions are guided
by the discussion of the 1-dimensional situation in Shield’s monograph [13].

2 Settings

We consider the d-dimensional lattice Z
d and the quadrant Z

d
+. Consider a

finite alphabet A, |A| < ∞ and the set of arrays with that alphabet: Σ = AZ
d

,

Σ+ = AZ
d
+ . We define the set of n-words as the set of n×· · ·×n arrays Σn := AΛn

for the n-box Λn :=
{

(i1, . . . , id) ∈ Z
d
+ : 0 ≤ ij ≤ n− 1, j ∈ {1, . . . , d}

}
. An ele-

ment xn ∈ Σn has elements xn(i) ∈ A for i ∈ Λn.

Let AZ
d

denote the σ-algebra of subsets of Σ generated by cylinder sets, i.e.
sets of the following kind:

[y] := {x ∈ Σ : x(i) = y(i), i ∈Λ} , y ∈ AΛ,Λ finite.

If C is a subset of AΛ, we will use the notation [C] for ∪y∈C [y].

We denote by σr the natural lattice translation by the vector r ∈ Z
d acting

on Σ by σrx(i) := x(i + r). We use the same notation σr to denote the induced

action on the set P of probability measures ν over (Σ,AZ
d

): σrν(E) := ν(σ−1
r E).

The set of all stationary (translation-invariant) elements of P is denoted by Pstat,
i.e. ν ∈ Pstat if σrν = ν for each r ∈ Z

d. Those ν ∈ Pstat which cannot be de-
composed as a proper convex combination ν = λ1ν1 + λ2ν2, with ν1 6= ν 6= ν2
and ν1, ν2 ∈ Pstat are called ergodic. The corresponding subset of Pstat is de-
noted by Perg. Throughout this paper µ will denote an ergodic A-process on Σ.
By νn we denote the restriction of the measure ν to the block Λn, obtained by
the projection Πn : x ∈ Σ → xn ∈ Σn with xn(i) = x(i), i ∈ Λn. We use the
same notation Πk to denote the projections from Σn to Σk, n ≥ k, defined in the
same obvious way. The measurable map Πn transforms the given probability
measure ν to the probability measure denoted by νn.

The entropy rate of a stationary probability measure ν is defined as limit of
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the scaled n-word entropies:

H(νn) := −
∑

x∈Σn

νn({x}) log νn({x})

h(ν) := lim
n→∞

1

nd
H(νn).

Here and in the following we write log for the dyadic logarithm log2.

For a shift p ∈ Λk we consider the following partition of Zd into k-blocks :

Z
d =

⋃

r∈k·Zd

(Λk + r + p),

and in general we use the following notation:
The regular k-block partitions of a subset M ⊂ Z

d are the families of sets
defined by

RM,k := {RM,k(p) : p ∈ Λk} , RM,k(p) := {(Λk + p + r) ∩M}
r∈k·Zd .

Clearly, for any p the elements of RM,k(p) are disjoint and their union gives M .

In the case M = Λn, given a sample xn ∈ Σn, such a partition yields
a parsing of xn in elements of A(Λk+r+p)∩Λn , r ∈ k · Zd. We call those el-
ements the words of the parsing of xn induced by the partition RΛn,k(p).
With exception of those r, for which Λk + r + p crosses the boundary of Λn,
these are cubic k-words. Forgetting about their r-position, we may identify
ΠΛk

x ∼ ΠΛk+rσ−rx ∈ AΛk+r ∼= AΛk .

For k, n ∈ N, k < n, any element x ∈ Σ gives rise to a probability distribu-
tion, defined by the relative frequency of the different k-words in a given parsing
of xn. Let us introduce the following expression:

Zp,k,n
x (a) : =

∑

r∈×d
i=1{0,...,⌊(n−pi)/k⌋−1}

1[a](σk·r+px),

n ∈ N, k ≤ n, a ∈ AΛk ,p = (p1, . . . , pd) ∈ Λk.

For regular, k-block parsings, the non-overlapping empirical k-block distribu-
tion generated by x ∈ Σ in the box Λn is defined as the probability distribution
on Σk given by:

µ̃k,n
x ({a}) :=

1

⌊n/k⌋d
Z0,k,n
x (a) for a ∈ AΛk . (1)

Similarly, for any p = (p1, . . . , pd) ∈ Λk the shifted regular k-block partition
gives a non-overlapping empirical k-block distribution:

µ̃p,k,n
x ({a}) :=

1
∏d

i=1 ⌊(n− pi)/k⌋
Zp,k,n
x (a). (2)

Furthermore, we define the overlapping empirical k-block distribution, in
which all k-words present in x are considered:

µ̃k,n
x,overl({a}) :=

1

(n− k + 1)d

∑

r∈Λn−k+1

1[a](σrx) for a ∈ AΛk . (3)
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Remember here the definition of [a]. Observe that all three empirical distri-
butions only depend on the values of x in the positions Λn, i.e. on xn := Πnx ∈
AΛn .

3 Results

The main contribution of this paper is the following:

Theorem 1 (Universally typical sets) For any given h0 > 0 there exists a
sequence of subsets {Tn(h0) ⊂ Σn}n such that for all µ ∈ Perg with h(µ) < h0

the following holds:

a) lim
n→∞

µn (Tn(h0)) = 1,

b) lim
n→∞

log |Tn(h0)|
nd = h0.

Furthermore, for any sequence {Un ⊂ Σn}n with lim inf
n→∞

1
nd log |Un| < h0

there exists a µ ∈ Perg with h(µ) < h0 such that:

c) lim inf
n→∞

µ (Un) = 0.

The proof of this result is based on other assertions following now. We start
lifting the packing lemma from [13], which will allow us to use the proof’s
strategy of the 1-dimensional statement. The packing lemma states that if a set
of words C ⊂ Σm is typical among all m-blocks present in a sample xk ∈ Σk,
k ≥ m, i.e., C has large probability with respect to the overlapping empirical
m-block distribution, then, the sample xk can be parsed into non-overlapping
blocks in such a way, that nearly all words belong to C.

While in the d = 1 setting the statement is rather evident, for d ≥ 2 it
is not inmediatly clear how a parsing can be chosen, such that it yields many
matchings with C, and few ‘holes’. Our lemma asserts that this parsing can
be realized through a regular partition. I.e. C receives large probability in the
non-overlapping empirical distribution of some shift of x.

Lemma 2 (Packing Lemma) Consider for any fixed 0 < δ ≤ 1 integers k
and m related through k ≥ d ·m/δ. Let C ⊂ Σm and x ∈ Σ with the property

that µ̃m,k
x,overl(C) ≥ 1−δ. Then, there exists a p ∈ Λm such that: a) µ̃p,m,k

x (C) ≥
1 − 2δ, and also b)|Zp,m,k

x (C)| ≥ (1 − 4δ)(
⌊

k
m

⌋
+ 2)d.

Recall the definition of the overlapping empirical m-block distribution. The
condition µ̃m,k

x,overl(C) ≥ 1−δ means
∑

r∈Λk−m+1
1[C](σrx) ≥ (1−δ)(k−m+1)d.

The result a) ∃p ∈ Λm : µ̃p,m,k
x (C) ≥ 1 − 2δ means that there exists a regular

m-block partition RΛk,m(p) ∈ RΛk,m that parses xk in such a way that at least
a (1 − 2δ)-fraction of the m-words are elements of C. The result b) implies
that at least a (1− 4δ)-fraction of the total number of words (this total number
including non-cubic words at the boundary), are elements of C. This is the case
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because the boundary non-cubic elements cover only a small volume. For δ = 0
and any k ≥ m the result a) is trivial, since in that case all m-words in xk are
in C.

Proof of Lemma 2. Denote by Ξ the set of vectors {r ∈ Λk−m+1:
σrx is in [C]}. For any p ∈ Λm denote by λ(p) the number of those r ∈ Ξ satis-
fying r = pmod(m). Clearly, λ(p) = |Zp,m,k

x (C)| is the number of cubic blocks
in the p-shifted regular m-block partition of Λk which belong to C. Then we
have

∑
r∈Λk−m+1

1[C](σrx) =
∑

p∈Λm
λ(p) ≥ (1−δ)(k−m+1)d, by assumption.

Hence, there is at least one p′ ∈ Λm for which λ(p′) ≥ (1−δ)(k−m+1)d

md . It is easy

to see that (1 − δ) (k−m+1)d

md ≥ (1 − δ)k
d−dmkd−1

md ≥ (1 − δ)2 kd

md ≥ (1 − 2δ) kd

md .

Since the maximal number of m-blocks that can occur in RΛk,m(p′) is ( k
m )d,

this completes the proof of a). For b) observe that the total number of partition
elements of the regular partition (including the non-cubic at the boundary) is up-

per bounded by
(⌊

k
m

⌋
+ 2
)d ≤ 1

md (k + 2m)
d ≤ 1

md

(
kd + (k + 2m)d−12dm

)
≤

1
md

∑d
j=0 k

d−j(2dm)j ≤ kd

md

1−(2δ)d+1

1−2δ . Here for the second inequality we used

the estimate 1 − (d − 1)y ≤ 1/(1 + y)d−1, y ≥ 0 and for the third one the es-
timate

(
d−1
j

)
≤ dj . On the other hand, from the first part we have λ(p′) =

|Zp,m,k
x (C)| ≥ (1 − 2δ) kd

md and 1 − 2δ ≥ 1−4δ
1−2δ ≥ (1 − 4δ)1−(2δ)d+1

1−2δ , which com-
pletes the proof.

Before we continue formulating the results, we give the definitions of entropy-
typical sets and of typical sampling sets. The latter name is motivated by the
properties guaranteed by Theorem 5 below.

Definition 3 (Entropy-typical sets) Let δ < 1
2 . For some µ with entropy

rate h(µ) the entropy-typical sets are defined as:

Cm(δ) :=
{
x ∈ Σm : 2−md(h(µ)+δ) ≤ µm({x}) ≤ 2−md(h(µ)−δ)

}
. (4)

We will use these sets as basic sets for the typical-sampling-sets defined
below, see Figure 1.

Definition 4 (Typical-sampling sets) Consider some µ and δ < 1
2 . For

k ≥ m, we define a typical-sampling set Tk(δ,m) as the set of elements in Σk

that have a regular m-block partition such that the resulting words belonging
to the µ-entropy typical-set Cm = Cm(δ) contribute at least a (1 − δ)-fraction
to the (slightly modified) number of partition elements in that regular m-block
partition.

Tk(δ,m) :=
{
x ∈ Σk :

∑

r∈m·Zd:
(Λm+r+p)⊆Λk

1[Cm](σr+px) ≥ (1− δ)

(
k

m

)d

for some p ∈ Λm

}
.

We fix some α > 0 and assume δ < α
log |A|+1 . Also, in the following we

will choose m depending on k such that m
k→∞−−−−→ ∞, and limk→∞

m
k = 0. As

we will see, a sequence of sets Tk(δ,m), k > 0 with parameters fulfilling these

6



p

RΛk,m(p) ∈ RΛk,m

m

k

m

k

n

Figure 1: Left: This is an example of a regular m-block parsing of an element
in Tk(δ,m) for d = 2. The shaded blocks contain elements of Cm, and fill at least
a (1 − δ)-fraction of the total volume k2. For k ≫ m the boundary (non-cubic)
blocks comprise a neglectable volume. Right: Here we visualize for d = 2 and
some xn

∈ Σn the parsing which is used for the empirical k-block distribution µ̃k,n
x .

A k-block of xn belongs to Tk(δ,m), if it can be parsed by some (possibly shifted)
regular m-block partition in such a way that the resulting (non-overlapping) m-
words belonging to Cm(δ) cover a (1−δ)-fraction of all the k2 sites of that k-block.
The non-cubic boundary blocks resulting from the k-block partition do not affect
the empirical k-block distribution µ̃k,n

x .

conditions constitutes a sequence of typical-sampling sets Tk(α) (Theorem 5 a)).

The following theorem is a generalization to d ≥ 1 of a result by Ornstein
and Weiss in [11], (Theorem II.3.1 in the monograph of Shields [13]). It en-
sures the existence of ‘small’ libraries from which asymptotically almost surely
the realization of an ergodic process can be constructed, i.e., parsed as words
belonging to that library. The library is given by the typical-sampling sets of
Definition 4. Furthermore, it states that smaller libraries do not suffice.

Theorem 5 Given any µ ∈ Perg and any α ∈ (0, 1
2 ) we have the following:

a) For all k larger than some k0 = k0(α) there is a set Tk(α) ⊂ Σk satisfying

log |Tk(α)|
kd

≤ h(µ) + α ,

and such that for µ-a.e. x the following holds:

µ̃k,n
x (Tk(α)) > 1 − α ,

for all n and k such that k
n < ε for some ε = ε(α) > 0 and n larger than

some n0(x).

b) Let {T̃k,n(x)}k,n>0 be a family of double-sequences of subsets of Σk de-

pending measurably on x ∈ Σ, such that |T̃k,n(x)| ≤ 2k
d(h(µ)−α). Then

there exists a k1(α) ≥ k0(α) and for µ-a.e. x there exists an n0(x) such
that

µ̃k,n
x (T̃k,n(x)) ≤ α ,

for any indices k, n fulfilling k > k1(α), n > n0(x) and 2k
d(h(µ)+α) ≤ nd.
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The above result is closely related to the so called typical sequence theorem,
(cf. Theorem I.4.1 in [13]), a consequence of the individual ergodic theorem,
which says that for an ergodic µ the following limit exists and satisfies the
equation for almost every x: limn→∞ µ̃k,n

x,overl(ak) = µ([ak]) for any k and any

ak ∈ AΛk .

The following theorem states that the entropy of the empirical distribution
of a sample almost surely converges to the true entropy of the process. This
is an important component of the proof of the existence of universally typical
libraries of small cardinality, Theorem 1a), b).

Theorem 6 (Empirical entropy theorem) Let µ ∈ Perg. Then for any se-

quence {kn} with kn
n→∞−−−−→ ∞ and kdn(h(µ) + α) ≤ lognd (for some α > 0) we

have

lim
n→∞

1

kdn
H(µ̃kn,n

x ) = h(µ) , µ-a.s.

This concludes the section of results. Below we provide the proofs.

Proofs

Proof of Theorem 5a). We show that the claim holds choosing Tk(α) as

typical sampling sets Tk(δ,m) from Definition 4 with δ < α
log |A|+1 , m

k→∞−−−−→ ∞
and limk→∞

m
k = 0.

Cardinality. We estimate the cardinality of the sets Tk(δ,m). For a given m,

there are md possible values of p. There are at most
(

k
m

)d
cubic boxes in any

m-block partition of Λk. Therefore, the number of choices for the contents of all

blocks which belong to Cm is at most |Cm|(
k
m )d

. By the definition of Tk(δ,m)
the number of lattice sites not belonging to the regular partition being referred

in this definition, is at most δkd. There are at most |A|δkd

possible choices for
the contents of those array sites. Set K =

⌊
k
m

⌋
+ 2. The maximal number

of blocks occurring in the partition (including non cubic ones) is Kd. For m
k

small enough, not more than a 2δ ≤ α < 1
2 fraction of all these blocks have

contents not in Cm. Taking into account that the binomial coefficients
(
K
l

)
do

not decrease in l while l ≤ 1
2K, we get the following bound:

|Tk(δ,m)| ≤ md
∑

0≤l≤2δKd

(
Kd

l

)
|A|δkd |Cm|( k

m )
d

≤ mdKd

(
Kd

⌊
1
2K

d
⌋
)
|A|δkd |Cm|( k

m )
d

.

We apply Stirling’s formula N ! ≃
√

2πN(Ne )N , taking into account that the
multiplicative error for positive N is uniformly bounded from below and above.
A coarse bound will suffice. In the following estimate we make use of the relation

|Cm| ≤ 2m
d(h(µ)+δ), following immediately from the definition of Cm. For some

8



positive constants c, c′, and c′′ we have

log |Tk(δ,m)| ≤ log cmdKd

(
Kd

⌊
1
2K

d
⌋
)Kd √

Kd

⌊
1
2K

d
⌋2 |A|δkd |Cm|( k

m )
d

≤ log c′md3K
d

Kd/2|A|δkd |Cm|( k
m )d

≤ log c′′kd3(
k
m

+2)d2(h(µ)+δ+δ log|A|)kd

≤ kd
(
h(µ) + δ(log |A| + 1) +

2d

md
log 3 +

log kd + log c′′

kd

)
.

In the last line we used 1/m + 2/k ≤ 2/m, which is fulfilled if k/m is large
enough.

Whenever δ < α
log |A|+1 and m as well as k are large enough (depending on

α) this yields log |Tk(α)| ≤ kd(h(µ) + α).

Probability bound. The Ornstein-Weiss extension for amenable groups [10]
of the Shannon-McMillan-Breiman-theorem yields1:

lim
m→∞

− 1

md
logµ(Πmx) = h(µ) µ-a.s. .

Thus, in view of the definition of Cm (Definition 3), there exists an m0(δ) such
that µm (Cm) ≥ 1 − δ2/5 for all m ≥ m0(δ). We fix such an m. The individual
ergodic theorem [8] asserts that the following limit exists for µ-a.e. x ∈ Σ:
limn→∞

1
nd

∑
r∈Λn

1[Cm] (σrx) =
∫
1[Cm](x)dµ(x) = µm(Cm), and therefore

∑

r∈Λn−m+1

1[Cm](σrx) ≥ (1 − δ2/4)(n−m + 1)d > (1 − δ2/3)nd (5)

holds eventually almost surely, i.e. for µ-almost every x, and choosing n large
enough depending on x, n ≥ n0(x).

Take an x ∈ Σ and an n ∈ Z+ for which this is the case. Choose a k with
m < k < n. Consider the unshifted regular k-block partition of the n-block Λn:

Λn =
⋃

r∈k·Zd

(Λk + r) ∩ Λn.

Now, from equation (5) we deduce, that, if k/m and n/k are large enough, at
least a (1 − 2δ)-fraction of the elements of this regular k-block parsing of Πnx
which do not cross the boundary of Λn (those which count for the empirical
distribution µ̃k,n

x , i.e. Πkσrx with r ∈ k · Zd ∩ Λn−k+1) satisfy

1

(k −m + 1)d

∑

s∈Λk−m+1

1[Cm](σs+rx) ≥ (1 − δ/4) . (6)

This is because if more than the specified 2δ-fraction of the k-blocks had more
than a δ/4-fraction of ‘bad’ m-blocks, then the total number of ‘bad’ m-blocks

1In fact we only need the convergence in probability, which ensures µ(Cm)
m→∞
−−−−→ 1.
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in Πnx would be larger than

2δ
⌊n
k

⌋d
· δ

4
(k −m + 1)d ≥ δ2

2

(
(1 − k

n
)(1 − m

k
)

)d

nd

>
δ2

3
nd,

for k
n and m

k small enough, in contradiction to equation (5). While n had to
be chosen large enough depending on x, we see that k needs to be chosen such
that k

n and m
k are both small enough.

By Lemma 2 if k ≥ 4dm/δ, the k-blocks which satisfy equation (6) have a
regular m-block partition with at least a (1−δ)-fraction of all partition members
in Cm. Hence, at least a (1 − 2δ)-fraction of all k-blocks in Λn counting for the
empirical distribution belong to Tk(δ,m). For 2δ ≤ α we get the probability
bound:

µ̃k,n
x (Tk(δ,m)) ≥ 1 − α. (7)

This completes the proof of Theorem 5a).

Proof of Theorem 5b). The statement is trivial for h(µ) = 0. Let
h(µ) > 0.

For fixed δ < α, consider the sets En(δ) of all x in Σ with the property

µ̃k,n
x (Tk(δ)) ≥ 1 − δ for all k ≥ k0(δ), 2k

d(h(µ)+α) ≤ nd

where k0 = k0(δ) is chosen large enough corresponding to the first part of the
theorem.

Consider the sets Dn(α, δ) of all x in Σ with the property

µ̃k,n
x (T̃k,n(x)) > α for some k with k ≥ k0(δ), 2k

d(h(µ)+α) ≤ nd.

Remember the definition of entropy-typical sets:

Cn(δ) ≡
{
a ∈ Σn : 2−nd(h(µ)+δ) ≤ µn({a}) ≤ 2−nd(h(µ)−δ)

}
.

Finally, set Fn(δ, α) = [Cn(δ)] ∩Dn(α, δ) ∩ En(δ).
The restriction of any x in Dn(α, δ) ∩ En(δ) to Λn, i.e. a := Πnx can be

described as follows.
1. First we specify a k with k ≥ k0(δ), 2k

d(h(µ)+α) ≤ nd as in the definition
of Dn(α, δ).

2. Next, for each of the
⌊
n
k

⌋d
blocks counting for the empirical distribution,

we specify whether this block belongs to T̃k,n(x), to Tk(δ) \ T̃k,n(x) or to Σk \
(Tk(δ) ∪ T̃k,n(x)).

3. Then we specify for each such block its contents, pointing either to a list
containing all elements of T̃k,n(x), or to a list containing Tk(δ) \ T̃k,n(x) or, in
the last case, listing all elements of that block.

4. Finally, we list all elements (at the boundary) not covered by the empirical
distribution.

In order to specify k we need at most logn bits (in fact, much less, due to

the bound on k). We need at most 2
⌊
n
k

⌋d
bits to say which of the cases under

10



2. is valid for each of the blocks. For 3. we need the two lists for the given k.

This needs at most
(

2k
d(h(µ)+δ) + 2k

d(h(µ)−α)
)
kd(log |A| + 1) bits. According

to the definitions of Dn(α, δ) and En(δ), to specify the contents of all k-blocks,
we need at most

(
n

k
+ 1)dkd (α(h(µ) − α) + (1 − α)(h(µ) + δ) + δ(log |A| + 1))

bits. For 4. we need at most (nd −
⌊
n
k

⌋d
kd)(log |A| + 1) bits. Hence the

cardinality of ΠnFn(δ, α) can be estimated by

log |ΠnFn(δ, α)|

≤ logn + 2
nd

kd1(α)

+nd
(
n−d(1− h(µ)+δ

h(µ)+α ) + n−d(1−h(µ)−α

h(µ)+α )
) d logn

h(µ) + α
(log |A| + 1)

+nd

(
1 +

1

n
d

√
d logn

(h(µ) + α)

)d
(
h(µ) − α2 + δ(log |A| + 2)

)

+nd


1 −

(
1 − 1

n
d

√
d logn

h(µ) + α

)d

 (log |A| + 1)

≤ nd(h(µ) − α2/2 + δ(log |A| + 2))

bits, supposed n is large enough and k1(α) is chosen sufficiently large. Now,
due to ΠnFn(δ, α) ⊂ Cn(δ), we get

µ(Fn(δ, α)) = µn(ΠnFn(δ, α)) ≤ 2−nd(α2/2−δ(log |A|+3)).

Making δ small enough from the beginning, the exponent here is negative.
Hence, by the Borel-Cantelli lemma, only finitely many of the events x ∈
Fn(δ, α) may occur, almost surely. But we know from the first part of the the-

orem that x ∈ En(δ) eventually a.s. (observe that the condition 2k
d(h(µ)+α) ≤

nd implies k
n < ε(δ) as supposed there, for n large enough). And we know

from the Ornstein-Weiss-Theorem that Πnx ∈ Cn(δ) eventually a.s. Hence
x ∈ (Σ \ Fn(δ, α)) ∩ En(δ) ∩ [Cn(δ)] ⊂ Σ \Dn(δ, α) eventually a.s.

This is the assertion b) of the theorem.

Proof of Theorem 6. The proof follows the ideas of the proof of the
one-dimensional statement Theorem II.3.5 in [13].
Let α < 1

4 and consider the sets Tk(α) given in theorem 5. Define Uk,n(x) :=

{a ∈ Tk(α) : µ̃k,n
x (a) < 2−kd(h(µ)+2α)}. We have |Tk(α)| ≤ 2k

d(h(µ)+α). From

this we deduce µ̃k,n
x (Uk,n(x)) ≤ 2−kdα for any x.

Consider also the sets Vk,n(x) := {a ∈ Tk(α) : µ̃k,n
x (a) > 2−kd(h(µ)−2α)}.

Then obviously |Vk,n(x)| ≤ 2k
d(h(µ)−2α). Now the second part of Th. 5 states

that for µ-a.e. x there exists an n0(x), such that µ̃k,n
x (Vk,n(x)) ≤ 2α, supposed

n > n0(x), k > k1(2α) and 2k
d(h(µ)+2α) ≤ nd.

We define Mk,n(x) := Tk(α) \ (Uk,n(x) ∪ Vk,n(x)), and conclude that for µ-a.e.
x the following holds

µ̃k,n
x (Mk,n(x)) ≥ 1 − 4α,

11



supposed n > n0(x), k > k2(2α) and 2k
d(h(µ)+2α) ≤ nd, where k2(α) ≥ k1(α) is

chosen such that 2−k2(α)
dα < α.

Consider now the definition of the Shannon entropy of the empirical distri-
bution

H(µ̃k,n
x ) = −

∑

a∈Σk

µ̃k,n
x (a) log µ̃k,n

x (a)

=−
∑

Σk\Mk,n

...

︸ ︷︷ ︸
Ξk,n

−
∑

Mk,n

...

︸ ︷︷ ︸
χk,n

.

We write Bk,n(x) := Σk \Mk,n(x). For the first sum an upper bound is given
by2

Ξk,n ≤ µ̃k,n
x (Bk,n(x))kd log |A| − µ̃k

xn(Bk,n(x)) log µ̃k
xn(Bk,n(x)) .

Hence lim sup
n→∞

1
kd
n

Ξk(n),n ≤ 4α log |A| holds µ-almost surely under the as-

sumptions of the theorem.

As for the second sum, bear in mind that the elements a in Mk,n(x) have
the property

kd(h(µ) − 2α) ≤ − log µ̃k,n
x (a) ≤ kd(h(µ) + 2α)

and thus

1

kdn
χk,n ≥

∑

a∈Mk,n(x)

µ̃k,n
x (a)(h(µ) − 2α) ≥ (1 − 4α)(h(µ) − 2α)

1

kdn
χk,n ≤

∑

a∈Mk,n(x)

µ̃k,n
x (a)(h(µ) + 2α) ≤ h(µ) + 2α .

Therefore we have

(1 − 4α)(h(µ) − 2α)

≤ lim inf
n→∞

1

kdn
H(µ̃k(n),n

x )

≤ lim sup
n→∞

1

kdn
H(µ̃k(n),n

x )

≤ h(µ) + α(2 + 4 log |A|)

holding µ-a.s.
Finally, observe that a sequence kn fulfilling the two assumptions of the the-

orem for some α > 0 in fact fulfils them for any smaller α too. This proves the
result.

Proof of Theorem 1. 1. Each x ∈ Σ gives rise to a family of empirical
distributions

{
µ̃k,n
x

}
k≤n

.

2Observe that
∑

a∈B p(a) log p(a) ≤ p(B) log |B| − p(B) log p(B).
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We define for each n the set Tn(h0) as the set of elements in Σn having
empirical k-block entropy per symbol not greater than h0:

Tn(h0) := Πn

{
x ∈ Σ : H

(
µ̃k,n
x

)
≤ kdh0

}
.

Here we have to choose k depending on n, (how exactly will be specified
later).

The number of all (non-overlapping) empirical k-block distributions in Σn is

upper bounded by
((

n
k

)d)|A|k
d

, since
⌊
n
k

⌋d
is the maximum number of occur-

rences of any particular k-block in the parsing of an element of Σn, and |A|k
d

is the number of elements in Σk.

For the number of elements xn ∈ Σn which give rise to the same empirical
distribution (µ̃k,n

x ) we find an upper bound which depends only on the entropy
of that empirical distribution:

For a given n such that ⌊n/k⌋ = n/k we consider the product measure

P = (µ̃k,n
x )⊗(n/k)d on Σn: P (yn) =

∏
r∈k·Zd

Λk+r⊂Λn

µ̃k,n
x (Πk(σry)), which yields

P (yn) =
∏

a∈Σk

(
µ̃k,n
x (a)

)(n/k)dµ̃k,n
x (a)

= 2−(n/k)dH(µ̃k,n
x ), ∀y : µ̃k,n

y = µ̃k,n
x , (8)

and thus |{y ∈ Σn : µ̃k,n
y = µ̃k,n

x }| ≤ 2(n/k)H(µ̃k,n
x ).

For a general n : ⌊n/k⌋ 6= n/k, the entries in the positions Λn\Λk·⌊n/k⌋ of
an y ∈ Σn may be occupied arbitrarily, giving the following bound:

|{y ∈ Σn : µ̃k,n
y = µ̃k,n

x }| ≤ 2⌊n/k⌋
dH(µ̃k,n

x ) · |A|nd−(n−k)d . (9)

Now we are able to give an upper estimate for the number |Tn(h0)| of all
configurations in Λn which produce an empirical distribution with entropy not
larger than kdh0:

|Tn(h0)| ≤ 2h0k
d(n

k )d

|A|nd−(n−k)d
((n

k

)d)|A|k
d

,

log |Tn(h0)| ≤ ndh0 + (nd − (n− k)d) log |A| + |A|k
d

d log
n

k
.

Introducing the restriction kd ≤ 1
1+ε log|A| n

d = log nd

(1+ε) log |A| , ε > 0 arbitrary,

we conclude that |Tn(h0)| ≤ 2n
dh0+o(nd) (uniformly in k under the restriction).

This yields lim sup
n→∞

log |Tn(h0)|
nd = h0.

2. Next we have to prove that such a sequence of sets, with k = k(n) suit-
ably specified, is asymptotically typical for all µ ∈ Perg with h(µ) < h0. Given
any µ with h(µ) < h0, Theorem 6 states that for µ-a.e. x the k(n)-block em-
pirical entropy of µ̃k,n

x converges to h(µ), provided that k(n) is a sequence with

k(n) → ∞ and k(n)d ≤ log nd

h(µ)+α , where α > 0 can be chosen arbitrarily. Since

h(µ) ≤ log |A|, choosing kd(n) ≤ lognd

(1+ε) log |A| , ε > 0 arbitrary, we get assertion

a) from the definition of Tn(h0).
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3. For a sequence {Un ⊂ Σn}n with lim infn→∞
1
nd log |Un| = h1 < h0 we

find a µ with h(µ) = h2, h1 < h2 < h0. We know, that µn is asymptotically
confined to the entropy typical subsets:

Cn(δ) :=
{
a ∈ Σn : 2−nd(h2+δ) ≤ µn({a}) ≤ 2−nd(h2−δ)

}
.

Hence, we get the following:

lim inf
n→∞

µ(Un) = lim inf
n→∞

µ(Un∩Cn(δ)) ≤ lim inf
n→∞

|Un|2−nd(h2−δ) = lim
n→∞

2n
d(h1−h2+δ).

Choosing δ small enough, this is zero. This proves c). Also, combining c) with
a), we get lim infn→∞

1
nd log |Tn(h0)| ≥ h0. In 1. we proved lim sup 1

nd log |Tn(h0)|
n→∞

=

h0, thus b) is verified.

4 Conclusions

We have formulated and shown multidimensional extensions of important the-
oretical results about samplings of ergodic sources. Since these results give a
mathematical basis for the design of universal source coding schemes, we here-
with provide a truly multidimensional mathematical framework for the optimal
compression of multidimensional data.

We have shown that the set of n × · · · × n-arrays which have empirical
k-block distributions of per site entropy not larger than h0 is asymptotically
typical for all ergodic A-processes of entropy rate smaller than h0, where k =⌊

d

√
c log|A| n

d
⌋
, 0 < c < 1. In other words, for all A-processes of entropy rate

smaller than h0 the probability of the corresponding cylinder set tends to 1 as
n → ∞. These sets have a log cardinality of order ndh0.
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