
Scalability of a Distributed Virtual Environment
Based on a Structured Peer-To-Peer Architecture

Jiehua Chen∗, Sven Grottke∗, Jan Sablatnig∗,
Ruedi Seiler∗ and Adam Wolisz†

Technical University of Berlin, Germany
∗{chen, sfs, jon, seiler}@math.tu-berlin.de

†wolisz@tkn.tu-berlin.de

Abstract—We investigate the scalability of distributed virtual
environments (DVEs) based on a structured peer-to-peer (P2P)
overlay. We focus on network load and message routing latency.
To this end, we study a prototypical DVE consisting of a simple
game scenario and a P2P architecture based on Pastry and Scribe
as proposed by Knutsson et al. [1]. Both our theoretical analysis
and simulation results show that under constant population
density, the network load is constant except for the overhead
messages incurred by the overlay protocol. The overall network
load per host as well as the message routing latency grows
logarithmically with the number of hosts; this is in partial
contradiction to Knutsson et al.’s results. We propose a resolution
to this contradiction.

I. INTRODUCTION

Typical distributed virtual environments (DVEs) such as
online games, e.g. World of Warcraft or Second Life, are
simulated virtual worlds shared by human participants. Inter-
actions between participants are the main task of such DVEs.
Each participant has a graphical representation of himself
called avatar in the virtual world. He uses a host (computer)
to control his avatar. Each host displays the virtual world
(or a subset of it) to its participant and communicates with
other hosts through the Internet using messages which cause
network traffic and data transfer delays.

During the past few years, DVEs based on peer-to-peer
(P2P) systems have been investigated since they promise better
load balancing and robustness compared to the conventional
client-server approach.

This paper focuses on the scalability of a P2P based DVE,
i.e. how network load and message routing latency scale with
the number of participants. We look into a structured P2P
architecture using Pastry [2], a widely used P2P overlay, and
Scribe [3], an application level multicast infrastructure built on
top of Pastry. We study an existing prototypical game called
SimMud [1] using this architecture. SimMud contains two
important components of a virtual world, avatars and mutable
objects. Four different kinds of basic activities that an avatar
can perform are also included in SimMud.

How does a DVE like the SimMud game that is based on
Pastry and Scribe scale with the number of participants? Two
major factors, the design of the virtual world itself and the
underlying network overlay, influence the network load and the

message routing latency. If the network load incurred by the
virtual world does not depend on the number of participants,
we expect the scaling behavior of the overall network load
per host to depend only on Pastry and Scribe, and hence to
be O(logN) ([2]) where N is the number of participants.

In this work however, we investigate the scaling behavior of
the network load and the message routing latency under the
influence of both, the virtual world design and the network
overlay.

We assume the population in the virtual world to be
uniformly distributed. We then investigate the network load
incurred by the SimMud game, which we call the subscriber
message rate. From our theoretical analysis in section IV, we
see that the average subscriber message rate ([# subscriber
messages/s/host]) is constant with a growing number of par-
ticipants. This constant scaling behavior is confirmed by our
experimental results. This allows us to build a virtual world
like SimMud on top of a structured P2P architecture, which
scales the same way as the P2P overlay itself.

Our theoretical expectation that the overall network load
per host1, i.e. the average number of messages received per
second per host, scales logarithmically with the number of
participants, is confirmed by our experimental results.

Our measurement of the average number of message routing
hops agrees with our assumption and Knutsson et al.’s con-
clusion, that the message delay scales with O(logN) hops on
average, where N is the total number of hosts.

The idea of using Pastry and Scribe, and the SimMud
game itself originate from Knutsson et al. [1]. In their work,
they simulated SimMud and measured the total message rate
at each host and the message routing latency for 1000 and
4000 participants. Their experimental results show that in
both cases, the total message rate distributions are “very
similar”. The average number of multicast message routing
hops decreases slightly when the number of hosts increases
from 1000 to 4000.

Our result of a logarithmic scaling behavior of the average
total message rate differs from Knutsson et al.’s. This discrep-
ancy can, however, be resolved by assuming that Knutsson et
al. did not take into account of the overhead messages incurred

1We also call this the average total message rate.978-1-4244-8953-4/11/$26.00 c© 2011 IEEE

by the overlay protocol. Unfortunately, it is not possible to
verify this conjecture or to make a more detailed comparison,
because the original code used in [1] is not available any
more.2

II. SYSTEM MODEL

As discussed in the introduction, our investigated DVE
architecture employs a structured P2P approach which uses
two existing components, Pastry [2] and Scribe [3]. Many
applications such as online games can be implemented using
this decentralized P2P model. In the following we will discuss
two aspects of our system model: the aspect of the virtual
world and the aspect of its realization, c.f. table I.

Virtual world Real world
N avatars N hosts each running an AI script
G regions G Scribe multicast trees
Avatar changes position Regular position updates
Avatar changes region Scribe multicast group change
Avatar object interaction
(within a region)

Client coordinator protocol

Inter-avatar interaction
(within a region)

Direct communication

Tab. I: Two aspects of a DVE

A virtual world is a simulated world in which human
participants, each represented by their own avatar, can interact
with each other. Mutable objects, such as balls or doors,
are another important component of virtual worlds. They are
characterized by their states, e.g. position, color, closed/open.
The difference between avatars and mutable objects is that
each avatar is directly controlled by a human participant
through his host.

In order to reduce network load and CPU consumption at
each host, interest management [4] is applied, i.e. each host
can express its own interest as the part of the virtual world in
which the states of mutable objects and avatars are relevant to
the avatar of this host. This field is called the area of interest
(AOI) of this host. Typically, a host’s AOI is derived from the
position of its human participant’s avatar in the virtual world.

Our system employs partial replication. More precisely,
the whole virtual world is divided into fixed disjoint regions.
Each host replicates only the objects and avatars in the same
region as its own avatar. This region is the AOI of this
host. Hosts, whose avatars are in the same region, form
an interest group (a.k.a Scribe multicast group). For each
region in the virtual world, there is a multicast tree in the
real world, which contains all the hosts whose avatars are
currently in the same region. These hosts are called subscribers
(to this region/multicast group/multicast tree). The root of
this multicast tree is called the coordinator of the region.
It disseminates the states of avatars and objects located in
this region. It also handles object update requests. Each host
and each region has a unique ID. The host whose ID is
numerically closest to a region’s ID is assigned the coordinator

2We thank Prof. Knutsson for kindly providing this information.

of this region. The detailed description of the assignment of
coordinators is described in [5].

Avatars can perform four different kinds of actions: An
avatar can move within a region. Scribe is used to multicast
regular position updates to the interest group to refresh the
avatar position on other hosts of the group. An avatar can
change its current region. This implies a multicast group
change of the host. An avatar can access any mutable object in
its own region. This is realized as a request to the coordinator
host of the selected object. After a successful update, the
coordinator multicasts the new object state to the interest
group. An avatar can also interact with another avatar in the
same region. The interaction is implemented through direct
host communication.

III. PROTOTYPICAL GAME SCENARIO SIMMUD

SimMud is an abstraction of a simple online game and can
be simulated on a single computer. SimMud covers the four
activities of an avatar listed in section II. The state of each
avatar includes its current position. The only kind of mutable
objects are apples. Each apple has a nutrition counter. An
avatar can move, eat an apple and fight with another avatar
within the same region.

In a system with N participants (avatars), the virtual world
of SimMud is divided into G fixed disjoint regions. An avatar
enters a region with probability 1/G. The average density of
avatars of each region, which we call the population density,
equals N/G avatars/region. The number of apples of each
region equals N/G apples/region.

C

1

4 5

2

6

3

Apple Avatar

α
γ

β
Coordinator

A

B

D

Fig. 1: A SimMud example

Figure 1 shows a game with 12 avatars, 6 regions each
having 12/6 = 2 apples, and a subset of the hosts involved,
each replicating a region of the virtual world. Host α replicates
region 1, because its avatar A is currently in this region. It also
replicates region 3 because it is the coordinator for that region.
If avatar C of host γ wants to eat apple D, γ must make a

request to host α. If avatar B enters region 3, its host β notifies
the coordinator of region 5 of its leave and the coordinator α of
its join. α then sends β the current state of region 3 including
the avatars and the apples. The hosts of other avatars in the
same region are also informed of B’s arrival. If avatar B wants
to fight with another avatar in the same region, its host simply
sends a fighting message to the opponent’s host.

A. Types of messages received (Cf. figure 2)

A host is always a subscriber to the multicast group of the
region in which its avatar is residing. It receives subscriber
messages to this region including subscriber position mes-
sages, mutable object messages, messages relevant for region
changes of any avatar within this region and fighting messages.
Due to the way Scribe constructs a multicast tree, a host could
also be a forwarder or the coordinator for another multicast
group which it does not subscribe to. Messages which are only
forwarded are called overhead messages.

of own group
Position updates Position updates

for other groups

Object update msgs.
for other groups

for own group
Object update msgs.

Subscriber messages

Region change msgs.
of own group of other groups

Region change msgs.

Fighting msgs.

Overhead messages

Fig. 2: Message types

Table II defines some important measurements. The average
total message rate is defined as the mean value of the total
message rates over all hosts in a DVE.

Subscriber message rate: |Subscriber messages|
T

Subscriber position message rate: |Subscriber messages ∩Position messages|
T

Total message rate: |Total messages|
T

Total position message rate: |Total position messages|
T

Tab. II: Message rates of different types at each host. T is the
duration of a simulation run. We only consider messages received.

IV. THEORETICAL ANALYSIS

The assignment of avatars to regions is random. In this
section we analyze how probable it is that a region has a total
of k avatars, and the distribution of the number of subscriber
position messages received by a host.

A. Simplified probabilistic model of a host receiving sub-
scriber position messages

We consider a situation which can be derived from the well-
known urn model. In a system with N avatars and G regions,
there are N hosts and G groups. At the beginning, each avatar
joins any one of the G regions. We assume that the choice
of each avatar is independent and identically distributed. If
there are k avatars in a region, then the host of each of these
k avatars receives k subscriber position messages about this
region.

There are a total of GN ways to distribute N avatars to
G regions. Each region has the same probability (= 1

G := p)
to be chosen by each avatar. Let ki with i ∈ {1, . . . , G} be
the number of avatars which have chosen region i. We call
ω := (k1, . . . , kG) with

∑G
i=1 ki = N a possible selection

event, with probability

p(ω) =
N !

k1! · · · kG!
· pN (1)

1) Probability of a region having k avatars: Since all
groups are equal, in the following, w.l.o.g, the probability h(k)
of the 1st region containing k avatars equals the probability
of a region having k avatars:

h(k) = pk · (1− p)(N−k) ·
(
N

k

)
(2)

2) Probability and Expectation of a host receiving k sub-
scriber position messages: A region contains exactly k avatars
with probability h(k). Then the probability s(k) that an avatar
is in a region with k avatars equals

s(k) := pk−1 · (1− p)(N−k) ·
(
N − 1
k − 1

)
(3)

, which is also the probability that a host receives k subscriber
position messages.

The expectation of the number of subscriber position mes-
sages received per host is equal to:

E = d− d

N
+ 1 (4)

With increasing number of N and constant population
density d := N/G the expectation of number of subscriber
position messages received per host converges to d+ 1.

3) Probability of a host receiving k position messages:
A host is a subscriber for its own multicast group, i.e. the
group of the region that its avatar is residing in. A host can
also be a forwarder or the coordinators for other multicast
groups. At this time, the host receives overhead messages.
For example, if an avatar is in a region with x avatars, and
its host is a forwarder for another multicast group with a
total of y subscribers, then this host receives x + y position
messages. If a host is a forwarder or coordinator for a multicast
group, then we expect that it receives on average twice as
many position messages as a host which is neither forwarder
nor coordinator for any other multicast groups. Should a host
be involved in several other multicast groups, the number of
position messages received by it multiplies accordingly.

If the distribution of the number of multicast groups a host
is involved in is known, then we can convolute it with the
theoretical distribution of the number of subscriber position
messages as given in equation 3. Under the assumption that
the number of position messages received by a host does not
correlate with the number of multicast groups that a host
is involved in, the resulting convoluted distribution should
correspond to the distribution of the total number of position
messages received by a host.

It is possible to analyze theoretically the probability of the
number of multicast groups that a host is involved in. This
theoretical analysis is part of the work of Pastry. In the cur-
rent paper, network load of the P2P-based distributed virtual
environments should be analyzed depending on the number of
participating hosts and not the internals of the overlay used. So
we measure the number of additional multicast groups that a
host is involved in. This allows us to figure out the distribution
of the number of additional multicast groups by a host and
convolute it with the distribution of the number of subscriber
position messages as given in equation 3.

B. Probabilistic model under region changes

Avatars in our simplified probabilistic model detailed above
don’t ever change their region. Now we suppose a more
complicated situation, where each avatar can change its region.
If an avatar moves from region i with k̂i members to region j
with k̂j members (inclusive the newly joined avatar), its host
receives firstly k̂i subscriber position messages and then k̂j

subscriber position messages. We know from subsection IV-A
that a host receives k subscriber position messages for the
case without region change with probability s(k) (Equation
3). Then the probability that it firstly receives k̂i and then
k̂j subscriber position messages only about the region of his
avatar is thus equal to s(k̂i) · s(k̂j).

Now we investigate the probability of a host receiving k̂
subscriber position messages and his avatar having been in
Y regions in total. It is the same with a host receiving k̂i

subscriber position messages with k̂1 + · · · + k̂Y = k̂ for all
i ∈ {1, . . . , Y }.

Theorem 1 (Probability of receiving a total of k̂ subscriber
position messages after Y -1 region changes):

sY (k̂) = pk̂−Y · (1− p)Y·N−k̂ ·
(
Y ·N − Y
k̂ − Y

)
(5)

For the proof of theorem 1 we refer to our technical re-
port [5]. The expectation of the number of subscriber position
messages received per host in this case is:

E′ = Y · (d− d

N
+ 1) (6)

With increasing number of hosts N and constant population
density d this expectation converges to Y · (d+ 1).

If each host sends in each time interval I a subscriber po-
sition message, then the average subscriber position message

rate per host equals:

Ẽ =
d− d

N + 1
I

(7)

With increasing number of hosts N and constant population
density d this value converges to (d+ 1)/I .

V. EXPERIMENTS

To evaluate the scaling behavior of a P2P based DVE, we
measured two characteristics at each host: the total message
rate and the average number of routing hops per message.
We compare the simulation results on the one hand with our
theoretical results, and on the other hand with the results in [1].

A. Experimental setup

We use our simulator Adam3 [6] to experiment with net-
works of up to tens of thousands of hosts. On top of Adam we
have implemented the Pastry routing protocol and the Scribe
application level multicast protocol, the APIs of which are
detailed in [2] and [3]. The game SimMud is simulated with
a Pastry key length of 32 bit, a key base of 24 and a leaf set
size of 32.

The network topology is fully connected. The link delay
of any two hosts is between 3 and 100 ms with a uniform
distribution. There is no packet loss. We investigate failure free
environments, where there are no hosts leaving or joining in
the overlay network during the game. Each simulated avatar
changes its behavior at fixed times. Each experiment is run
5 times, each using a different random seed and lasting 300
(virtual) seconds.

During the game, each simulated host multicasts the position
updates of its avatar every 150 ms to its interest group. Once
every 150 ms, each avatar changes its current region with
0.15
40 = 0.375% probability, i.e. every 40 s on average, and

eats and fights, each with probability 0.15
20 = 0.75%, i.e. every

20 s. In this paper, each target region has the same probability
to be picked. Furthermore, throughout all of the experiments
in this paper, we choose the number of regions such that the
average population density remains 10 avatars/region.

B. About the network load

Figure 3 shows three histograms for a simulation with
1000 hosts and 100 groups: the distribution of total message
rate and subscriber message rate from our measurements, and
from Knutsson et al. respectively4. Our measurements of the
total message rate differs significantly from those given by
Knutsson et al. We assumed that they considered only the
subscriber messages rate as the total message rate received by
a host. Every 150 ms each host multicasts the current position
of its avatar to all members of its group, i.e. approximately
6.7 subscriber position messages/s/host. The average group
density5 is 10 hosts/group, so each host receives on average

3http://www.math.tu-berlin.de/condel
4Knutsson et al.’s data is taken from the plots in [1].
5This also equals to the population density from the view of the virtual

world.

 0

 10

 20

 30

 40

 50

0-10
20-30

40-50

60-70

80-90

100-110

120-130

140-150

160-170

180-190

200-210

220-230

240-250

260-270

280-290

300-310

320-330

340-350

360-370

380-390

400-410

420-430

440-450

460-470

480-490

%
 h

o
st

s

N: 1000, G: 100, simulation time: 300s, 5 runs

Our total message rate-avg.:150.3
Knutsson’s message rate-avg.:82.17

Our subscriber message rate-avg:73.74

Fig. 3: Distribution of total message rates vs. distribution of subscriber message rates

66.7 subscriber position messages/s. If this host is also a
coordinator for another multicast group, then it receives about
66.7+66.7 = 133.3 position messages/s. Approximately 10%
of all hosts are coordinators, which should receive at least
133.3 messages/s. This amount of hosts can unfortunately
not be identified from Knutsson et al.’s result and evalua-
tion. Furthermore, the subscriber message rate converges to
10+1
0.15 ≈ 73.3 [subscriber messages/s/host] for simulations with

increasing number of hosts6, which resembles the "average
total message rate" measured by Knutsson et al.

Knutsson et al.’s distribution of message rate agrees with
ours of the subscriber message rate significantly better than
with ours of the total message rate. The difference between
Knutsson et al.’s distribution of message rate and our distribu-
tion of the subscriber message rate is only about 8 messages/s.
However, this small deviation can not be further resolved,
since on the one hand, Knutsson et al. did not describe how
the messages are measured in their experiments. On the other
hand, the original code used in [1] has been lost7.

1) Effect of system size on the average subscriber messages
rate: The average subscriber message rate is the mean value

699% of the subscriber messages are subscriber position messages. See
also section IV-B for the expectation of subscriber position messages. We
still have to rescale it by dividing by 0.15 s.

7A private correspondence with Prof. Knutsson.

of the subscriber message rates over all hosts. As the whole
network download traffic is dominated by the position mes-
sages, we predict from the theoretical analysis of the case
with region changes8, that under constant population density
of d = 10 avatars/region the average subscriber message rate
converges with increasing number of hosts to d+1

0.15 ≈ 73.3
[subscriber messages/s/host]. The experimental result in figure
4 shows an approximately constant behavior of the average
subscriber message rate when the number of hosts increases. It
is about 1 subscriber message/s/host more than the theoretical
expectation. This is due to the fact that in addition to the
subscriber position messages the subscriber messages also
contain the messages relevant to the region changes, avatar
fighting and mutable object update messages.

2) Effect of system size on the average total message rate:
The average total message rate is the mean value of the total
message rates of all hosts. We expect that in a system with
N hosts, the average total message rate scales with O(logN)
[messages/s/host]. This is because the number of subscriber
messages is constant and we use Scribe and Pastry to route
messages. Both protocols deliver a message from sender to
receiver in O(logN)) hops on average. Our expectation is
matched by the experimental result in figure 4.

8Cf. subsection IV-B.

Our results on the average subscriber message rate and
the average total message rate support our conjecture that
Knutsson et al. really only considered the subscriber messages
as the total messages received by a host. Therefore they ob-
served “very similar rates” for different numbers9 of hosts [1].

Table III gives a summary of our results on the network
load.

Average total Average subscriber
message rate message rate

Theoretical
expectation

Eq. 7, [2]&[3]: This work:
O(log N) O(1)

Experimental
results

Knutsson et al.:1k, 4k hosts:
“Quite similar”

This work: 100-42k hosts:
O(log N) O(1)

Tab. III: Comparison: average total message rate and average
subscriber message rate

C. Effect of system size on the message routing latency

Messages that are routed through Pastry are denoted as
unicast messages. As [2] shows, the average number of routing
hops of a Pastry ring with N hosts is O(logN), so we
expect that the unicast message routing latency also scales
that way. The number of routing hops of a multicast message
is measured from the root of the multicast tree to each
subscriber to this multicast group. Because of the reverse
path property [7], we know that the routing latency of such
kind of messages should scale exactly the same as the one
of unicast messages. To confirm our expectation, we measure
the numbers of routing hops of unicast and multicast messages
respectively.

The results of the average number of routing hops of
unicast messages as well as of multicast messages from our
simulations with different numbers of hosts are practically the
same, as shown in figure 5. Both the unicast routing latency
and the multicast routing latency scale logarithmically with
the number of hosts.

A comparison to Knutsson et al.’s result is difficult since
on the one hand, different implementations of Pastry and
Scribe are used, and on the other hand it is not clear how
the routing latency was measured in the original work. As can
be seen in figure 5, the routing latency of both, unicast and
multicast messages from Knutsson et al. show no similarities,
while our own measurements are the same within each other’s
statistical deviation. Moreover, the average number of routing
hops of Knutsson et al.’s multicast messages for the simulation
with 1000 hosts is larger than the one with 4000 hosts.
This is contrary to their analysis, that the routing latency
scales logarithmically with the number of hosts. We have no
explanation for this contradiction.

Table IV summarize our theoretical and experimental results
on the message routing latency. It also compares our results
to Knutsson et al.’s.

9It should be kept in mind, however, that Knutsson et al. only provided
two measuring points.

Average number of routing hops of
unicast messages multicast messages

Theoretical
expectation

[2]&[3]:
O(log N)

Experimental
results

Knutsson et al.:1k, 4k hosts:
Increase Slight decrease

This work:100-42k hosts:
O(log N)

Tab. IV: Comparison: average number of routing hops of unicast
messages as well as multicast messages

VI. RELATED WORK

Many works concerning the scalability of peer-to-peer (P2P)
based distributed virtual environments (DVEs) have been
published over the last ten years. For example, SOLIPSIS [8]
and VON [9] use an unstructured P2P and zone free approach,
i.e. there is no fixed partitioning of the virtual world. Hosts
in SOLIPSIS and VON notify each other if new neighbors are
entering their areas of interest (AOIs). One of the major prob-
lems of the above proposals is the persistency of non-avatar
objects. This limits the design of DVEs. When simulating a
system with up to 2000 hosts, the authors of VON observed a
constant behavior of network load when the population density
is fixed.

On the other hand, Knutsson et al. [1] and Colyseus [10]
propose structured P2P architectures. Knutsson et al.’s system
model is zone based. They simulated the SimMud scenario
for up to 4000 hosts. Colyseus employs two alternative DHTs:
Chord [11] and Mercury [12]. With simulations of only up to
225 hosts, however, it is hard to evaluate the scalability of
their approach.

Aiming to improve the scalability of DVEs, the zoned
federation model [13] and MOPAR [14] suggest to utilize
the benefits of both unstructured and structured P2P. Both
architectures are zone based. They use a distributed hash
table (DHT) to find the coordinator for each zone. The main
difference between them is the functionality of the coordinator.
Coordinators in MOPAR also connect with each other to
discover zone changes of avatars. The authors of [13] observe
that the message delay grows (weak) exponentially with the
number of zone members on only one single zone. The
authors of MOPAR don’t provide any measurements about
their architecture.

VII. CONCLUSIONS AND FUTURE WORK

This paper investigated the scalability of structured P2P-
based DVEs. To this end, we researched a prototypical virtual
world based on Pastry [2] and Scribe [3], which was originally
described by Knutsson et al. in [1]. The two main characteris-
tics of this DVE, i.e. the network load and the message routing
latency, scale in the same way as the underlying network
overlay under the conditions about the population density
outlined in section V-A.

We find out both theoretically and experimentally that
under constant population density, SimMud causes a constant
average subscriber message rate with increasing number of

 50

 100

 150

 200

 250

100/10

200/20

400/40

800/80
1000/100

4000/400
6000/600
8000/800

16000/1600

32000/3200
42000/4200

av
g

.
..

.
m

es
sa

g
e

ra
te

hosts / # groups

Simtime: 300s, 5 runs, region density: 10 avatars/region

Avg. total message rates, stddev
Avg. subscriber message rates, stddev
Knutsson et al.’s avg. message rates
Theo. analyzed: (10-10/N+1)/0.15

Fig. 4: # message/s/host depending on system size (semi-logarithmic scale)

hosts. Hence we expect both the network load and the message
routing latency to also scale that way. This is confirmed by
our experimental results, which show a logarithmic increase
of the average total message rate and the average number of
routing hops per message in the number of simulated hosts.

The discrepancies between our work and [1] summarized in
tables III and IV can largely be resolved by a reinterpretation
of Knutsson et al.’s results: They probably considered only the
subscriber messages rather than all kinds of messages received
by a host. As far as we know from Prof. Knutsson, the original
code used in [1] is unfortunately no longer available, which
makes it difficult to definitely verify our conjecture.

As the next step, we will study the problem of the scalability
with increasing population density. In our work so far, we
assume a uniform population distribution in the virtual world.
For the future, we are looking into the cases with other
population distributions, i.e. crowding. An evaluation of the
Pastry/Scribe architecture with different application scenarios
and the study of how the system handles churn [15] are in our
research plan.

REFERENCES

[1] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-Peer Support
for Massively Multiplayer Games,” in Proceedings of the 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), vol. 1, 2004.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,” in Pro-
ceedings of the 18th IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), November 2001.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
“SCRIBE: A large-scale and decentralized application-level multicast
infrastructure,” IEEE Journal on Selected Areas in Communications,
vol. 20, no. 8, Oct. 2002. [Online]. Available: citeseer.nj.nec.com/
459613.html

[4] K. Morse, “Interest management in large-scale distributed simulations,”
University of California, Irvine, Tech. Rep. ICS-TR-96-27, 1996.

[5] J. Chen, S. Grottke, J. Sablatnig, R. Seiler, and A. Wolisz,
“Scalability of a Distributed Virtual Environment Based on a
Selected Structured Peer-To-Peer Architecture,” Telecommunication
Networks Group, Technische Universität Berlin, TKN Technical
Report Series TKN-10-003, Sep. 2010. [Online]. Available: http:
//www.tkn.tu-berlin.de/publications/reports.jsp

[6] J. Sablatnig, S. Grottke, A. Köpke, J. Chen, R. Seiler, and A. Wolisz,
“Adam – A DVE Simulator,” Telecommunication Networks Group,
Technische Universität Berlin, TKN Technical Report Series TKN-08-
004, Feb. 2008.

[7] Y. K. Dalal and R. M. Metcalfe, “Reverse path forwarding of broadcast
packets,” Commun. ACM, vol. 21, no. 12, 1978.

[8] J. Keller and G. Simon, “Solipsis: A massively multi-participant vir-
tual world,” in The 2003 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA 2003).
CSREA Press, 2003.

[9] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “VON: A Scalable Peer-to-Peer
Network for Virtual Environments,” IEEE Network Magazine, vol. 20,
no. 4, Jul/Aug 2006.

[10] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: A distributed architec-
ture for online multiplayer games,” in In Proc. Symposium on Networked
Systems Design and Implementation (NSDI 06), 2006.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

100/10

200/20

400/40

800/80
1000/100

4000/400

8000/800

16000/1600

32000/3200
42000/4200

av
g
.
#
 o

f
m

es
sa

g
e

ro
u
ti

n
g
 h

o
p
s

hosts / # groups

Simtime: 300s, 5 runs, region density: 10 avatars/region

avg. # of routing hops of unicast msg. w/stddev
avg. # of routing hops of multicast msg. w/stddev

Knutsson et al.’s: Unicast
Knutsson et al.’s: Multicast

Fig. 5: Average routing latency of the dependent on the number of hosts (semi-logarithmic scale)

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Appli-
cations,” in SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer
communications, August 2001.

[12] A. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
scalable multi-attribute range queries,” in In SIGCOMM 04. Portland,
Oregon, USA: ACM, August 2004.

[13] T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned Federation
of Game Servers: a Peer-to-peer Approach to Scalable Multi-player
Online Games,” in NetGames ’04: Proceedings of 3rd ACM SIGCOMM
workshop on Network and system support for games. New York, NY,
USA: ACM, 2004.

[14] A. P. Yu and S. T. Vuong, “Mopar: a mobile peer-to-peer overlay
architecture for interest management of massively multiplayer online
games,” in NOSSDAV ’05: Proceedings of the international workshop
on Network and operating systems support for digital audio and video.
New York, NY, USA: ACM, 2005.

[15] S. Rhea, D. Geels, T. Roscoe, and J. K. z, “Handling Churn
in a DHT,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/CSD-03-1299, 2003. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2003/6360.html

